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Abstract: We consider a boundary value problem involving conformablederivative of orderα, 1< α < 2 and Dirichlet conditions.
To prove the existence of solutions, we apply the method of upper and lower solutions together with Schauder’s fixed-point theorem.
Furthermore, we give the Lyapunov inequality for the corresponding problem.
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1 Introduction

Recently, an interesting derivative called conformable derivative that is based on a limit form as in the classical derivative
was introduced by Khalil et al. in [1]. Later, this new local derivative is getting more attention and is improved by
Abdeljawad in [2]. The importance of the conformable derivative is that it has similar properties than the classical one.
Nevertheless, this conformable derivative doesn’t satisfy the index law [3,4] and the zero order derivative property i.e. the
zero order derivative of a differentiable function does notreturn to the function itself.

Following this new conformable derivative, several papershave been presented, in particular some studies about
boundary value problems for conformable differential equations have been the subject of some papers [5,6,7,8,9,10,3,
4,11]. Furthermore, in [8], Batarfi et al. studied a conformable differential equation of orderα ∈ (1,2] , with three point
boundary conditions and proved the existence and uniqueness of solution by using fixed point theorems. In [9], Bayour et
al. solved an initial conformable differential value problem forα ∈ (0,1) by the help of the tube solution method which
is a generalization of the lower and upper solutions method.

In this work, we analyze the existence of solutions for the following boundary value problem (P)

Ta
α u(t)+ f (t,u(t)) = 0,a< t < b, (1.1)

u(a) = u(b) = 0 (1.2)

where 1< α < 2, Ta
α denotes the conformable derivative of orderα, u is the unknown function andf : [a,b]×R→ R is

a given function. For this purpose, we use the method of upperand lower solutions together with Schauder’s fixed-point
theorem. The method of lower and upper solutions is a powerful tool in the investigation of the existence of solutions and
has been used in several papers, we refer to [12,13,14,15].

In the casef (t,u(t)) = q(t)u(t), we prove a new Lyapunov inequality that coincide with the classical one when
α = 2.

The classical Lyapunov inequality states that ifq : [a,b] → R is a real and continuous function, then a necessary
condition for the boundary value problem

−u′′ (t) = q(t)u(t) ,a< t < b
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u(a) = u(b) = 0

to have nontrivial solutions is that
∫ b

a
|q(t)|dt ≥

4
b−a

, (1.3)

see [21]. An equivalent version of the Lyapunov inequality (1.3) was proved by Borg see [8].

∫ b

a

|u′′ (t)|
u(t)

dt ≥
4

b−a
. (1.4)

under the conditionu(t)> 0 for t ∈ (a,b).
Many authors have extended the Lyapunov inequality by considering a fractional derivative or a sequential of

fractional derivatives instead of the second derivative inequation (1.1), see [16,17,18,19,20,2,22,23,24,25,26]. In
particular, we cite the paper of Ferreira [19], where he gave the corresponding Lyapunov type inequalities for both
Caputo sequential fractional differential equation and Riemann-Liouville sequential fractional differential equation
subject to Dirichlet boundary conditions. In [16], Agarwal et al. obtained Lyapunov type inequalities for mixed nonlinear
Riemann-Liouville fractional differential equations with a forcing term and Dirichlet boundary conditions. Recently,
Guezane-Lakoud et al.[20], considered a mixed left Riemann–Liouville and right Caputo differential equation subject to
natural conditions and obtained a new Lyapunov type inequality.

This paper is organized as follows. In Section 2, we present the main concepts of the conformable derivatives, we give
some useful properties and we prove a property on the extremum of a function for a conformable derivative. In Section 3,
we prove existence of solution to problem (P) by using the method of upper and lower solutions together with Schauder’s
fixed-point theorem. In Section 4, we prove a Lyapunov inequality for problem (P) in the casef (t,u(t)) = q(t)u(t).

As far as we know, this work will be the first one that gives the Lyapunov inequality for conformable differential
equations.

2 Preliminaries

We recall some essential definitions on conformable derivatives that can be found in [2,1].
Let n< α < n+1, and setβ = α −n, for a functiong : [a,∞)→R, we denote by

Ia
αg(t) =

∫ t

a
(s−a)α−1g(s)ds,n= 0,

and

Ia
αg(t) =

1
n!

∫ t

a
(t − s)ng(s)dβ (s,a) =

1
n!

∫ t

a
(t − s)n(s−a)β−1g(s)ds,n≥ 1.

Remark.Notice that, since 0< β < 1, thenIa
αg(t) is the Lebesgue-Stieltjes integral of the function(t − s)ng(s) on [a, t]

anddβ (s,a) = (s−a)β−1ds is an absolutely continuous measure with respect to the Lebesgue measure on the real line,
generated by the absolutely continuous function(t − a)β and the weight function(s− a)β−1 ∈ L1 [a,b] is its Radon-
Nikodym derivative according to the Lebesgue measure.

The conformable derivative of order 0< α < 1, of a functiong : [a,∞)→R is defined by

Ta
α g(t) = lim

ε→0

g
(

t + ε (t −a)1−α
)

−g(t)

ε
, t > a.

If Ta
α g(t) exists on(a,b), b> a and lim

t→a+
Ta

α g(t) exists, then we defineTa
α g(a) = lim

t→a+
Ta

α g(t).

The conformable derivative of ordern< α < n+1 of a functiong : [a,∞)→R, wheng(n) exists, is defined by

Ta
α g(t) = Ta

β g(n)(t),

whereβ = α −n∈ (0,1) .
For the properties of the conformable derivative, we mention the following:
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Let n< α < n+1 andg be an(n+1)-differentiable att > a, then we have

Ta
α g(t) = (t −a)n+1−α g(n+1) (t) (2.1)

and

Ia
αTa

α g(t) = g(t)−
n

∑
k=0

g(k) (a)(t −a)k

k!
.

Remark. –For 0< α < 1, using (2.1) it follows that, if a functiong is differentiable att > a, then one has

lim
α→1

Ta
α g(t) = g′(t)

and
lim
α→0

Ta
α g(t) = (t −a)g′(t),

i.e. the zero order derivative of a differentiable functiondoes not return to the function itself.
–Let n<α < n+1, if g is (n+1)-differentiable on(a,b), b> a and lim

t→a+
g(n+1) exists, then from (2.1), we getTa

α g(a) =

lim
t→a+

Ta
α g(t) = 0.

–Let n< α < n+1, if g is (n+1)-differentiable att > a, then we can show thatTa
α g(t) = Ta

α−kg
(k) (t) for all positive

integerk< α.

Similarly to the classical case, we give a property on the extremum of a function that has a conformable derivative:

Proposition 1. Let 1< α < 2, if a function g∈C1 [a,b] attains a global maximum (respectively minimum) at some point
ξ ∈ (a,b), then Ta

α g(ξ )≤ 0 (respectively Taα g(ξ )≥ 0).

Proof. The result follows from the fact that

Ta
α g(ξ ) = Ta

α−1g′ (ξ ) = lim
ε→0

g′
(

ξ + ε (ξ −a)2−α
)

ε
.

3 Existence of Solutions

Let AC2 [a,b] =
{

u∈C1 [a,b] ,u′ ∈ AC[a,b]
}

, whereAC[a,b] is the space of absolutely continuous functions on[a,b] .
DenoteL1 ([a,b] ,ρ(s)ds) the Banach space of Lebesgue integrable functions on[a,b] with respect to the positive weight
functionρ(s) = (s−a)α−2 ∈ L1 [a,b] , 1< α < 2.

To prove the existence of solutions for problem (P), we use the lower and upper solutions method, we need the
following definition of lower and upper solutions for problem (P).

Definition 1. The functionsσ , σ ∈ AC2 [a,b] are called lower and upper solutions of problem (P) respectively, if
a) Ta

α σ (t)+ f (t,σ (t))≥ 0,for all t ∈ [a,b],
σ (a)≤ 0, σ(b)≤ 0.
b) Ta

α σ (t)+ f (t,σ (t))≤ 0, for all t ∈ [a,b],
σ (a)≥ 0, σ(b)≥ 0.

Next, we solve the following linear boundary value problem.

Lemma 1. Assume that y∈C[a,b], then the following linear boundary value problem

Ta
α u(t)+ y(t) = 0,a< t < b, (3.1)

u(a) = u(b) = 0,

has a unique solution given by

u(t) =
∫ b

a
G(t,s)y(s)ρ (s)ds, (3.2)

where

G(t,s) =
1

(b−a)

{

−(b−a)(t − s)+ (b− s)(t −a) ,a≤ s≤ t ≤ b
(b− s)(t −a) ,a≤ t < s≤ b. . (3.3)
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Proof. Applying the integral operatorIa
α , to both sides of the differential equation (3.1), we get

Ia
αTa

α u(t)+ Ia
αy(t) = 0,

hence
u(t)−u(a)− c(t −a)+ Ia

αy(t) = 0.

Sinceu(a) = 0, then
u(t) =−Ia

αy(t)+ c(t −a) . (3.4)

Fromu(b) = 0, we get

c=
1

(b−a)
Ia
αy(t) |t=b

Substitutingc by its value in (3.4), it yields

u(t) = −Ia
αy(t)+

(t −a)
(b−a)

Ia
αy(t) |t=b

= −
∫ t

a
(t − s)(s−a)α−2y(s)ds+

(t −a)
(b−a)

∫ b

a
(b− s)(s−a)α−2y(s)ds

=

∫ b

a
G(t,s)y(s)ρ(s)ds,

where the Green functionG is given in (3.3).

Lemma 2. The Green function G is nonnegative, continuous and satisfies

0≤ G(t,s)≤ b−a,∀s, t ∈ [a,b] . (3.5)

Now we give the main result on the existence of solutions for the nonlinear problem (P).

Theorem 1. Letσ andσ be the lower and upper solutions of (P) such thatσ ≤ σ , define E= {(t,x) ∈ [a,b]×R,σ (t)≤
x≤ σ (t)} and assume that f(t,x) is continuous on E. Then the problem (P) has at least one solution u∈ AC2 ([a,b]) such
that

σ (t)≤ u(t)≤ σ (t) ,a< t < b.

Proof. Define the modified problem

(MP)

{

Ta
α u(t)+F (t,u(t)) = 0,a< t < b,

u(a) = u(b) = 0,

where

F(t,x) =











f (t,σ (t))+ σ(t)−x
x−σ(t)+1, for x> σ (t) ,

f (t,x), for σ (t)≤ x≤ σ (t) ,

f (t,σ (t))+ σ(t)−x
σ(t)−x+1, for x< σ (t) .

The functionF (t,x) is called a modification off (t,x) associated with the coupled of lower and upper solutionsσ andσ .
It follows from the definition ofF thatF(t,x) is continuous and|F(t,x)| ≤ M on [a,b]×R, with M = M0+1 where

M0 = max{| f (t,x)| ,(t,x) ∈ E} .

Define the operatorA onX =C[a,b] , by

Au(t) =
∫ b

a
G(t,s) (s−a)α−2F (s,u(s))ds,a≤ t ≤ b.

SetΩ = {u∈ C[a,b] , |u(t)| ≤ M (b−a)α+1

α−1 ,a≤ t ≤ b}. We will show thatA(Ω) is uniformly bounded. Letu∈ Ω , then,
using (3.5), we get

|Au(t)| ≤
∫ b

a
G(t,s) (s−a)α−2 |F (s,u(s))|ds≤ M

(b−a)α

α −1
,
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consequentlyA(Ω) is uniformly bounded andA(Ω)⊂ Ω .
Now we prove thatA(Ω) is equicontinuous. Fora≤ t1 < t2 ≤ b, we have

|Au(t1)−Au(t2)|

≤ (t2− t1)M
∫ t1

a
(s−a)α−2ds+M

∫ t2

t1
(t2− s)(s−a)α−2ds

+
(t2− t1)M
(b−a)

∫ b

a
(b− s)(s−a)α−2ds

≤
M

α −1

[

(t2− t1)
(

(t1−a)α−1+(b−a)α−2
)

+ t2 (t2− t1)
α−1

]

→ 0,

whent1 → t2. Hence,A(Ω) is equicontinuous. Thanks to Arzela-Ascoli’s theorem we get thatA is completely continuous.
Moreover, by Schauder fixed point theorem we conclude thatA has a fixed pointu∈ Ω which is a solution of the modified
problem (MP).

Localization of solution. Let us prove that ifu is a solution of the modified problem (MP), it satisfies

σ (t)≤ u(t)≤ σ (t) . (3.6)

Setw= u−σ . Assuming the contrary, so there existst0 ∈ [a,b] such that

max
t∈[a,b]

w(t) = w(t0)> 0

therefore, we have some cases to consider such as the following:
Case 1: If t0 ∈ (a,b) , then from Proposition 1 it yields,Ta

α w(t0) ≤ 0. Using the fact thatσ is an upper solution for
problem (P), we get

Ta
α w(t0) = Ta

α u(t0)−Ta
α σ (t0)

= − f (t,σ (t0))−
σ (t0)−u(t0)

u(t0)−σ (t0)+1
−Ta

α σ (t0)> 0,

that leads to a contradiction, thus the maximum ofw is not achieved at the pointt0 ∈ (a,b).
Case 2:If t0 = a, we obtain

w(a) = u(a)−σ (a)> 0.

On the other hand, sinceu is solution, thenu(a) = 0 and consequentlyσ (a) < 0, which contradicts the fact thatσ is an
upper solution of problem (P).

Case 3:If t0 = b, we obtain a contradiction as in the second case.

Applying similar reasoning, we prove thatσ (t)≤ u(t) , ∀t ∈ [a,b] . Finally from (3.6) we conclude thatu is a solution
of problem (P). The proof is completed.

4 Lyapunov Inequality

Let f (t,u(t)) = q(t)u(t) , then problem (P) becomes

Ta
α u(t)+q(t)u(t) = 0,a< t < b, (4.1)

u(a) = u(b) = 0,

that we denote by (P1). Now we are ready to give the Lyapunov inequality for problem (P1).

Theorem 2. Let q∈C([a,b]). If the boundary value problem (P1) has a solution u∈ AC2 ([a,b]) such that u(t) 6= 0 a.e.
on (a,b), then

∫ b

a
|q(s)|ρ(s)ds≥

4
b−a

. (4.2)
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Proof. Let u∈ AC2 ([a,b]) be a solution of problem (P1) such thatu(t) 6= 0 a.e. on(a,b), then from equation (4.1), we
can write

|q(t)|=

∣

∣

∣

∣

Ta
α u(t)
u(t)

∣

∣

∣

∣

, (4.3)

a.e. on(a,b) . Applying the integral operatorIa
α−1 to both sides of the differential equation (4.3) and following the same

ideas as in [8], we get for alla< c< d < b

(

Ia
α−1 |q|

)

(t) |t=b =

∫ b

a
(s−a)α−2 |q(s)|ds

=

∫ b

a
(s−a)α−2

∣

∣

∣

∣

Ta
α u(s)
u(s)

∣

∣

∣

∣

ds

≥ (‖u‖)−1
∫ b

a
(s−a)α−2

∣

∣

∣
(s−a)2−α u′′ (s)

∣

∣

∣
ds

≥ (‖u‖)−1
∫ d

c

∣

∣u′′ (s)
∣

∣ds.

Since the functionu′ is absolutely continuous on[a,b] , it yields

(

Ia
α−1 |q|

)

(t) |t=b ≥ (‖u‖)−1 ∣
∣u′ (d)−u′ (c)

∣

∣ ,

where||u||= max
t∈[a,b]

|u(t)|. Let ||u||= u(ξ ) then the Mean value theorem implies there exista< c< ξ andξ < d < b such

that

(

Ia
α−1 |q|

)

(t) |t=b ≥ (‖u‖)−1
∣

∣

∣

∣

u(b)−u(ξ )
b− ξ

−
u(ξ )−u(a)

ξ −a

∣

∣

∣

∣

=
1

b− ξ
+

1
ξ −a

.

Finally thanks to the harmonic mean inequality, we get (4.2).

Remark.Note that ifα → 2, then we get the classical Lyapunov inequality (1.3).
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