

Mathematical Sciences Letters An International Journal

A Matrix Inequality Concerning Weakly Connected and Balanced Digraphs

Yilun Shang*

SUTD-MIT International Design Center, Singapore University of Technology and Design, Singapore

Received: 18 Feb. 2014, Revised: 15 Apr. 2014, Accepted: 16 Apr. 2012 Published online: 1 Jan. 2015

Abstract: Based on spectral properties of Laplacian matrix, we present a new matrix inequality concerning weakly connected and balanced digraphs.

Keywords: Laplacian matrix, balanced digraph, positive definite

1 Introduction

Let G = (V(G), E(G), A(G)) denote a weighted digraph (directed graph) of order *n* with the set of vertices V(G) = $\{1, 2, \dots, n\}$, edges $E(G) \subseteq V(G) \times V(G)$, and the $n \times n$ weighted adjacency matrix $A(G) = (a_{ij})$. A directed edge from *j* to *i* exists if and only if $a_{ij} > 0$. We assume that $a_{ii} = 0$ for all $i \in V(G)$. The graph Laplacian (or Laplacian matrix) $L(G) = (l_{ij})$ induced by the digraph *G* is defined by (see e.g. [1])

$$l_{ij} = \begin{cases} -a_{ij}, & i \neq j, \\ \sum_{k=1}^{n} a_{ik}, & i = j. \end{cases}$$
(1)

A digraph *G* is called balanced [2] if $\sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} a_{ji}$ for all $i \in V(G)$. In other words, a digraph is balanced if and only if the total weight of edges entering a vertex and leaving the same vertex are equal for all vertices. By definition, any undirected graph is balanced. An important property of balanced digraphs is that $\mathbf{1} = (1, \dots, 1)^T \in \mathbb{R}^n$ is a left eigenvector of the Laplacian, i.e., $\mathbf{1}^T L(G) = 0$.

Recall that a digraph is strongly connected if, between every pair of distinct vertices, there is a directed path. On the other hand, a digraph is called weakly connected if it is connected when viewed as a graph (replacing directed edges by undirected ones). An interesting result is that a balanced digraph is weakly connected if and only if it is strongly connected [3]. Moreover, weakly connected and balanced digraphs play an important role in the consensus coordination of multi-agent systems. It is shown that ([2] The goal of this paper is to present a matrix inequality concerning weakly connected and balanced digraphs by using spectral properties of Laplacian matrix. It is hoped that the result may find potential applications in multi-agent coordination (see the concluding remarks in Section 2).

2 The matrix inequality

We begin this section with some notations and definitions. A nonnegative matrix $A = (a_{ij})$ with all entries on the main diagonal equal to zero can be associated naturally with a digraph G = (V, E, A) in such a way that $(j, i) \in E$ if and only if $a_{ij} > 0$. Consider two symmetric matrices X and Y of the same dimension, we say X > Y if X - Y is positive definite. For $X \in \mathbb{R}^{n \times m}$, X can be viewed as a linear map $X : \mathbb{R}^m \to \mathbb{R}^n$ with kernel defined by $\text{Ker} X = \{x \in \mathbb{R}^m : Xx = 0\}$.

For an undirected graph G, L(G) is a symmetric matrix with real eigenvalues and, hence, the set of eigenvalues of L(G) can be ordered sequentially in an ascending order as

$$0 = \lambda_1(L(G)) \le \lambda_2(L(G)) \le \dots \le \lambda_n(L(G)).$$
(2)

G is connected if and only if $\lambda_2(L(G)) > 0$ [1]. For a digraph *G*, the following lemma is shown in [2].

or [4, Theorem 3.17].) the agreement protocol over a digraph reaches the average consensus for every initial condition if and only if it is weakly connected and balanced.

^{*} Corresponding author e-mail: shylmath@hotmail.com

Lemma 2.1. ([2]) Assume that *G* is a strongly connected digraph. Then all eigenvalues but one simple eigenvalue at zero of L(G) have positive real-parts.

Theorem 2.1. Assume that G_1 and G_2 are two digraphs of order *n*. If the digraph associated with $A(G_1) - A(G_2)$ is weakly connected and balanced, for any matrix $F \in \mathbb{R}^{n \times m}$ satisfying *KerF* = 0 and $\mathbf{1}^T F = 0$,

$$F^{T}(L(G_{1}) + L(G_{1})^{T})F > F^{T}(L(G_{2}) + L(G_{2})^{T})F.$$
 (3)

Proof. Let *G* be the digraph associated with $A(G_1) - A(G_2)$. Thus, *G* is weakly connected and balanced, and $L(G) = L(G_1) - L(G_2)$. It suffices to show that

$$F^{T}(L(G) + L(G)^{T})F > 0.$$
 (4)

According to the aforementioned comment, we obtain $\mathbf{1}^T L(G) = 0$. Since $L(G)\mathbf{1} = 0$, it follows that $\mathbf{1}^T (L(G) + L(G)^T) = (L(G) + L(G)^T)\mathbf{1} = 0$. Hence, the digraph \hat{G} with the Laplacian matrix $L(G) + L(G)^T$ is also balanced. On the other hand, it is clear that \hat{G} is weakly connected (and automatically strongly connected, by our above comment).

Lemma 2.1 then implies that $\lambda_2(L(G) + L(G)^T) > 0$, where

$$0 = \lambda_1 (L(G) + L(G)^T) < \lambda_2 (L(G) + L(G)^T)$$

$$\leq \dots \leq \lambda_n (L(G) + L(G)^T)$$
(5)

are the eigenvalues of $L(G) + L(G)^T$. By the Courant-Fischer theorem [1], we obtain

$$\lambda_{L}^{T}(L(G) + L(G)^{T})x \ge \lambda_{2}(L(G) + L(G)^{T})x^{T}x,$$
 (6)

for $x \in \mathbb{R}^n$ satisfying $\mathbf{1}^T x = 0$. For any $y \in \mathbb{R}^m$ and $y \neq 0$, we know that $\mathbf{1}^T(Fy) = 0$ by the assumption $\mathbf{1}^T F = 0$. Therefore, we obtain

$$y^{T}F^{T}(L(G) + L(G)^{T})Fy = (Fy)^{T}(L(G) + L(G)^{T})(Fy) \ge \lambda_{2}(L(G) + L(G)^{T})(Fy)^{T}(Fy) > 0,$$
(7)

where the second inequality follows from (6), and the last one follows from (5) and the assumption KerF = 0. This implies (4), and the proof of Theorem 2.1 is complete. \Box We give some remarks here.

Remark 2.1. If we take G_2 as an empty graph, i.e.,

Remark 2.1. If we take G_2 as an empty graph, i.e., $A(G_2) = 0$, we have the following corollary: Assume that G_1 of order *n* is weakly connected and balanced, then we have

$$F^{T}(L(G_{1}) + L(G_{1})^{T})F > 0$$
(8)

for any matrix $F \in \mathbb{R}^{n \times m}$ satisfying Ker F = 0 and $\mathbf{1}^T F = 0$.

Remark 2.2. The digraph \hat{G} with the Laplacian $L(G) + L(G)^T$ is essentially undirected with the new weights given by $\hat{a}_{ij} = \hat{a}_{ji} = a_{ij} + a_{ji}$. \hat{G} is also known as disoriented digraph [4], which often appears in multi-agent coordination (see e.g. [5,6,7]).

Acknowledgement

The author is grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

- R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.
- [2] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Contr., 49, 1520-1533 (2004).
- [3] J. Cortés, Distributed algorithms for reaching consensus on general functions, Automatica, **44**, 726-737 (2008).
- [4] M. Mesbahi, M. Egerstedt, Graph theoretic methods in multiagent networks, Princeton University Press, NJ, 2010.
- [5] Y. Cao, W. Yu, W. Ren, G. Chen, An overview of recent progress in the study of distributed multi-agent coordination, IEEE Trans. Ind. Informat., 9, 427-438 (2013).
- [6] Y. Shang, Finite-time consensus for multi-agent systems with fixed topologies, Int. J. Syst. Sci., 43, 499-506 (2012).
- [7] Y. Shang, R. Bouffanais, Influence of the number of topologically interacting neighbors on swarm dynamics, Sci. Rep., 4, no. 4184 (2014).

Yilun Shang received the BS and PhD degrees in mathematics in 2005 and 2010, respectively, both from Shanghai Jiao Tong U, China. He held postdoc positions at U of Texas at San Antonio from 2010 to 2013, and Singapore U of Technology and Design from 2013 to

2014. His research interests are complex networks, complex systems, and the general realm of applied mathematics.

© 2015 NSP Natural Sciences Publishing Cor.