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Abstract: The objective of this paper is to use the fractional redudédrdntial transform method (FRDTM) to find approximate
analytical solutions to the time-fractional Sharma—Tag¥wer equation and the time-fractional damped Burger gguiar he fractional
derivatives are described in the Caputo sense. We comparesats with those from existing methods such as the hopyadoalysis
method (HAM), variation iteration method (VIM) and the Ad@n decomposition method (ADM). Also, the results we olzdiin
this paper are in a good agreement with the exact soluti@msd) this technique is powerful and efficient as an alteratethod for
finding approximate and exact solutions for nonlinear foaat! PDES.

Keywords: Reduced Differential Transform Method (RDTM), Sharma ©a@$ver (STO) equation, Schrodinger equation, Telegraph,
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1 Introduction unlike the traditional DTM techniques it provides us with
approximate solution and in some cases an exact solution,

In recent years, there is an increase of the number of abrap|dfly convergent go‘é"erf scra]nes. Usuall;ll, a fefw
mathemattal modeing. in physical appicatons.tatumber sf eraions netied of e series soluion for
arises in diverse fields of physics and engineering which )
usually result in nonlinear fractional partial and ordinar Recently, Keskin and Oturanc [15] used the FRDTM to
differential equations. So, a huge interest in them hassolve fractional partial differential equations. Finally
been aroused recently due to their widespreadEsen A, Tasbozan O and Yagmurlu M [7, 8], used the
applications. Finding analytic numerical solutions for HAM to obtained approximate solution of the fractional
these fractional differential equations is very important ~ Sharma—Tasso—Olver equation and the fractional damped
applied mathematics. It is worth mentioning here thatburger and Cahn—Allen equations.

there exists no method, in general, that gives an exackirst, we consider the nonlinear time-fractional Damped
solution for fractional differential equation, and so findi  Burger equation of the form:

approximate solutions is valuable in science. Two of the

fractional differential equations arising in science and Dff0xt)-+ U DUG6Y) — DRUk ) +Aux) =01 >0, 0< a <1 @
engineering are the fractional Sharma—Tasso—Olver an%ubject to the initial condition

the fractional damped Burger equation with
time-fractional derivatives. u(x,0) = Ax, 2)

Many authors used numerical and analytic methods t . -
solve linear and non-linear fractional equations. A few oquhere a is a parameter describing the order of the

these methods to name: the Differential Transformfractional derivative andi(x,t) is a function ofx andt.
Method (DTM) [24, 25, 26], the Adomian Decomposition Note that we are using the fractional derivative in the
Method (ADM) [11, 17, 30, 31], the Variational Iteration Caputo sense. Moreover, the exact solution of the

Method (VIM) [11, 36] and the Homotopy Perturbation Damped Burger equation with = 1 is given by [30]:
Method (HPM) [28, 37]. The RDTM was first introduced

by Y. Keskin in his Ph.D. [14, 15, 16] which is presented AX

to overcome very complicated calculations. This method u(x,t) = 2t 1’ ®3)
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whereA is a constant. Lemma4. f m—1<a<m me Nandf € Cﬂ",l.l > -1,

Second, _we consider the nonlinear fractionalthen
Sharma-Tasso—Olver equation of the form: { DI F (x)

JIDYf(x)

(x), x>0
(-3 dtREhE, m-1<a< m}'
(8)

=f
Dtau(x,t)Jranus(x,t)JrgaDiuz(x,t)JraDgu(x,t):O.t>0.0<n§1 4 = f
subject to the initial condition
We would like to mention here, the Caputo fractional
u(x,0) = \/1 tanh( \/Ix> ) derivative is used because it allows traditional initiatlan
’ a a )’ boundary conditions to be included in the formulation of
our problem.
wherea is a constant and is a parameter describing the
order of the fractional derivative angx,t) is a function
of x andt. Moreover, the exact solution of the Sharma— 3 Methodology of the FRDTM
Tasso—-Olver equation witth = 1 is given by:
In this section, we will give the methodology of the
u(x,t) = \/Itanh<\/1(x—t)> . (6) FRDTM. So let's start with a function of two variables
’ a a u(x,t) which is analytic andk—times continuously
differentiable with respect to time and spacex in the
The rest of this paper is organized as follows: In Sectiondomain of our interest. Assume we can represent this
2, we give some important facts and definitions related tofunction as a product of two single-variable functions
fractional calculus. In section 3, the fractional reducedY (X, t) = f(x).g(t). From the definitions of the DTM, the
differential transform method is introduced. Sections 4function can be represented as follows:
and 5 are devoted to apply the method to a test problems o o ©
and present graphs to show the effectiveness of the u(x,t) = (Z)F(i)Xi) (Zoe(j)ti) = Zouk(x)t" 9)
FRDTM for some values af andt. Section 6 we present i= = k=
tables of numerical calculations. Finally, section 7
discussion and conclusion of this paper. where U(i,j) = F(i).G(j) is called the spectrum of
u(x,t). Some basic operations of the reduced differential
transformation can be obtained as follows [15, 16]:

2 Preliminary of Fractional Calculus Definition 4. If u(x,t) is analytic and continuously

differentiable with respect to space variable x and time t

In this section, we present some of the main definitionsiy 1o gomain of interest, then the t-dimensional spectrum
and facts that we will use in this research paper. Some o

. - o= nction
these basic definitions are due to Liouville see, [12, 13]: unetl
Definition 1. A real function {x), x > 0 is said to be in Uk(X) = 1 Vu u(x t)] (10)
the space ¢, u € R if there exists a real number(t ), I(ka+1) [otak =7

such that fx) = x9g(x), where gx) € C[0,), and it is
said to be in the space[[0f fm ¢ Cu, meN. is the reduced transformed function ofwit), wherea is

. . . . a parameter which describes the order of time-fractional
Definition 2. For a function f, the Riemann—Liouville derivative.

fractional integral operator of ordeor > 0, is defined as
Throughout this paperu(x,t) represents the original
I (X) = gy Jo(x =0T () dt, a > 0, x>0 (7y  function andUy(x) represents the reduced transformed
J0f(x) = f(x) ' function. The differential inverse transform bk (x) is
given by
Caputo and Mainardi [13] presented a modified fractional ® ke
differentiation operatob? in their work on the theory of u(x,t) = Z)UK(X) (t—to)™ . (11)
viscoelasticity to overcome the disadvantages of the k=
Riemann-Liouville derivative when someone tries t0 prom equationsl(l) and (L0) one can deduce
model real world problems.
- 1 99k ak
Definition 3. The fractional derivative of f in the Caputo uixy = kZO I(ka+1) L?t"k u(x,t)} t=to (t=to) 42
sense can be defined as
Note that when = 0, Eq.(12) becomes

DY f(x) = IM-ApM¢(x)

=1 xx_yym=a-1¢(M)t)dt,m—1< a <m meN, o K
R iV dtm-1<a< N, 1 L K
uxt) =y —— | =—u(x;t tha, 13
><>O,feCT1. ( ) I(Zor(ka+1) |:0Xak ( ):|t=0 ( )
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whereH (x,t) represents the term coming from the source
Note that from the above discussion, one can realize thaterm and the prescribed initial conditions. Now from
the RDTM is derived from the power series expansion ofequation (17), we can write the initial conditions as:
a function. Some basic operations of the reduced
differential transformation obtained from equations (10) Uo(x) = f(x); U1(x) = g(x) (20)

and (11) are given in the table below: . ) . . . .
To find all other iterations, we first substitute equation

Table 1. Basic operations of the FRDTM [13, 14, 15] (21) into equation (20) and then we find all the values of
Uk(x). Finally, we apply the inverse transformation to all

Functional Form Tensonmed form the valuesUx(X) } ¢_o to obtain the approximate solution:
u(x.t) TKa¥T) [m u(x,t)L:O
yu(x,t) £ Bv(x.t) YUk (X) £ BV (%), y and 3 are constant. n
u(x,t). v(x,t) 2-k: Ui (X) Vi (%) -, _ ka
u(x,t). v(x,t) . w(x,t) E:l;gilljzouj(;)Vifj(x)kai(X) u (X7t) - k;Uk(X)t ? (21)
I uixt) L “r"(’k*u’fl*)l) on ()
2 uix 20U wheren is the number of iterations we need to find the
M) MU 0 intended approximate solution.
XN XM (ka — 1), whereé(ku—n):{ v Zt; 2}

Hence, the exact solution of our problem is given by
u(x,t) = lim u (xt).
Remark.In Table 1,I" represents the Gamma function, e
which is defined by

4 Solution of Time—Fractional Damped

. ® —t4z—1
r@= [ eva zec @9 Burger Equation by the FRDTM

Notice that the Gamma function is the continuous
extension to the fractional function. Throughout this
paper, we will be wusing the recursive relation
[(z+1) = 2 (2),z > 0 to calculate the value of the

Gamma function of all real numbers by knowing only the ) . .
value of the Gamma function between 1 and 2. 4.1 Time—fractional damped burger equation

In this section, we apply the RDTM to the nonlinear time-
fractional damped burger equation.

First, consider the time—fractional damped burger

Now, we illustrate the basic idea of the FRDTM by equation:

considering a general fractional nonlinear
nonhomogeneous partial differential equation with initia DF (k1) + u(x 1) Du(xt) ~ DRU(KL) + Au(x 1) =0, t>0, 0< a <1 @)
condition of the form

DU (x,t) +R(U(x,t)) + N (U(x,t)) =h(x,t), (15)

subject to the initial conditions

. _ where the exact solution of the non-fractional Damped
U060) = 1), Ur(x,0) = g(x), (16) Burger equation witlr = 1 [30] is

subject to the initial condition

u(x,0) = Ax, (23)

whereD{U (x,t) is the Caputo fractional derivative of the
function U (x,t), R is the linear differential operatohl u(x,t) = AX (24)
represents the general nonlinear operatortgma) is the ’ 2eit 1’
source term.
whereA is a constant.

Applying the FRDTM to both sides of Eq. (15), we obtain Applying the FRDTM to Eq. (22) and Eq. (23) we get
L(U(X7t))+R(U(X7t))+N(U(X7t)) = L(h(xvt)) (17) I (ka+a) (dz

k d
U1 (x) = m o2 Uk () = A Ug(x) — igoui (%) auk—i (x)) s (25)

Using the FRDTM formulas in Table 1, we can find:
where the initial condition

LUX) = f(x) +udL(h(x ) —udL(RU (1))~ NU(xt))). (18)
Uo(X) = AX. (26)
Using the FRDTM inverse transform on both sides of Eq'Now, substitute Eq. (26) into Eq. (25) to obtain the
(19)to get following:
Ut) = Hot) — L (WL (RUME) N U(x))). U Fa = 2% FEERS -2
(19) Us(x):*%’\;.ull(x): %(5
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. N ) , subject to the initial condition
We continue in this manner and after a few iterations, the

differential inverse transform ofUx(x) },_o will provide u(x,0) = x. (29)
us with the following approximate solution:
T ) = 57 U919 — U0+ Uy (019 + U012 . Applying the FRDTM to Eq. (28) and Eq. (29) we get
—Ax— %ﬁt“+%;12“7%;t3"+%4§t4"+m @)

1 [ d? k d

Uk+1(x):m @Uk(x)—Uk(x)—i%ui(x)auk,i(x) s (30)

i
:Ax(17%1"+3~3;12“7%;@“+%;t4“+...)

. . . where the initial condition

Hence, the approximate solution is convergent rapidly to

the exact solution. Also, it only takes few terms to get Uo(X) = X (31)

analytic function. Now, we calculate numerical results of ’

the approximate solutiomi(x,t) for different values of \yhere theJy(X), is the transform function of the
a =025a =05 a =075a =09 and different t_dimensional spectrum.

values ofx andt. Now substitute Eq. (31) into Eq. (32) and flr> 1 we

) ] ~ obtain
The numerical results of the approximate solution U100 = 2 Up(0) = 3 Us(0) = - 2 U0 = 2 32)

obtained by FRDTM and exact solution given by Esen [7] * )
are shown in figures 1(a)-1(d) when= 1 for different
values ofx, t anda.

So after a few iterations, the differential inverse
transform of {Ux(X)}ro, Will give the following
approximate solution:
u(xt) = Y Utk

2
= Up(X) + U1 ()t +Up(x)t2 + Uz (x)t3 + ...
13, 25, 54l

oy 2 _ _
= X — 2Xt + 3xt 3 2 60t “+...
133 254 5415
=x(1-2t+342 -2 4
X< + 374 60 )
- X
2d —1°

This is the exact solution of the standard damped burger
equation in Eq.(28).

5 Solution of Time—Fractional
Sharma—Tasso—Olver Equation by the
FRDTM

F|g . 1 . The approximate solution for example 4.1 whee: 0.25,a = 0.5, a = 0.75 anda = 0.90 respectively

From figure 1 above one can observe that the values of thg, s section, we apply the RDTM to the time-fractional
approximate solution at different grid points and diffaren gparma—Tasso—Olver equation.

values ofaobtained by FRDTM are close to the values
of the exact solution with high accuracy and the accuracy

increases as the order of approximation increases. . .
PP 5.1 Time—Fractional Sharma—Tasso—Olver
Equation

4.2 Numerical Examples
Consider the nonlinear ~ time-fractional
To show the efficiency of the present method, we comparéSharma-Tasso-Olver equation which is given by:
the FRDTM solutions of time-fractional damped burger .
equation fora = 1, A = 1 with the exact solution given DF uct) a0 (0t) 380K + a0 =0.1>0,0< 0 <1 @
X
by u(x,t) = 27, see [30]. subject to the initial condition

Consider the nonlinear damped PDE wheea=1, A =1

given by: u(x,0) = \/Itanh \/ix ; (34)
U + Ul — Uxx+U =0, (28) a a
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where the exact solution of the Sharma-Tasso—Olver
equation witha = 1 is given by

u(x,t) = \/gtanh<\/§(x—t)> . (35)

Applying the FRDTM to Eq. (33) and Eq. (34) we get

T (ke a3 3 a3 [k
U1l = s (aRUk(X)+ia@ (igouiwukfi(x)))

—al (ka+a) [ d k i . o X
+ r(ka+a+1) (& (zojzoukfl(x)ulfl (X)UJ(X)>) . (36)

where the initial condition

Uo(X) = \/gtanh<\/gx> (37)

Now, substitute Eq. (37) into Eqg. (36) to obtain the

F|g . 2: The approximate solution for example 5.1 wher- 0.25,a = 0.5, a = 0.75 anda = 0.90 respectively

following:
efficiency and the accuracy of the RDTM. This example
b —sec? (/2x) was done by the author, see [32].
% T, 3
. 7<%)3 ZsecP?(L:/Z%x)tanh(\/gx) U+ (u3)x + EG(UZ)XX+ AUy =0, (38)
5o (/&) ((3+200st{2y/ ) o4/ 1)) ) wherea is a constant.

Uz(x) =

12a2a3
) o , ) In the case when = 4, the STO becomes [32]:
We continue in this manner and after a few iterations, the
differential inverse transform ofUx(x) }x_, will provide W+4 (u3)x + 6(u2)xx+ AUyxx = 0, (39)

us with the following approximate solution: ) o N
subject to the initial conditions

~ < K
uxt) = kZOU"(X)t u(x,0) = %tanh(%); U (%,0) = _Tlsecﬁ (5) (40)

2
= Up(X) + U (Xt +Up(x)t% + ... where the exact solution is
. L . 1 X—t
Hence, the approximate solution is convergent rapidly to u(x,t) = =tanh{ — |. (41)
the exact solution. Now, we calculate numerical results of 2 2

the approximate solutiomi(x,t) for different values of ~ Applying the FRDTM to Eg. (18) and Eq. (17), we obtain
a =0.25,a =05, a =075, a =0.90 and different the recursive relation
values ofx andt.

—1 [ ddy d (ki
Uk = 157 (4 dxk;x) vag (igojgoui—j(X)Uj()@Uk*i(@))

The numerical results for the approximate solution e/ (K

obtained by FRDTM and the exact solution given in Eq. kgt (@ <izoui(x)ukfi(x)))< @2)
(35) are shown in figures below for a constant value of \here theUy(x), is the transform function of the
a =4 and for different values Of, t anda. t—dimensional Spectrum_ Note that

From figure 2 below one can observe that the values of

the approximate solution at different grid points and Uo(X):%tanhG); Ul(x):%lsecr?(g). (43)

different values oftx obtained by FRDTM are close to the
values of the exact solution with high accuracy and the

accuracy increases as the order of approximatiof\OW: Substitute Eq. (21) into Eq. (20) to obtain the
increases. following:

o sinh(x)
U2(X) = Zitr costin 2

5.2 Application of the RDTM Us(x) = — A (coshx) — 2)sec (X)

In this section, we describe the method explained in X
. L . (cosh{x)—5)tanh( 5 )
section 2 by considering a numerical example to show the Ua(X) = — gt roosion)?
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We continue in this manner and after a few iterations, thewith only the 5th order approximate solutiarx,t) and

differential inverse transform ofUx(x) }x_o Will provide
us with the following approximate solution:

u 7t:wU tk
u (x.t) kgo k(%)

Uo(X) +U1 (Xt + U (x)t2 + Uz () t3 + ...

1 X 1 X sinh(x)
gtanh(5) - gsech (3) - A1+ cosH 2"

1 X
7(CosIx) - 2)sect <§> B

Hence, the approximate solution converges rapidly to thg
exact solution and the exact solution of the problem is

given byu(x,t) = IimO Un (x1).
n—

From figure 3 below one can observe that the values o
the approximate solution at different grid points obtained
by FRDTM are very close to the values of the exact
solution with high accuracy with only five iterations and

the exact solution given in Eq. (24) with= 1. Also, in
table 3 we present the results obtained by the FRDTM
with 5th order approximate solutian(x,t) and the exact
solution given in Eqg. (35) witla = 4.

Table 2 The results obtained by the FRDTM for different valaa andA =1 for
example 4.1 witm=5
X t

a=05 a =075 a=1 Numerical
Numerical Numerical Exact
-5 0.002 —4.211841 —4.876244 —4.980060 —4.980060
0.004 —3.938004 —4.794473 —4.960239 —4.960239
0.006 —3.744961 —4.724456 —4.940535 —4.940535
0.008 —3.592556 —4.661485 —4.920949 —4.920949
—3 | 0.002 —2.527105 —2.925746 —2.988036 —2.988036
0.004 —2.362803 —2.876684 —2.976143 —-2.976143
0.006 —2.246977 —2.834674 —2.964321 —2.964321
0.008 —2.155534 —2.796891 —2.952569 —2.952569
3 0.002 2.527105 2.925746 2.988036 2988036
0.004 2.362803 2.876684 2976143 2976143
0.006 2.246977 2.834674 2.964321 2964321
0.008 2.155534 2.796891 2.952569 2952569
5 0.002 4.211841 4.876244 4.980060 4980060
0.004 3.938004 4.794473 4.960239 4960239
0.006 3.744961 4.724456 4.940535 4940535
0.008 3.592556 4.661485 4.920949 4920949

the accuracy increases as the order of approximation

increases.

F|g . 3 The approximate, exact solutions and absolute error, césply for example 3.1 wher5 < x <5
and 0<t < 0.01

Also figure 4 below shows the exact solution,
approximate solution ofu(x,t) for the values of
x=—5,-3,3,5 andt = 0.02,0.04,0.06,0.08,0.1.

approximate

F|g . 4: The approximate and exact solutions for example 3.1 whgr: x <5 and 0<t < 0.1

6 Tables of Numerical Calculations

Table 3 The results obtained by the FRDTM for different valoéa anda = 4 for
example 5.1 witm=5

X t a=05 a =075 a=1 Numerical
Numerical Numerical Exact

-5 0.002 —0.493876 —0.49339 —0.493320 —0.493320
0.004 —0.494098 —0.493447 —0.493334 —0.493334
0.006 —0.494262 —0.493496 —0.493347 —0.493347
0.008 —0.494397 —0.49354 —0.493360 —0.493360

—3 | 0.002 —0.456455 —0.453141 —0.452664 —0.452664
0.004 —0.457972 —0.453523 —0.452755 —0.452755
0.006 —0.459102 —0.453856 —0.452844 —0.452844
0.008 —0.460032 —0.45416 —0.452934 —0.452934

3 0.002 0.448366 0.452001 0.452484 0452484
0.004 0.446521 0.451607 0.452393 0452393
0.006 0.445064 0.451259 0.452302 0452302
0.008 0.443806 0.450937 0.452211 0452211

5 0.002 0.492686 0.493223 0.493294 0493294
0.004 0.492412 0.493165 0.493281 0493281
0.006 0.492194 0.493113 0.493267 0493267
0.008 0.492007 0.493066 0.493254 0493254

7 Conclusion

In this paper, we successfully applied the FRDTM to find
approximate analytical solution of the fractional
Sharma-Tasso—Olver equation and the fractional damped
Burger equation for different values ofand the results

we obtained in example 4.1 and example 5.1 were in
excellent agreement with the exact solutions doe 1,

A =1 anda = 1, a = 4, respectively. The FRDTM
introduces a significant improvement in the fields over
existing techniques because it takes less calculations and
it takes less work compared by other methods. Our goal
in the future is to apply this method to other nonlinear

The comparison of the results of the FRDTM and thefractional PDEs which arise in other areas of science such

exact solution foir = 1 is given in table 2 and table 3 for
different values ofx andt. We present in table 2 the
results obtained by the FRDTM for different valuesoof

as Biology, Medicine and Engineering. Computations of
the paper have been carried out using the computer
package of Mathematica 7.
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