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Abstract: In this paper, we study the optimal control of the dengue disease model with the vertical transmission in terms of the

Caputo fractional derivatives. We apply the control parameters like larvicide, fogging, vaccination, and isolation to stop the spread of

the dengue epidemic and explore the influence of the fractional order α (0.6 ≤ α ≤ 1) on the dengue transmission model. We apply a

forward-backward sweep scheme using the Adams-type predictor-corrector approach for solving the proposed control problem. Finally,

the effects of optimal controls considering three different cases in the given model are discussed.
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1 Introduction

Dengue fever is transmitted by Aedes mosquitoes and it is the most common and important vector-borne viral disease in
humans. Mostly, it affects tropical and subtropical areas. Recently the World Health Organisation(WHO) mentioned that
the dengue epidemic is one of the top 10 threats in the world. Dengue virus is a single-stranded, non-segmented RNA
virus and it has four serotypes. During an epidemic period, several serotypes can be in circulation. Infection with one
serotype will provide only lifelong immunity against that particular serotype. On the other hand, the subsequent infection
with a different serotype will give serious illness (severe dengue(DHF) and dengue shock syndrome).

Mathematical modeling has played an important role in analyzing the transmission dynamics of several deadly dis-
eases. The mathematical modeling of any disease can help us to observe the mechanism of influencing the spread of the
epidemic, epidemiological patterns, and disease control. Recently, a number of mathematical models have been introduced
to explore the dynamics of various diseases, like Covid-19 [1,2], malaria [3], cancer [4], cavity [5], HIV [6], mosaic (a
plant disease) [7], etc. Several mathematical models have been introduced by the various researchers to explore the effects
of possible factors in the transmission of dengue dynamics. In the last few years, several researchers have attracted to
work on the dengue epidemic using optimal control theory due to its ability of decision making. In [8,9], the authors
proposed a mathematical model to represent the relationship between human and dengue disease mosquito populations
and used an optimal control approach to find the most effective technique to fight against the dengue infection. In [10],
the authors considered the effects of Antibody-Dependent Enhancement(ADE) in the mathematical model and found that
vaccination could decrease dengue incidence and provide population benefits even in the presence of ADE. Roberto et. al

in [11] presented the dengue model with the effectiveness of the application of sterile insect technique and insecticide to
the mosquito population using an optimal control approach. In [12], the authors applied a multi-objective method to de-
termine an optimal control for a dengue disease model. In [13], the researchers formulated an optimization problem with
infinite-time quadratic cost functional and used three control strategies to reduce the mosquito population and dengue
infection. Windarto et. al in [14] proposed a method for estimating the parameters of the host-vector and SIR type dengue
disease models using the particle swarm optimization approach in the sense of the Atangana-Baleanu fractional derivative.
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In [15], the authors investigated the impact of the combination of vaccination and sterile insect technique for reducing the
number of infected individuals. In [16], the authors studied the impact of prey-predator dynamics in controlling the dengue
disease in pre-adult mosquito populations. In [17], the authors used some effective computational techniques to derive the
solution of the reaction-diffusion epidemic model of dengue. In [18], analyses of a fractional-order dengue model with
control strategies have been given. Xue et al. recently investigated the optimal control of dengue virus mitigation measures
in ref. [19]. For more information, one can refer to ref. [20,21,22,23,24,25,26,27,28,29,30].

Motivated by the above works, in this article, we consider a fractional-order dengue fever model with the vertical
transmission in Taiwan given by Defterli in [31] and generalize that model to fractional optimal control problem (FOCP)
using control strategies to minimize the spread of transmission of dengue. The necessary conditions for optimality of
the FOCP are explored using the concept of Pontriagin’s Minimum principle. The FOCP is given, in which the state
and costate equations are expressed in terms of left fractional derivatives. Finally, the numerical results of the FOCP are
obtained by using the forward-backward sweep method [32].

The paper is structured as follows: In section 2, we give some essential definitions as well as a mathematical model
to represent dengue dynamics transmission. In section 3, we formulate an optimal control model to keep the spread of the
disease under control, and then the provision of larvicide, fogging, vaccination, and isolation are used as control variables
to obtain the optimal cost and reduce the number of the affected human population. The numerical results and discussion
are shown in Section 4. A conclusion is given in Section 5.

2 The Mathematical Model

Firstly, we recall the definition of Caputo fractional derivative and an important lemma.

Definition 21The left and right-sided Caputo fractional derivative of order α ∈ (m− 1,m], m ∈ N is given by

CDα
ν0+

x(ν) =
1

Γ (n−α)

∫ ν

ν0

(ν − τ)n−α−1x(m)(τ)dτ

and

CDα
νF−

x(ν) =
(−1)m

Γ (n−α)

∫ νF

ν
(τ −ν)n−α−1x(m)(τ)dτ

provided their existence almost everywhere on [ν0,νF ].

Lemma 21[32] The following given constraints are equivalent:

C
νDα

νF
λ (ν) =

∂H

∂x
(ν,x(ν),u(ν),λ (ν))

C
ν0

Dα
ν λ (νF −ν) =

∂H

∂x
(νF −ν,x(νF −ν),u(νF −ν),λ (νF −ν))

where 0 < α ≤ 1.

Now, we consider the fractional-order mathematical model with the vertical transmission dynamics of dengue fever
given in [31]. The total population is classified into three main classes, namely human(host), pre-adult female mosquito(vector),
and adult female mosquito(vector) population. In human(host) class, there are susceptible human Hs, infected/infectious
human Hi and recovered/immune human Hr. The pre-adult female mosquito(vector) population consists of two classes;
susceptible Es and infected Ei. The adult female mosquito(vector) population is divided into three classes; susceptible Ms,
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infectious Me and infected Mi. Thus, the dengue model is given by

CDα
ν0+

Es(ν) = eα
v

(

1− p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

))

−ηαEs(ν)

CDα
ν0+

Ei(ν) = eα
v p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

)

−ηαEi(ν)

CDα
ν0+

Ms(ν) = ηα Es(ν)− bα Hi(ν)

Nh

Ms(ν)− δ αMs(ν)

CDα
ν0+

Me(ν) = bα Hi(ν)

Nh

Ms(ν)− γαMe(ν)− δ αMe(ν)

CDα
ν0+

Mi(ν) = γα Me(ν)+ηαEi(ν)− δ α Mi(ν) (1)

CDα
ν0+

Hs(ν) = Rα
hbNh − bα Hi(ν)

Nh

Mi(ν)−Rα
hdHs(ν)

CDα
ν0+

Hi(ν) = bα Hi(ν)

Nh

Mi(ν)− ζ α Hi(ν)−Rα
hdHi(ν)

CDα
ν0+

Hr(ν) = ζ α Hi(ν)−Rα
hdHr(ν),

where 0 < α ≤ 1 and the corresponding model parameters are ev; oviposition rate, p; proportion of eggs, η ; pre-adult
mosquito maturation rate, b; the biting rate, Nh; total size of human population, δ ; adult mosquito mortality rate, γ; virus
incubation rate in mosquito, Rhb; human birth rate, Rhd; human mortality rate, and ζ ; human recovery rate.

3 Derivation of optimal control problem

In this section, we formulate and solve an optimal control problem described as follows:

Find the optimal control u(t) for minimizing the cost functional

J(u) =

∫ νF

ν0

Φ
(

ν,x(ν),u(ν)
)

dν

subject to the dynamic constraint

CDα
ν0+

x(ν) = F(ν,x(ν),u(ν)),

x(0) = x0,

where 0 < α ≤ 1, the state and control variables x(ν) and u(ν) simultaneously, Φ(·, ·, ·) and F(·, ·, ·) are differentiable
functions.
In the given system, the state variable is defined by

x(ν) =

(

Es(ν),Ei(ν),Ms(ν),Me(ν),Mi(ν),Hs(ν),Hi(ν),Hr(ν)

)T

∈ R8
.

Our task is to determine the optimal control u∗(ν) =

(

u1(ν),u2(ν),u3(ν),u4(ν)

)T

∈R4 to reduce the number of infected

humans and the expense of controlling infections through larvicide, fogging, vaccine, and isolation.
Let us take the cost functional

J(u1,u2,u3,u4) =
1

2

∫ νF

0

(

c1H2
i + c2u2

1 + c3u2
2 + c4u2

3 + c5u2
4

)

dν

to be minimized with the weighting parameters ck > 0 for k = 1,2,3,4,5. The OCP is constructed with time dependent
optimal controls such as larvicide control u1(ν), fogging control u2(ν), vaccination control u3(ν), and isolation control
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u4(ν) to minimize the infection of the dengue epidemic. Thus, the model (1) is given by

CDα
ν0+

Es(ν) = eα
v

(

1− p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

))

−ηαEs(ν)− u1(ν)Es(ν)

CDα
ν0+

Ei(ν) = eα
v p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

)

−ηαEi(ν)− u1(ν)Ei(ν)

CDα
ν0+

Ms(ν) = ηα Es(ν)− bα Hi(ν)

Nh

Ms(ν)− δ αMs(ν)− u2(ν)Ms(ν)

CDα
ν0+

Me(ν) = bα Hi(ν)

Nh

Ms(ν)− γαMe(ν)− δ αMe(ν)− u2(ν)Me(ν)

CDα
ν0+

Mi(ν) = γα Me(ν)+ηαEi(ν)− δ α Mi(ν)− u2(ν)Mi(ν)

CDα
ν0+

Hs(ν) = Rα
hbNh − bα Hi(ν)

Nh

Mi(ν)−Rα
hdHs(ν)− u3(ν)Hs(ν)

CDα
ν0+

Hi(ν) = bα Hi(ν)

Nh

Mi(ν)− ζ α Hi(ν)−Rα
hdHi(ν)− u4(ν)Hi(ν)

CDα
ν0+

Hr(ν) = ζ α Hi(ν)−Rα
hdHr(ν)+ u3(ν)Hs(ν)+ u4(ν)Hi(ν),

where 0 < α ≤ 1 and 0 ≤ uk(ν)≤ 1, k = 1,2,3,4. The theory of Pontryagin’s minimum principle is used to determine the
necessary optimality constraints of the OCP.

Consider the costate vector λ (ν) =

(

λ1(ν),λ2(ν),λ3(ν),λ4(ν),λ5(ν),λ6(ν),λ7(ν),λ8(ν)

)T

∈ R8 and the Hamiltonian

of the given system

H =

(

c1H2
i (ν)+ c2u2

1(ν)+ c3u2
2(ν)+ c4u2

3

)

+λ1(ν)

(

eα
v − eα

v p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

)

−ηαEs(ν)− u1(ν)Es(ν)

)

+λ2(ν)

(

eα
v p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

)

−ηα Ei(ν)− u1(ν)Ei(ν)

)

+λ3(ν)

(

ηα Es(ν)− bα Hi(ν)

Nh

Ms(ν)− δ α Ms(ν)− u2(ν)Ms(ν)

)

+λ4(ν)

(

bα Hi(ν)

Nh

Ms(ν)− γα Me(ν)− δ αMs(ν)− u2(ν)Me(ν)

)

+λ5(ν)

(

γα Me(ν)+ηα Ei(ν)− δ αMi(ν)− u2(ν)Mi(ν)

)

+λ6(ν)

(

Rα
b Nh − bα Hs(ν)

Nh

Mi(ν)−Rα
d Hs(ν)− u3(ν)Hs(ν)

)

+λ7(ν)

(

bα Hs(ν)

Nh

Mi(ν)− ζ α Hi(ν)−Rα
d Hi(ν)− u4(ν)Hi(ν)

)

+λ8(ν)

(

ζ α Hi(ν)−Rα
d Hr(ν)+ u3(ν)Hs(ν)+ u4(ν)Hi(ν)

)

.

Using Pontryagin minimum principle, we have

∂H

∂u1

= 0 =⇒ u∗1(ν) =
1

c1

(Esλ1 +Eiλ2)

∂H

∂u2

= 0 =⇒ u∗2(ν) =
1

c2

(Msλ3 +Meλ4 +Miλ5)

∂H

∂u3

= 0 =⇒ u∗3(ν) =
1

c3

(Hsλ6 −Hsλ8)

.
∂H

∂u4

= 0 =⇒ u∗4(ν) =
1

c4

(Hiλ7 −Hiλ8),
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the state equations are

CDα
ν0+

Es(ν) =
∂H

∂λ1

= eα
v − eα

v p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

)

−ηαEs(ν)

CDα
ν0+

Ei(ν) =
∂H

∂λ2

= eα
v p

(

Mi(ν)

Ms(ν)+Me(ν)+Mi(ν)

)

−ηαEi(ν)

CDα
ν0+

Ms(ν) =
∂H

∂λ3

= ηα Es(ν)− bα Hi(ν)

Nh

Ms(ν)− δ α Ms(ν)

CDα
ν0+

Me(ν) =
∂H

∂λ4

= bα Hi(ν)

Nh

Ms(ν)− γαMe(ν)− δ αMs(ν)

CDα
ν0+

Mi(ν) =
∂H

∂λ5

= γα Me(ν)+ηαEi(ν)− δ α Mi(ν) (2)

CDα
ν0+

Hs(ν) =
∂H

∂λ6

= Rα
b Nh − bα Hs(ν)

Nh

Mi(ν)−Rα
d Hs(ν)

CDα
ν0+

Hi(ν) =
∂H

∂λ7

= bα Hs(ν)

Nh

Mi(ν)− ζ α Hi(ν)−Rα
d Hi(ν)

CDα
ν0+

Hr(ν) =
∂H

∂λ8

= ζ α Hi(ν)−Rα
d Hr(ν)

and with the help of Lemma 21, the costate equations are

CDα
νF−

λ1(νF −ν) =
∂H

∂Es

= −ηαλ1(νF −ν)+ etaαλ3(νF −ν)

CDα
νF−

λ2(νF −ν) =
∂H

∂Ei

= −ηαλ2(νF −ν)+ etaαλ5(νF −ν)

CDα
νF−

λ3(νF −ν) =
∂H

∂Ms
= eα

v p
Mi(νF −ν)λ1(νF −ν)

(Ms(νF −ν)+Me(νF −ν)+Mi(νF −ν))2
− δ αλ3(νF −ν)

−eα
v p

Mi(νF −ν)λ2(νF −ν)

(Ms(νF −ν)+Me(νF −ν)+Mi(νF −ν))2

+
bα

Nh

Hi(νF −ν)λ4(νF −ν)

−
bα

Nh

Hi(νF −ν)λ3(νF −ν)− u3(νF −ν)λ3(νF −ν)
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CDα
νF−

λ4(νF −ν) =
∂H

∂Me

= eα
v p

Mi(νF −ν)λ1(νF −ν)

(Ms(νF −ν)+Me(νF −ν)+Mi(νF −ν))2
− δ α λ4(νF −ν)

−eα
v p

Mi(νF −ν)λ2(νF −ν)

(Ms(νF −ν)+Me(νF −ν)+Mi(νF −ν))2
− γαλ5(νF −ν)

−γαλ4(νF −ν)− u3(νF −ν)λ4(νF −ν)

CDα
νF−

λ5(νF −ν) =
∂H

∂Mi

= −eα
v p

(Ms(νF −ν)+Me(νF −ν))λ1(νF −ν)

(Ms(νF −ν)+Me(νF −ν)+Mi(νF −ν))2
+ δ αλ5(νF −ν)

−eα
v p

Ms(νF −ν)λ1(νF −ν)+Me(νF −ν)λ1(νF −ν)

(Ms(νF −ν)+Me(νF −ν)+Mi(νF −ν))2

−
bα

Nh

Hs(νF −ν)λ7(νF −ν)

−
bα

Nh

Hs(νF −ν)λ6(νF −ν)− u3(νF −ν)λ5(νF −ν) (3)

CDα
νF−

λ6(νF −ν) =
∂H

∂Hs

= −
bα

Nh

Me(νF −ν)λ6(νF −ν)+
bα

Nh

Me(νF −ν)λ7(νF −ν)

−Rα
d λ6(νF −ν)− u2(νF −ν)λ6(νF −ν)+ u2(νF −ν)λ8(νF −ν)

CDα
νF−

λ7(νF −ν) =
∂H

∂Hi

= Hi(νF −ν)−
bα

Nh

Ms(νF −ν)λ3(νF −ν)−Rα
d λ7(νF −ν)

−ζ α λ7(νF −ν)+
bα

Nh

Ms(νF −ν)λ4(νF −ν)+ ζ αλ8(νF −ν)

−u1(νF −ν)λ7(νF −ν)+ u1(νF −ν)λ8(νF −ν)

CDα
νF−

λ8(νF −ν) =
∂H

∂Hr

= −Rα
d λ8(νF −ν)

with the terminal conditions

λl(νF) = 0, for all l = 1,2,3, · · · ,8.

By setting ck = 1 for k = 1,2,3,4,5 and the time dependent optimal controls u∗1(ν), u∗2(ν), u∗3(ν) and u∗4(ν) are

u∗1 = min

(

1,max

(

0,(Esλ1 +Eiλ2)
)

)

u∗2 = min

(

1,max
(

0,(Msλ3 +Meλ4 +Miλ5)
)

)

u∗3 = min

(

1,max

(

0,(Hsλ6 −Hsλ8)
)

)

u∗4 = min

(

1,max
(

0,(Hiλ7 −Hiλ8)
)

)

.

4 Experimental simulations

The numerical results for the proposed FOCP are simulated in this section. To obtain the optimal states and controls,
the forward-backward sweep scheme in MATLAB is used to solve the obtained state and costate equations, respectively.
The initial values are Es(0) = 0, Ei(0) = 0, Ms(0) = 341120, Me(0) = 0, Mi(0) = 0, Hs(0) = 341094, Hi(0) = 26 and
Hr(0) = 0. The values of the parameters are listed in the table below.

Table 1: Parameter values

Parameter ev p η b Nh δ γ Rhb Rhd ζ
Value 6.218 0.028 0.099 0.33 341120 0.0331 0.0607 0.00002 0.000016 1/7
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Firstly, we explore the impact of the fractional order α (0.6 ≤ α ≤ 1) in the model and then add controls to explore
the roles of the proposed control parameters in the given dynamics.

In Figures 1 - 8, the effects of the fractional orders α = 1,0.9,0.8,0.7 and 0.6 are shown on the given dengue model
(1). Here, we observe that when α is reduced from 1, the dengue spreads slowly, and the number of dengue-infected
people are rising for a long time. From this observation, one can say that the derivative of order α becomes an important
factor to analyze the spread of dengue transmission and treatment of the dengue infection.

Now, consider the following strategies to investigate the numerical outcomes of the proposed control problem.

Simulation results of the fractional order dengue model for α = 1,0.9,0.8,0.7 and 0.6.

0 50 100 150 200 250 300

Time t(days)

0

10

20

30

40

50

60

70

S
u

s
c
e

p
ti
b

le
 E

s

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6

Fig. 1: Pre-adult female mosquito-Susceptible

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


8 M. Vellappandi et al. : An Optimal Control Problem for Dengue ...

0 50 100 150 200 250 300

Time t(days)

0

0.2

0.4

0.6

0.8

1

1.2

In
fe

c
te

d
 E

i

10
-3

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6

Fig. 2: Pre-adult female mosquito-Infected

0 50 100 150 200 250 300

Time t(days)

0

0.5

1

1.5

2

2.5

3

3.5

S
u

s
c
e

p
ti
b

le
 M

s

10
5

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6

Fig. 3: Adult female mosquito-Susceptible

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 1, 1-15 (2024) / www.naturalspublishing.com/Journals.asp 9

0 50 100 150 200 250 300

Time t(days)

0

50

100

150

In
fe

c
ti
o

u
s
 M

e

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6

Fig. 4: Adult female mosquito-Infectious

0 50 100 150 200 250 300

Time t(days)

0

50

100

150

200

250

In
fe

c
te

d
 M

i

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6

Fig. 5: Adult female mosquito-Infected

c© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


10 M. Vellappandi et al. : An Optimal Control Problem for Dengue ...

0 50 100 150 200 250 300

Time t(days)

3.34

3.35

3.36

3.37

3.38

3.39

3.4

3.41

3.42

3.43

3.44

S
u

s
c
e

p
ti
b

le
 H

s

10
5

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6

Fig. 6: Human population-Susceptible

0 50 100 150 200 250 300

Time t(days)

0

50

100

150

200

250

300

350

400

450

500

In
fe

c
te

d
 H

i

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6

Fig. 7: Human population-Infected/Infectious

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 1, 1-15 (2024) / www.naturalspublishing.com/Journals.asp 11

0 50 100 150 200 250 300

Time t(days)

0

1000

2000

3000

4000

5000

6000

7000

R
e

c
o

v
e

re
d

 H
r

 = 1

 = 0.9

 = 0.8

 = 0.7

 = 0.6
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Strategy A: Using larvicide, fogging and isolation controls (i.e. u1 6= 0, u2 6= 0, u3 = 0 and u4 6= 0)

In the first case, the larvicide, fogging and isolation controls are used to minimize the cost function while vaccination
control is assumed to be zero. Figures 9 - 12 show that larvicide, fogging and isolation controls decrease the number of
infected human populations for a long time compared with the case without control. Figure 10 shows that strategy A and
upcoming strategy B are similar to keep the spread of the dengue epidemic under control for α = 1. When the vaccination
is not available, then strategy A is effective to stop the spread of the dengue epidemic and reduce the number of the infected
human population.

Strategy B: Using vaccination and isolation controls (i.e. u1 = 0, u2 = 0, u3 6= 0 and u4 6= 0)

In this case, the isolation and vaccination controls are used to minimize the cost function while larvicide and fogging
controls are assumed to be zero. We know that excessive usage of insecticide is harmful to humans and it may lead to the
destruction of biodiversity. Fortunately, compared with all other cases strategy B is sufficient to reduce the transmission
of dengue dynamics and decrease the number of infected humans as shown in Figures 9, 11 and 12. Since both isolation
and vaccination controls are directly applied to the human population, it reduces the cost of larvicide and fogging control
efforts.

Strategy C: Using larvicide, fogging, vaccination and isolation controls (i.e. u1 6= 0, u2 6= 0, u3 6= 0

and u4 6= 0)

In this case, larvicide, fogging, vaccination, and isolation controls are used to minimize the cost function. The given
Figures show that using four optimal controls in the dengue epidemic decreases the number of infected human populations
and reduces the growth of spread of dengue transmission compared with the case without control. For α = 0.6, it decreases
the dengue infection rapidly but for α = 1 and 0.8, it decreases the infection slowly compared to the α = 0.6 case.
Moreover, strategy C increases the cost of controlling efforts by comparison with strategies A and B.
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Fig. 9: The dynamic of infected humans Hi for α = 1

5 Conclusion

The optimal control of larvicide, fogging, vaccine, and isolation in a dengue disease transmission model has been explored
in this study. We have designed an optimal control problem to decrease the number of dengue infected humans along with
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Fig. 10: Difference between the strategies A and B for α = 1.
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Fig. 11: The dynamic of infected humans Hi for α = 0.8.

the control cost. We have solved the proposed control problem using the Pontryagin Minimum Principle. The numerical
results of the provided situation are examined to demonstrate the impact of our optimal controls on the dengue outbreak.
As a result of our findings, we can observe that the number of infected humans are reducing with time in the presence of
possible controls. It suggests that maximizing the use of larvicide, fogging, vaccine, and isolation can have a significant
impact on reducing the dengue fever outbreaks.
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Fig. 12: The dynamic of the infected humans Hi for α = 0.6.
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