
Appl. Math. Inf. Sci.8, No. 1, 153-160 (2014) 153

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080119

Adaptive Lossless Prediction based Image Compression

Raka Jovanovic1,2,∗ and Rudolph A. Lorentz3

1 Institute of Physics, University of Belgrade,Pregrevica 118, Zemun,Serbia
2 Qatar Environment and Energy Research Institute (QEERI), Qatar
3 Texas AM University at Qatar, Doha, PO Box 23874, Qatar

Received: 4 Jun. 2013, Revised: 18 Sep. 2013, Accepted: 19 Sep.2013
Published online: 1 Jan. 2014

Abstract: Predictive methods of image compression traditionally visit the pixels to be compressed in raster scan order, making a
prediction for that pixel and storing the difference between the pixel andits prediction. We introduce a new predictive lossless
compression method in which the order in which the pixels are visited is determined using a predictor based on previously known
pixel values. This makes it possible to reconstruct the image without storing this path. In our tests on standard benchmark images; we
show that our approach gives a significant improvement to row wise use of one or two dimensional predictors and gives results similar
to or better than standard compression algorithms like median compressionand JPG 2000.

Keywords: Image Compression, Adaptive, Prediction methods.

1 Introduction

Since computers have been used for presenting
multimedia, image compression has been widely used and
researched. The two main directions of this research
where lossy and lossless compression. Although the lossy
approach gives significantly greater compression ratios, it
does not give acceptable results for applications like
medical imaging, image archiving,and remote sensing,
which require or desire lossless compression.

The purpose of this article is to introduce a new
approach to lossless image compression. Although we
describe and test it on images, it could also be used for
data on irregular grids as long as there is information
available on the proximity of the data points.

A wide range of algorithms for image compression
have been developed. Today the most commonly used
formats are JPG LS [1], and JPEG2000 [2], due to it’s
speed and sufficiently good compression ratios.
Significantly, more complex algorithms like CALIC [3],
TMW[5] and EDP [4] have been developed for improved
compression ratios. Except for JPEG2000 which uses a
wavelet transform, all the other methods mentioned use a
prediction approach. This means making a prediction for
the pixel to be compressed and storing the difference
between the pixel and its prediction (the error), and later
compressing them using some encoding method like

Huffman, Rice or arithmetic. In this approach, the idea is
to predict the value of a pixel using previously visited
neighbors. JPG-LS implements the LOCO-I algorithm, in
which the prediction is based on three neighboring points
and context modeling which is used for recognizing local
activity like smoothness and texture patterns. CALIC uses
a more complex context based adaptive method which
uses a large number of modeling states to condition a
nonlinear predictor and adapt the predictors to varying
source statistics. TMW extends this approach by adding
an image analysis stage which extracts some global image
information that is used to improve the quality of the
predictions. EDP uses an edge direct prediction approach
using a large number of neighboring points.

All of the previously mentioned methods improve
their compression ratios by using more complex formulas
for predicting the value of image pixels. These algorithms
have in common that they go through image in raster scan
order, that is row by row. The PNG (Portable Network
Graphics) [6] image format uses Adam7, an interlacing
algorithm which changes the order in which the pixels are
visited. However, this changed order is not used to
improve compression but to make it possible to view the
image even when not all of the data has been transferred
by the network (progressive scan).

In this article we present a novel approach in which we
use a simple nearest neighbor predictor, but we increase

∗ Corresponding author e-mail:rakabog@yahoo.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080119

154 R. Jovanovic, R. Lorentz: Adaptive Lossless Prediction based ImageCompression

the compression ratio by the order in which we visit the
pixels of the image or in other words selecting a different
path for our predictions.

Our method consists of three parts. The first is a
predictor for the value of a pixel which could potentially
be compressed. The second is a predictor for the error that
would be made by using the value predictor. The error
predictor is applied to all pixels whose error can be
predicted from already compressed pixels. The third is an
optimization: compress that pixel for which the absolute
value of the predicted error is the smallest among all
pixels to which the error predictor can be applied.

We show in our results, that the use of this algorithm
greatly improves the compression ratios achieved by the
simple use of a one dimensional predictor and storing the
differences. We show that it gives results similar to
JPEG2000, and even has better results in the case of gray
scale 16 bit images.

This paper is organized as follows. In Section2, we
present our algorithm for path creation. In Section3, we
focus on the implementation details of our algorithm. In
Section5, we analyze and compare the results obtained
by using our compression method to previously mentioned
methods on standard benchmark images.

2 The Idea of the Algorithm

As previously mentioned, all of the widely adopted
prediction based compression algorithms for image
compression go through the image in raster scan order, or
in other words row by row. The advantage of this
approach is that only a small of number of pixels needs to
be buffered and, as a consequence of this, a relatively
small amount of memory is needed.

We present a new approach to data compression in
which we do not increase our compression ratio by using
a better prediction function, but by choosing in which
order the pixel values will be compressed. Predictive
methods achieve compression because the difference
between pixel values and their predictions are generally
smaller numbers than the pixel values themselves and
therefore need less space to store. If when going from one
compressed pixel to the next, we have the freedom which
of its neighbors will be compressed next, we can chose
that neighbor for which the difference between pixel
value and predictor is the smallest. Thus the idea is that,
at each step of the algorithm, we predict the pixel with the
smallest possible error of all the possible directions. This
is a similar concept to Prim’s algorithm to finding the
minimal spanning tree of a weighted graph - the weights
being the absolute values of the errors - using a depth first
search [7]. It is not quite the same, since in our approach
we implicitly determine a spanning tree via a breadth first
search on a weighted graph whose weights could change
during the course of the calculations.

Due to the nature of predictive compression, a
prediction must be calculated using only the values of

previously predicted pixels. Otherwise the compressed
values cannot be decompressed.

One way to get around this is to store the order in
which the pixels are compressed as well as the direction
from which the prediction came. Even in the case of only
four possible directions (up, down, left and right), we
have two extra bits for each pixel.

In our algorithm, instead of storing the path we have
used to compress the image, we use a predictor for
calculating the error between an uncompressed pixel and
a neighboring compressed pixel. This heuristic is based
on only already compressed pixels. Then, at each step of
the algorithm, we look for that pixel with the smallest
estimated error in some direction and compress that pixel.

In this article we use the following notation:X for the
image being compressed,xi, j corresponds to the value of
the pixel an position(i, j). We useD = (Dx,Dy) to denote
a direction. The four possible directions up, down, left and
right are the vectors (1,0), (-1,0), (0,1) and (0,-1).

The simplest method of compressing the pixels of an
image in raster scan order is to take the difference
between the current pixel and the previous one (except for
the first pixel in a row). If the current pixel isxi, j that
neighboring pixel will be denoted byN(xi, j) = xi−1, j−1.
The neighboring pixel from directionD is

NE(xi, j,D) = xi−Dx,i−Dy (1)

The basic idea of our algorithm is that at each step we
predict the pixel with the smallest possible error usingNE,
which is the same as finding thatxi, j and thatD for which
|xi, j −NE(xi, j,D)| is minimal.

The smallest error can only be determined if we know
the values of pixels that can be predicted, which is not
possible in the phase of decompression. Instead we use a
heuristic approach in which the error of predictingxi, j,
from xi−Dx, j−Dy is replaced by predictingxi−Dx, j−Dy from
xi−2Dx, j−2Dy. Thus we replace the search for that pixelxi, j
and directionD for which |xi, j −NE(xi, j,D)| is minimal
by the search for that pixelxi, j and directionD for which
|xi−Dx, j−Dy − NE(xi−Dx, j−Dx,D)| is minimal. Note that
NE(xi−Dx, j−Dx,D) = xi−2Dx, j−2Dy. There is no error in
this replacement if the image intensities are linear in the
directionD for the pixels involved.

Finally, oncexi, j and D have been determined, the
differencexi, j −NE(xi, j,D) is computed and encoded.

This type of heuristic is defined for a positionP,
direction of predictionD and its value isxP −NE(xP,D).
It can be used for predictive compression only if the
pixels xi−Dx, j−Dx and xi−2Dx, j−2Dy have already been
compressed.

We consider a prediction available if pixels at positions
xi−Dx, j−Dy andxi−2Dx, j−2Dy have been previously visited.
We define the following function

α(P,D) = xP −NE(xP,D) (2)

For simplicity we shall defineE as a set of pairs of
position and direction(P,D), which defines a prediction

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1, 153-160 (2014) /www.naturalspublishing.com/Journals.asp 155

Fig. 1: A) Initialization: storing 4 values from the top left corner, B) First step: moving from (1,0) left to (2,0) storing the value
x2,0−x1,0, C) Second step: moving from (0,1) down to (0,2) storing the valuex0,2−x0,1, D) Third step: moving from (1,1) left to (2,1)
storing the valuex2,1− x1,1

and extendα to this set. Now we can more precisely say
that at each stepk of our algorithm we wish to use
predictionei ∈ Mk, whereMk ⊂ E, is a set of all available
predictions at stepk, with the smallest value ofα(ei)

NextPrediction = arg min
ei∈Mk

α(ei) (3)

3 Basic Version of the Algorithm

To implement the idea explained in the previous section,
we need to define several structures. First we define∆ as
the outputarray in which we store differences between
the predictions and original values. We will also need a
structure that stores possible predictionse ∈ E with
corresponding values ofα which we shall denote as
WaitList. WaitList should be a an ordered list sorted by
α. We shall also need a structureCovered that tracks
which pixels have previously been predicted. The
algorithm is divided into the initialization, and iteration
steps. In the initialization step we take the top left 2∗ 2
square write those values to the output array∆ , and
calculate predictions for the 4 neighboring points, sort
them by difference and add toWaitList(see Figure1A).

An iteration step can be divided into two stages, first
removing the element with the best value of heuristice
from theWaitList. We use it to predict the corresponding
elementxe if it is not already covered, and store the error
of prediction to the output array∆ . The second is
updating theWaitList. We add the new predictions that
can be made usingxe and its neighboring points to
appropriate positions in the sortedWaitList. We finally
updateCovered. An example of this algorithm can bee
seen in Figure1.

The heuristic functionα does not have any kind of
edge detection, which is a significant weakness. We
improve the the quality ofα for predicting pointx from
point p with directionD by taking into account how good
the prediction of neighboring points ofx in the same
direction D. The neighboring points (NP) that are taken
into account can be seen from Figure2. To do this we first
define an extension ofα

α0(P,D) =Covered(P,D)∗α(P,D) (4)

In Equation4, Covered(P,D) is 1 if the prediction fromP
in direction D can be made, and 0 if not. We useα0 to
declare a function that defines the influence of
neighboring points ofx to the heuristic value. We can

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

156 R. Jovanovic, R. Lorentz: Adaptive Lossless Prediction based ImageCompression

Fig. 2: Example of in the improved heuristic. The pixel X is
predicted in the down direction

define the improved heuristic functionαe

q(p,D) = 1+ ∑
(i, j)∈NP

(Covered(i, j)∗ai, j) (5)

αe(P,D) =
α(P,D)+∑(i, j)∈NP(α0(i, j,D))

q(P,D)
(6)

In Equation 5, ai, j is the coefficient at appropriate
position which can be seen from Figure2. We used the
following valuesa0 = 1, a1 = 0.75 anda2 = 0.5. The use
of the new heuristic functionαi changes the algorithm
slightly due to the fact that when we take an element from
the WaitList, it is possible that the value ofαi has
changed because new points have been covered. The
algorithm changes in the following way: whene is taken
from theWaitList, we first check if the value ofαi(e) has
changed and if it has increased, we returne with the new
value of αi to the WaitList at the appropriate position.
This algorithm has the following pseudo code

Delta.Reset();
mWaitList.Initialize(Image);

while Not(mWaitList.Empty())do

e = mWaitList.TakeFirstElement();
nHeuristic = CalculateHeuristic(e);

if (nHeuristic> e.Heuristic)then
e.Heuristic = nHeuristic;
mWaitList.AddNewElementLIFO(tElement);

else
NewPos = e.PredictionPosition
if Not(Covered(NewPos))then

Error = e.PredictionError(Image);
Delta.AddToPath(Error);
mWaitList.AddExtraElements(NewPos,
Covered,Image);

end if
end if

end while

In the decompression algorithm, the initialization is done
using the first 4 elements from∆ for the known starting
position. The second correction is that instead of
calculating the prediction error using the original image,
we load it from the current position of the input buffer.
Using the new value we advance to the new position and
use it to reconstruct the pixel that is predicted bye. When
adding new elements to the wait list, only covered points
are used.

4 Implementation

In this section, we clarify some details of the
implementation. First we wish to mention that we did not
use signed integer numbers for storing the errors but
unsigned integer values. We have done this conversion
through the prediction error mapping function as
explained in [8]. We encode the prediction error with the
SZIP compression algorithm [9] which implements an
enhanced version of Rice encoding.

As mentioned in the previous section,WaitList is a
sorted doubly connected list. Adding elements to a sorted
list is time consuming and in general has a complexity
asymptotically equal to its lengthl. In our algorithm, the
list is used only in two ways: removing the first element,
and adding new elements to appropriate positions. When
adding a new element with an error that is equal to some
elements that already exist in the list, we use the first in
last out (FILO) approach. We have decided to use FILO
instead of first in first out (FIFO) because in a large
number of tests we have conducted, it gave a greater
compression ratio after encoding. Because of the way the
list is used, and knowing that all the possible values are
bounded, made it possible to add elements in nearly
constant time, or more precisely bounded by a constant
independent of the size of the image being compressed.
We have done this by adding an extra array that can hold
all the possible values of errors. Each array element is a
pair of the first element with the appropriate errorstart
and the last oneend. Adding a new element with errori is
know equivalent to setting it as the start of i-th array
element and performing the necessary reconnections of
list elements.

The complexity of the calculations is asymptotically
equivalent to the size of imagen. Each pixel is predicted
only once, but in the worst case scenario up to 4
predictions can be added to theWaitlist. The predictions
that are not used can easily be disregarded due to the
tracking of covered pixels and do not significantly effect
the over all calculation time. The calculation of theαi is
optimized by storing the values ofα. The repeated storing
of predictions to theWaitList, in the worst case, can be
done up to 3 times, which doesn’t change the
asymptotical calculation time. The storage complexity of
the algorithm is equivalent ton. We need to have memory
for holding the image X and for tracking the covered
pixels for which we need needn times a constant. The

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1, 153-160 (2014) /www.naturalspublishing.com/Journals.asp 157

Fig. 3: Example of predictions being used in the improved heuristic. Small prediction errors are shown as dark, and high errors are
shown as bright

WaitList only holds the border elements of the covered
region, because of which it is always smaller thann.

5 Results

We compare the effectiveness of our algorithm to
compression ratios achieved by one or two dimensional
linear extrapolation as predictions and the median edge
detection predictor [10] using raster scan (row by row)
order. We also compare our results with JPG2000 as a
standard in image compression. We have conducted our
experiments using the standard Kodak images for 8 bit
grey scale, which we downloaded from the Rich Franzen
web site [11]. We have also done tests on 16 bit grey scale
benchmark images which we have taken from the

compression database web site [12]. The JPEG2000
plugin for Adobe PhotoShop was used to get the values
for 16 bit JPG2000 compression in Table2. We have
implemented our algorithm using Microsoft Visual Studio
2008 and have written the code in C#. The values for one
dimensional, two dimensional and median predictors are
calculated by our own software using the well know
formulas and using the same SZIP for encoding. The
results in tables1, 2 show the compression in bits per
pixel for each of the methods.

The results in Table1 for 8 bit images were computed
as follows. 1D is a one dimensional predictor, which runs
through the image in raster scan order from top to bottom
and uses the previous pixel as a prediction for the next
pixel. The 2D predictor runs through the image the same

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

158 R. Jovanovic, R. Lorentz: Adaptive Lossless Prediction based ImageCompression

Table 1: Comparison of compression ratio for 8 bit grey scale images in bits per pixel

File X * Y 1D 2D MED JP2 AD

kodim01 768*512 5.86 5.63 5.36 5.45 5.45
kodim02 768*512 4.51 4.53 4.24 4.19 4.20
kodim03 768*512 3.94 4.03 3.75 3.56 3.68
kodim04 512*768 4.78 4.60 4.33 4.20 4.38
kodim05 768*512 5.86 5.70 5.52 5.32 5.33
kodim06 768*512 4.79 5.10 4.81 4.69 4.78
kodim07 768*512 4.29 4.16 3.93 3.77 3.86
kodim08 768*512 6.14 5.65 5.41 5.54 5.48
kodim09 512*768 4.59 4.52 4.20 4.02 4.17
kodim10 512*768 4.69 4.52 4.23 4.10 4.20

4.95 4.84 4.58 4.48 4.55

Table 2: Comparison of compression ratio for 16 bit grey scale images in bits per pixel

File X * Y 1D 2D MED JP2 HO

cr rtg jb 612*746 11.54 11.31 11.06 11.22 11.07
im branches 819*536 14.03 14.02 13.77 14.17 13.66
im flower 819*536 10.56 10.30 10.15 10.11 10.01
im town 821*536 12.41 12.52 12.29 12.52 12.12
im kid 824*540 12.40 11.65 11.54 11.67 11.48
mr 2321 512*512 11.88 11.47 11.43 11.31 11.45

12.14 11.88 11.71 11.83 11.63

way and predicts the next pixel value by a linear
extrapolation from the neighboring pixels to the West, to
the Northwest and to the North of the pixel to be
compressed. MED is the median predictor which uses the
same pixels as the 2D predictor, but uses a formula which
takes into account possible edges (see [10]). Our method
is denoted AD.

We see that by using a different order and direction of
the 1D predictor we get a significant decrease of 10% in
bits needed to store the image. Our algorithm gives
similar, slightly better results than the use of the median
predictor. This is unexpected due to the fact that the
median changes it’s predictor function from one
dimensional in X,Y directions if an edge is expected, and
a two dimensional otherwise, whereas our algorithm only
uses one dimensional predictions. Our algorithm
performs similar slightly to, but slightly worse, than the
standard compression JPEG 2000. We have to mention
that the results used for JPG2000 are slightly worse than
they could have been due existence of an additional
header in the compressed files.

In the case of 16 bit images we have similar results,
with our algorithm giving results that are slightly better
that JPG2000. We believe that increased compression
ratio of our simple one dimensional predictor is due to the
adaptability of using predictions in the X or Y direction.

A second factor is that our algorithm tends to group first
areas with small prediction errors and later areas with
high errors. This makes the data better prepared for the
encoding stage. We can see the order in which the pixels
are visited in Figure3.

We believe that the proposed algorithm can be greatly
improved if the predictors used for selecting the order in
which pixels are visited for compression were of better
quality. This opinion is supported by the following
comparison. In Figures4, 5 and6, we compare the errors
obtained when running through the image in raster scan
order, using our approach and the optimal one acquired
using the exact errors for determining the order in which
pixels are visited for the image ”cameraman”. The
compression ratio viewed as the needed number of bits
per pixel for storing the image for these methods was
4.97, 4.48 and 3.64 respectively. The compression factors
for the optimal next pixel choice are substantially better
than when our approach is used. But of course, it cannot
be used since it uses information not available for
decompression. Decompression is no longer possible. If
one wanted to use the exact optimal directions in the
compression, one would have to store the order in which
the pixels were compressed in addition to the errors.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1, 153-160 (2014) /www.naturalspublishing.com/Journals.asp 159

Fig. 4: Relation between the prediction error and the order
(index) in which pixels were visited when using raster scan

Fig. 5: Relation between the prediction error and the order
(index) in which pixels were visited when it is determined by
the proposed prediction method

6 Conclusion

In this article we presented a novel approach to image
compression in which we use a simple one dimensional
predictor, but we improve the compression by choosing a
better order to visit the pixels. Instead of storing the order
in which the pixels were compressed, we use a predictor
dependent only on the previously visited pixels. Using
this approach we have obtained results that are
significantly better than the use of one or two dimensional
predictors when traversing the image in raster scan order.
The results are even slightly better than the median
predictor and similar to the JPG2000.

Fig. 6: Relation between the prediction error and the order
(index) in which pixels were visited when it is determined using
exact differences

We believe that the algorithm can be improved by
using a better method for selecting the predictor for the
direction of the next pixel to be compressed. This is
illustrated by Figures 4, 5 and 6.

References

[1] M. J. Weinberger, G. Seroussi,G. Sapiro, IEEE Transactions
on Image Processing,9, 1309-1324 (2000).

[2] P. Schelkens, A. Skodras,T. Ebrahimi, The JPEG 2000 Suite,
Wiley, (2009).

[3] C. T. H Baker, G. A Bocharov, C. A. H Paul, Journal of
Theoretical Medicine,2, 117-128 (1997).

[4] X. Li, M. T. Orchard, IEEE Transactions on Image
Processing,10, 813-817 (2001).

[5] B. Meyer, P. Tischer, in Proc. of the 1997 International Picture
Coding Symposium (PCS97), 533-538 (1997).

[6] L. D. Crocker, Dr. Dobb’s Journal,20, 36-44 (2000).
[7] R. C. Prim, Bell System Technical Journal,9 1389-1401

(1957).
[8] Y. Pen-Shu, Lossless Compression Handbook, Academic

Press, 311-326 (2003).
[9] Y. Pen-Shu, X. S. Wei, Earth Science Technology Conference

in Pasadena, (2002).
[10] N. D. Memon, X. Wu, V. M Sippy, Proc. SPIE Int. Soc. Opt.

Eng., 47-58 (1997).
[11] F. Rich, Kodak Lossless True Color Image Suite,

http://r0k.us/graphics/kodak/, (2010).
[12] Compression DataBase,http://cdb.paradice-insight.us/,

(2012).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://r0k.us/graphics/kodak/
http://cdb.paradice-insight.us/

160 R. Jovanovic, R. Lorentz: Adaptive Lossless Prediction based ImageCompression

Raka Jovanovic received
Ph. D. from University
of Belgrade, Faculty of
Mathematics in 2012. Worked
as a research associate
at the Institute of Physics,
University of Belgrade and at
Texas AM University at Qatar
2007-2011. He is employed
as a scientist at the Qatar

Environment and Energy Research Institute (QEERI).
Has published more then 25 articles in international
journals and conference proceedings. Research interests:
Optimization Problems, Data Compression, Image
Processing, Numeric Simulation, Spectral Methods and
Fractal Imaging.

Rudolph A. Lorentz
is professor of Mathematics
at Texas A&M University
at Qatar since 2008. He
has received Ph. D. from
the University of Minnesota
in 1969, and his Habilitation
at the University of Duisburg,
1991. He has been a
senior Researcher, at the

Institute for Scientific Computations and Algorithms,
Fraunhofer-Gesellschaft, Bonn, where he worked in the
period of 1969 - 2008. From 1991 he held the position of
Professor at the University of Duisburg. During his carrier
he was a visiting professor at Texas A&M University,
University of Connecticut and University of Cologne. Dr.
Lorentz has a wide range of interests ranging around
numerical analysis. It includes approximation theory,
multivariate interpolation, wavelets, the numerical
solution of PDE’s with the multigrid method and radial
basis functions, all of these both from the applied as well
as the theoretical point of view. He was involved in the
production of software - FEMZip - now used by many
automotive manufacturers (Daimler, Porsche,GM etc.) as
well as software - GRIBZip - used by the German
Weather Service. For this work, a group of three
researchers including him were awarded the prestigious
Joseph-von-Fraunhofer-Prize for Technological
Innovation in the Computer Sciences, 2007.

c© 2014 NSP
Natural Sciences Publishing Cor.

	Introduction
	The Idea of the Algorithm
	Basic Version of the Algorithm
	Implementation
	Results
	Conclusion

