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Abstract: Order preserving encryption is a type of homomorphic encryption in which the homomorphic operation is order comparison.
This means that comparing encrypted data returns the same result than comparing the original data. This allows to order encrypted data
without the need of decryption. A possible use for this kind of cryptosystems is in databases, where a record field may be encrypted
and still permit range queries. An important problem is determining how good a particular order preserving encryption scheme is. In
fact, characteristics of order preserving cryptosystems make traditional security analysis useless. In this paper, we propose two different
methodologies, applicable to most order preserving schemes, that canbe used to determine their security by analyzing their randomness.
The first one relies on techniques of noise analysis by converting the encryption function into a noise signal whose power distribution
will be considered. The second one relies on techniques of error analysis. It is based on the computation of the mean absolute errors
between the encryption function and several approximations defined bysmall sets of plaintext-ciphertext pairs. As a derived result of
the first of these methodologies, a new order preserving cryptosystemis proposed.
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1 Introduction

Nowadays, the amount of information stored in databases
is constantly increasing. In a database, each record has
several data fields, some of which may contain sensitive
information, so there is a need to prevent free access to it.

But conventional cryptography has the problem that,
for queries that need access to a specific field for all the
records, it requires the decryption of the entire data field.
Frequently, one needs to permit these kind of operations,
e.g. obtaining records with a field ranging between two
values.

Homomorphic cryptosystems allow to perform one
(or sometimes more) operation without decrypting the
operators. The permitted operation depends on the
particular cryptosystem.

Order Preserving Encryption (OPE) allows to perform
order comparisons, so it ensures that ciphertexts retain the
order established between plaintexts. So, if a field is
encrypted in this way, SQL range queries [1] can still be
performed efficiently, ensuring that an attacker with
access to the information stored in the database cannot
obtain information about the data in clear.

In essence, an order preserving cryptosystem is a
strictly increasing function that goes from the set to which
data belongs to the set to which the ciphertexts belong.
The security of the cryptosystem relies in that this
function, while maintaining order, looks as random as
possible [2]. This will ensure that only those with an exact
knowledge of how to compute it (which is determined by
the cryptosystem key) will be able to invert it.

All order preserving cryptosystems are necessarily
symmetric, since the knowledge of the encryption
function would permit to approximate, to any precision,
the decryption function. Notice that, if an attacker with
the capability of encrypting arbitrary values wants to
decrypt a particular value, she may perform a dichotomic
search for the target value, until a satisfactory
approximation is reached.

In this paper, we provide two methodologies that are
designed to test how random and, hence, secure, an order
preserving encryption scheme is. We will take benefit of
concepts of noise analysis, in particular thecolor of the
noise (i.e. the power distribution in the frequency
spectrum) and error analysis, by means of mean absolute
errors. As an additional result, we present a new order
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preserving cryptosystem derived from the first of these
two methodologies.

The rest of the paper is structured as follows: In
Section 2, it is shown the motivation and a practical
example of this kind of cryptography. Section3 provides
some examples of previous cryptosystems of this kind.
Section4 displays some previous mathematical concepts
used in this paper. The two methodologies are presented
in Sections5 and6 (with the new cryptosystem presented
in Section5.1). Section7 tests the security and efficiency
of the new cryptosystem, by means of the proposed
methodologies and an experimentation. And, finally, a
concluding Section8.

2 Motivation

Order preserving encryption schemes have been designed
for environments in which there exists the possibility that
an intruder can get access to the encrypted database, but
neither has information on the distribution of clear values
nor can encrypt/decrypt arbitrary values. Notice that, even
if the access control system of the database manager is
responsible of deciding what data can be accessed by
each user, in general, direct access to the contents of the
database cannot always be prevented, due to security
breaches.

A real incident is exposed in The Toronto Star [3],
which explains that a bank sold a hard disk on eBay,
forgetting to delete data stored from hundreds of its
customers. The buyer, upon realizing this, tried to resell
the disk on eBay.

Consider a medical database, encrypted (as it should
be), and suppose we want to know how many patients are
in an age group. If the cryptosystem used is not order
preserving, performing the query requires that we encrypt
each of the values belonging to the range of the age group
and then compare them with the corresponding fields in
the encrypted database, or, alternatively, decrypt the age
field for all the records of the database, and then test
whether each one is within the range of the query (if the
encryption algorithm is not deterministic only the second
alternative is valid).

But, if the database is encrypted with order preserving
encryption, we need to encrypt only the first and the last
values of the range, and make a query of how many
records have their (encrypted) age field within these two
(encrypted) values.

This becomes even more necessary if, instead of
working with integer valued fields, such as age, we
worked with real valued fields. E.g. in the medical
database example, we could be interested in the
percentage of patients whose blood sugar level is over a
certain threshold.

From the attackers perspective, knowing that a specific
field has been ciphered with order preserving encryption
provides an useful source of information if they can get
access to stored data.

On the one hand, they can correctly order the data by
that field (which is unavoidable, as this is the defining
property of OPE). So, in order to avoid the exposition of
sensitive information (since even an unusual combination
of non-sensitive fields could be used as an identifier), the
rest of the fields should also be encrypted, using one
cryptosystem or another depending on the type of queries
that should be permitted.

On the other hand, if an attacker knows the
corresponding encrypted values for a set of values, she
may try to approximate the decryption function. So, if she
gets access to some encrypted values, she can compute an
approximation of the original values.

E.g., an attacker knowsx1, x2, y1, y2 and the fact that
y1 = encrypt(x1) andy2 = encrypt(x2); if she obtains an
encrypted valuey, with y1 < y < y2, she automatically
knows that its decryption,x, lies somewhere in the
interval (x1,x2). Moreover, she can interpolate (using, for
example, linear interpolation) a valuex′ whose closeness
to x will depend on the predictability of the function (i.e.,
its lack of randomness) and the distance between the
values she knew beforehand.

So, methods of ensuring the obtaining of good
(unpredictable) order preserving encryption functions are
urgently needed.

3 Related Work

Order preserving encryption has been attracting interest
during this last decade, with several scientific papers
published on the subject.

An initial approach is found in [4], where the author
proposes a method that allows the encryption of an
integer p by adding the p first values of a secure
pseudo-random sequence of positive integers. However,
this encryption method is inefficient for large numbers
and may be predictable in some cases.

Suppose thatµ is the mean of the distribution
followed by the pseudo-random sequence (for a uniform
distribution on the interval[1,Max], µ will be Max+1

2 ),
then the function f (x) = µx would approximate the
encryption function (and f−1(x) = x/µ would
approximate the decryption function). This
approximation will be less useful ifµ is close to 0 and the
distribution has a large standard deviation. Moreover, the
cost of encrypting an bits value p is exponential inn
(since it is linear inp).

In [5], it is mentioned the possibility of using
polynomials for the encryption of integer data. These
polynomials must have no maximum or minimum in the
interval at which the data to be encrypted belongs.
However, it may be impossible to obtain the formula
corresponding to the inverse of the polynomial, which
would hinder decryption. Therefore, as an alternative, the
authors propose to apply, in a specific order, various
simple polynomials (of the formf (x) = axb + c), all of
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them invertible (the inverse would bef (x) = b
√

x−c
a ), so

that decryption consists on applying the inverses of these
polynomials in reverse order. The authors suggest
restricting the maximum degree of the polynomials to 2
and the range of the coefficients to{1..32}.

Since integers are implemented with a fixed length
(unbounded integers are less efficient), integer overflow
errors must be avoided. To avoid these errors, the authors
propose controlling the parameters that define the
polynomials and using logarithmic functions
( f (x) = log2x+c), which would require dealing with real
(floating point) values. This implies that precision errors
must also be considered.

In short, the election of the key is a complex process
that requires the careful consideration of what parameters
can be chosen in order to avoid integer overflow errors
and minimize precision errors. Decryption is harder than
encryption, since several roots must be computed.

In 2004, R. Agraval et al. [6] propose the encryption
of data belonging to a subset[pmin, pmax) of the integers,
although they suggest the possibility of treating floating
point values as if they were integers (i.e. interpreting a 32
bits float as if it were anint of the same size), since
positives maintain the same order, and for the negatives,
that have the order reversed, one should only need to
subtract the resulting integer from the largest negative.

The method they propose, transforms data that
follows certain statistical distribution into ciphertexts that
maintain order and also follow a different distribution,
chosen by the user. In order to generate the encryption
function, they use all the data to be encrypted (because of
that, if the database is initially empty, the administrator
has to provide samples of possible expected values), and a
list of samples of the distribution that has to be emulated.
The auxiliary information necessary for the encryption
and decryption of data (i.e. the cryptosystem key) will be
generated from all these samples. Moreover, in order to
model the distributions, data need to be partitioned in
buckets. Inside them, linear interpolation will be used.
When encrypting, data is first transformed in a uniform
distribution, that is then transformed into the target
distribution.

One of the drawbacks of the cryptosystem they
propose is key generation. While it is relatively small (its
size is three times the number of buckets, and it is assured
that no more than 200 are needed), its generation is linear
in the size of the database. Moreover, if after a key has
been generated a large amount of data is added to the
database (which is expected to happen if the key has been
created for an empty database), it may be necessary to
choose a new key and re-encrypt the database.

In 2009, [7] proposes the COPE scheme (Chaotic
Order Preserving Encryption). In this scheme, bucket
order is randomized according to the key, so, in fact, it is
not a pure order preserving encryption. The fact that
buckets must be sorted in order to perform queries may
affect negatively the cost.

A. Boldyreva et al. [2] presented an order preserving
encryption function relying on the use of a block cipher.

They point out the fact that, for integer OPE
functions, the output set is larger than the input set (which
permits that no two clear values correspond to the same
encrypted value). So, a function from[1,M] to [1,N] can
be determined by the selection of a subset (of sizeM) of
the output set which contains the encryption of the values
of the input set.

More importantly, they proposed a criteria that a good
OPE function must fulfill, based on the different ways this
selection can be performed (which is related to the
negative hypergeometric distribution) noting that,
basically, the function needs to be “as random as
possible” while maintaining order.

In this paper, we propose two methodologies designed
to analyze the quality of an order preserving encryption
function. The first one is based on the conversion of the
encryption function to a sequence to be analyzed as a
noise signal. The second one is based on the difference
between the encryption function and the approximations
an attacker may compute from a small set o known
(correct) points. A new order preserving cryptosystem is
also presented. Its encryption function derives from the
noise analysis technique.

4 Basic Considerations

Homomorphic encryption permits that a specific operation
between plaintexts corresponds to another operation (the
same, in some cryptosystems) between ciphertexts, that is,

enc(x1∗x2) = enc(x1)⋆enc(x2),
x1∗x2 = dec(enc(x1)⋆enc(x2)),

(1)

wherex1, x2 are two plaintexts.
In the present case, we focus in cryptosystems in which

the homomorphic operation is order comparison, that is,

x1 < x2 ≡ enc(x1)< enc(x2), (2)

so, the order of clear data corresponds to the order of
encrypted data.

Notice that, since relational operators return a boolean
value, there is no need for decryption after applying the
operator. Also, any other relational operator will be
preserved, since all of them can be defined in terms of<
and logical operations, e.g.(a= b)≡ ¬(a< b∨b< a).

As said in previous sections, the advantage of order
preserving encryption is the fact that if a database needs to
be sorted by a field, the order of records will be the same
whether the field is encrypted or not.

In fact, property2 corresponds to the defining property
of a strictly increasing function. So, it is needed that the
encryption function is strictly increasing.

Monotonically (but not strictly) increasing functions,
for which the more relaxed property

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1288 S. Mart́ınez et al. : Security Analysis of Order Preserving...

x1 ≤ x2 ≡ f (x1) ≤ f (x2) holds, are undesirable for
cryptography, since they allow that for valuesx1 < x2, the
result of the function coincidesf (x1) = f (x2), so, the
function is non-injective, and, hence, not invertible. This
would rule out the possibility of decryption.

In the analysis presented in this paper, we consider
only functions with inputs and outputs belonging to the
real interval [0,1]. For encryption functions defined
outside this interval, their domain and/or codomain
should be mapped to this interval before performing the
analysis. Any interval, even the wholeR, can be mapped
in this way.

A good mapping function for the input values is one
that ensures a somewhat uniform distribution over the
interval [0,1]. The knowledge (or lack thereof) of the way
in which data will be distributed may encourage one
particular mapping function.

Since this mapping is specific to the particular field
being encrypted, we will consider this a solved problem
for the rest of the paper. So, for the security analysis, we
consider encryption functions from[0,1] to [0,1] whose
input is uniformly distributed.

Not all the strictly increasing functions would be good
candidates for an encryption function. Consider, as an
example, the functiony = +

√
x, restricted to the interval

(0,1). It is strictly increasing, so it is invertible
(decryption can be performed) and order preserving, but it
may be trivially deduced by an attacker who knew a few
points. Good encryption functions need to look random.

So, we need methods to analyze the randomness of
order preserving encryption functions and to quantify
how much predictable a function is (bearing in mind that
such a function should be increasing).

5 Randomness of an Encryption Function

In general, better random generators produce samples
that, when considered as a signal correspond to uniformly
distributed white noise [8]. So, one of the necessary (but
not sufficient) conditions that a random sequence must
satisfy in order to be considered truly random is to have a
flat spectrum.

But the encryption function of an order preserving
cryptosystem cannot be truly random, since it must be
strictly increasing, so in order to analyze the encryption
function it must be transformed in a way that eliminates
this restriction. Moreover, it is not clear that a flat
spectrum signal is adequate for this process.

In this section, we propose a transformation of an
order preserving encryption function that allows its
analysis as a noise sequence and may determine which
power distribution (i.e. which colors of noise) work better.

Notice that, even though the function is defined only
between(0,0) and(1,1), we can extend it to the complete
real plane by considering that the same growth pattern
repeats in every other square from(k,k) to (k+1,k+1),
for integerk. So, the way the function oscillates around

the identity function can be considered a periodic signal
and be analyzed as such.

Then, if we rotate the function 45◦ clockwise, we
obtain a function with period

√
2 whose slope takes

values between−1 (corresponding to an horizontal slope
in the original function) and+1 (corresponding to a
vertical slope). This slope is the signal that we will
analyze.

So, the transformation process of an encryption
function consists of the following steps:

1.The function is sampled, and the points(x,y) are
rotated 45◦ clockwise, using the following equations:

xr = (y+x) ·
√

2/2,
yr = (y−x) ·

√
2/2.

(3)

2.The derivative of the rotated function is taken.
3.This final function is sampled again, so that its

distribution of frequencies can be evaluated.

After that, a fast Fourier transform (FFT) may be used
in order to study the noise pattern of the obtained
sequence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

"enc_f.dat"
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Figure 1: Example encryption function.

As an example, Figure1 shows an encryption
function, whose transformation can be seen in Figures2
and 3. Notice that, since the original function is defined
inside the square from(0,0) to (1,1), the rotated function
(Figure2) is defined inside a square with vertices(0,0),
(
√

2/2,−
√

2/2), (
√

2,0) and(
√

2/2,
√

2/2). In Figure3,
it is shown the derivative (i.e. the slope) of the rotated
function.

Then, after sampling the derivative, the FFT
(Figure4) will show how the frequencies are distributed
in the spectrum.

In this case, it is clear that the power decreases when
the frequency increases (at a rate of almost 6 dB per
octave). Noise with this particular spectral density is
called red (or Brownian) noise.
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Figure 2: Rotated function.
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Figure 3: Derivative of the rotated function.
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Figure 4: Fourier transform.

5.1 Noise-based Order Preserving Encryption
(NOPE)

This transformation process may be reversed (using some
necessary modifications), so that, from a particular noise

signal, an encryption function can be obtained with the
desired characteristics. This has been done, mainly, in
order to test which colors of noise produce the best
encryption functions.

The generation of a noise based encryption function
consists of the following steps:

1.Generate a noise sequence with specific characteristics
(e.g. uniform white noise).

2.If necessary, adjust the sequence to the interval
(−1,1).

3.The sequence is integrated, using as thex range the
interval [0,

√
2]. The obtained function will start at the

origin and will end at some point(
√

2,y0), with y0
(hopefully) near 0. Notice that, unlike in the first
transformation process, the obtained function may
take values outside the rotated square (if, for example,
almost all values of the noise sequence were 1). This
problem will be solved later.

4.The points(xr ,yr) of the function are rotated 45◦

counterclockwise, using the following equations:

x = (xr −yr) ·
√

2/2,
y = (xr +yr) ·

√
2/2.

(4)

5.After that, the function starts at the origin and ends
at some point(x1,y1) on the liney= 2− x, hopefully
near(1,1). This function is strictly increasing. Then,
the abscissas of all the points are divided byx1, and the
ordinates byy1. The result will be a strictly increasing
function ending at the point(1,1).

In order to see which colors of noise produce the best
results, several functions have been generated in this way
using different noise sequences.

Figures 5, 6, 7 and 8 show encryption functions
obtained from sequences of noise of the following colors:

–White noise: it has a flat frequency spectrum.
–Pink noise: its power density decreases 3 dB per octave
when frequency increases.

–Red (Brownian) noise: its power density decreases 6
dB per octave.

–Noise with power density decreasing 9 dB per octave,
which we decided to call infrared noise.

The white noise is the easiest to generate, since it
corresponds to an uncorrelated random sequence with
zero mean. In particular, we used a pseudo-random
number generator to produce float numbers in the interval
[−1,1] following a uniform distribution.

In Figure5 it is shown the function obtained from a
white noise signal. It is clear that this kind of noise is not
adequate for the generation of order preserving encryption
functions. The problem is that the fast oscillations of the
slope (which makes the function very unpredictable at the
proximity of any point) keep the function too close to the
identity.

The generation of pink noise is not trivial. One of the
classical methods consists on applying a filter to a white
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Figure 5: Encryption function generated from white noise.

noise source, but there does not exist a filter capable of
producing pure pink noise from white noise, because of
nonlinearity [9]. So, the result obtained is only an
approximation (whose quality depends on the number of
zeros/poles of the filter).

We decided to use a method inspired in [10], that
offers a good noise quality at a low CPU cost. It starts
from a short white noise sequence (of only two values)
and follows several iterations in which the sequence
length is doubled (using the mean between each pair of
values) and a new white noise sequence is added. This
process is repeated until the sequence has the desired
length.
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Figure 6: Encryption function generated from pink noise.

Figure 6 shows the function obtained from the pink
noise signal generated in this way. It starts to diverge from
the identity at some places, which makes it less globally
predictable. The function has some minor autocorrelation,
so it is slightly more predictable at the proximity of any
point.

A red noise source can be obtained by filtering a white
noise signal with a first order integrator. Each red noise
sample is the sum of the first terms of the white sequence.
So, they can be efficiently computed as:

red[k] = red[k−1]+white[k] with red[0] = white[0]. (5)
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Figure 7: Encryption function generated from red noise.

The function obtained from this kind of noise (see
Figure7) is also good. It has less local divergences than
the pink one, since its autocorrelation is larger. But this is
compensated with less global predictability.

The same filter that produces red noise (decreasing 6
dB per octave) from a white noise source (flat, i.e.
decreasing 0 dB per octave) can be used on a pink noise
source (decreasing 3 dB per octave) to produce what we
call infrared noise (decreasing 9 dB per octave).
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Figure 8: Encryption function generated from infrared noise.

The result, shown at Figure8, is a function that
diverges from the identity but is so smooth that, if an
attacker knew some of the function points (besides the
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origin and the point(1,1), which are fixed), she could
easily approximate the function with high precision.

Noise sequences with a power density increasing when
frequency increases, like blue (azure) or violet (purple),
can be obtained by differentiating pink and white noise
respectively. They have also been tested, but their results
were worse than the obtained with white noise.

In the same way, noise decreasing more than 9 dB per
octave can be obtained by integrating red and infrared
noise. The result is even smoother than the obtained in the
infrared case.

So, the best order preserving encryption functions are
the obtained from pink or red noise sources. These kind
of noises make the function depart from the identity while
maintaining an acceptable amount of randomness at the
proximity of any point.

6 Security of an Encryption Function

Traditional security analysis techniques usually prove that
an attacker with access to an oracle for decrypting
messages in polynomial time could use it to solve, also in
polynomial time, a problem believed to be hard (for
example, integer factorization). So, assuming this
problem is really not solvable in polynomial time, such an
oracle cannot exist.

But order preserving cryptosystems are not based on
hard problems. OPE encryption functions are simply
strictly increasing functions, so anyone who knows some
of its points (i.e. plaintext-ciphertext pairs) can
approximate the encryption function (and the decryption
function if the coordinates are exchanged).

The noise analysis allows to determine how are the
best order preserving encryption functions in terms of
their randomness. So, we could test existing OPE
functions to see if the sequence obtained from the
transformation is red or pink noise, and, if not, we can
safely discard the cryptosystem since it will be too
predictable.

Even if the analysis determines that the sequence
obtained is red or pink noise, it is still possible that some
functions are more predictable than others. Thus, we need
a more accurate method to test the security of an OPE
function.

6.1 Attack Scenario

We consider the following attack scenario: an attacker has
gained access to the database and knows all the encrypted
values. Moreover, she knows the corresponding clear
values for some of the encrypted values. Notice that, in
the worst case (for the attacker) she knows, at least, that
the function goes through the points(0,0) and(1,1).

Under these assumptions, the attacker may interpolate
the decryption function between the points she knows,

and use it to obtain an approximation of the clear values
corresponding to the rest of the database values.

Clearly, the more points she knows, the better the
approximation will be. But also, less predictable functions
will require more points to obtain a good approximation.

6.2 Measuring unpredictability

In order to evaluate how unpredictable is a particular OPE
function, we need a metric to test how good is an
approximation of the function when the attacker knows
some of the points it goes through.

We initially considered using the root-mean-square
error (RMSE) between the decryption function and its
approximation, but it was discarded since it gives too
much weight to short intervals of large errors [11].
Moreover, the RMSE does not work well as a metric of
unpredictability. Notice that, since absolute errors may be
considered as one-dimensional distances (which define a
metric) their squares are not a metric as they do not
satisfy the triangle inequality [12].

A better approach is the continuous mean absolute
error (MAE) which corresponds to the average of the
differences between the decryption function and its
approximation over all the function domain (for which we
need an integral). Since the differences can be negative
we need to take their absolute values, so that positive and
negative errors do not cancel out. Next expression

u( fd, f̂d) =
∫ 1

0
| fd(y)− f̂d(y)|dy, (6)

shows the formula used to compute the specific
unpredictability of an order preserving cryptosystem for a
particular approximation. Here,fd(·) is the decryption
function, f̂d(·) is the approximation obtained from a given
set of points, andu(·, ·), the unpredictability, corresponds
to the mean absolute error between the decryption
function and the approximation (so a larger value implies
less predictive power).

Then, in order to evaluate the general unpredictability
of a particular OPE function, the specific unpredictability
is computed for different approximations of the function
with varying numbers of known (attacked) points.

The attacked points are considered with equally spaced
ordinates for simplicity (although this may not be the case
in a real attack). The integral is computed by dividing the
domain in a large number of intervals, taking the midpoints
(which correspond to possible encrypted values), and then,
for each of these values, the corresponding clear value is
computed with the decryption function, the approximated
one is obtained by linear interpolation between the nearest
attacked points, and the absolute value of their difference,
multiplied by the interval width, is added to the sum.

Cubic interpolation was also tried. In theory, this kind
of interpolation should be a better option for smoother
functions (like the ones obtained with reddish noises) but
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care must be taken to avoid situations in which the
interpolation produces decreasing intervals. In those
situations, linear interpolation should be used instead. In
practice, there was not a noticeable gain in predictive
power.

In the worst case, when the attacker can approximate
the function very well (e.g., when the encryption function
is very close to the identity or when the attacker knows a
large amount of points), the mean absolute error will
clearly tend to zero.

In the best case, which happens when the decryption
function is very degenerated (e.g., when it is very close to
the unit step function,H(y), with H(0) = 0), and the
attacker only knows the two extreme points, the point
(1,1) and the origin (so, the approximated decryption
function will be the identity, id(y)), the MAE will tend to
1/2:

uMax = u(H, id) =
∫ 1

0 |H(y)− id(y)|dy
=

∫ 1
0 |1−y|dy= 1

2.
(7)

In fact, for an attack withn+ 1 known points, of the
form Ai = (xi ,yi), with A0 = (0,0) and An = (1,1), and
whose ordinates are equally spaced, the maximum MAE
occurs when the decryption function is a staircase whose
only jumps are at the attacked points. An example of one
of these functions is the following:

fdn(y) =







0 if y= y0 = 0,
...

xi if yi−1 < y≤ yi ,
...

1 if yn−1 < y≤ 1.

(8)

Their MAEs are equal to the area ofn half rectangles
with height 1/n (since ordinates are equally spaced):

uMaxn = ∑n
k=1

(xk−xk−1)(

1/n
︷ ︸︸ ︷

yk−yk−1)
2

= 1
2n ∑n

k=1(xk−xk−1) =
1
2n(xn−x0) =

1
2n.

(9)

Notice that the casen = 1 corresponds to the
knowledge of only the two extreme points.

In fact, encryption functions achieving these
maximum MAEs are not adequate, since they collapse
most of the clear values to a small set of possible
encrypted values (so, they have a great information loss).
Moreover, each fdn(y) was constructed to have the
maximum MAE for an attacker knowingn+1 points with
equally spaced ordinates. But, no encryption function
achieves the maximum MAE for all possible sets of
attacked points.

So, the best functions are those whose specific
unpredictabilities, for most sets of attacked points, lie
somewhere in between the minimum (0) and the
maximum (1

2n) unpredictability, corresponding to
minimum and maximum distance from the staircases. So,

in order to maximize their entropy, we propose that the
recommended MAEs should be the average of the two
values: 1

4n.

7 Experimental Results

In this section, we analyze the Noise-based Order
Preserving Encryption (NOPE) scheme, as proposed in
Section5.1.

In Section7.1, the unpredictability analysis has been
used in order to evaluate the security of the different
versions. Section7.2 evaluates the efficiency of the pink
Noise-based OPE scheme (pNOPE). Notice that,
encryption and decryption requires the same time for any
noise color, and key generation will be even faster for red
or white noise (since pink noise generation is harder).

7.1 Predictability

In the following figures, each line corresponds to a
particular instance of encryption method and key length.
For each of these instances, we created five different keys,
and, for each key, we considered several approximations
of the decryption function with different amounts of
attacked points.

The number of attacked points considered were 2, 3,
4, 6, 9, 13, 19, 28, 42, 63, 94, 141, 211, 316, 474, 711,
1066 and 1599 (each value is 1.5 times the previous
value, rounding down). In each case, the points have
equally spaced ordinates, and the abscissas are their
decryptions.

The horizontal axis corresponds to the number of
attacked points considered, and the vertical axis
corresponds to the average of the MAE between five pairs
of decryption function and approximation (with the
corresponding encryption method, key length and number
of attacked points). Both axis are in logarithmic scale.
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Figure 9: Mean absolute errors for the NOPE schemes.
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Figure9 shows the averaged mean absolute error for
the infrared, red, pink and white Noise-based OPE
schemes.

Each line (except the two higher ones) corresponds to
one of the versions of the cryptosystem (i.e. the color of
the noise used to generate the function), while the number
of points of the key is fixed to 32768.

The two higher lines are the maximum and
recommended MAE. So, the higher the lines, the more
unpredictable are the functions. But, if a function
approached the maximum MAE it would mean that it is,
in fact, degenerated.

In the figure, the influence of the color of the noise
associated to the cryptosystem can be easily appreciated.
When the attacker knows a low amount of points, the
‘coarse grained’ randomness of the reddish noises (red
and infrared) implies a better performance as the whiter
ones (white and pink). But, for larger attacks, the
smoothness associated with reddish noise functions make
them easy to approximate, while the whiter ones retain an
important amount of local randomness, that will difficult
a correct approximation.

So, if we suspect that an attacker may learn a large
amount of points by some means, the whiter the noise the
better. Otherwise, red noise is probably more adequate,
since its performance is very similar to infrared noise and
is easier to generate.
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 10  100  1000

MAE for a key of 32 points
MAE for a key of 128 points
MAE for a key of 512 points

MAE for a key of 2048 points
MAE for a key of 8192 points

MAE for a key of 32768 points
MAE for a key of 131072 points

Maximum MAE
Recommended MAE

Figure 10: Mean absolute errors for the pNOPE scheme.

In Figure 10 we show the averaged mean absolute
error for the pink Noise-based OPE scheme (pNOPE). In
this case, each line corresponds to a particular key length
(except the maximum and recommended MAE lines).
Tests with more key sizes were made, but we decided to
omit them for the clarity of the figure.

It can be observed that, in general, the larger the key,
the less predictable is the function. This is more noticeable
when the attacker knows a bigger amount of points.

In fact, for small attacks, functions with smaller keys
perform better than the larger ones. This is due to the fact

that the encryption function is a piecewise linear curve, so
its changes are more abrupt when the number of defining
points is lower.

But, having less defining points also means that its
linear segments are longer, so if the attacker knows two
correct points that lie in a particular line segment, then, as
she will use linear interpolation, she will be able to
correctly predict all the intermediate points.

7.2 Efficiency

In this section, we evaluate the efficiency of the pNOPE
cryptosystem.

The encryption function of the pNOPE cryptosystem
(and of the other versions of NOPE) consists on a list of
points that the function intersects. The encryption of a
value requires finding the key points whose abscissas
precede and succeed the value and then interpolate
between these two points to find a point whose abscissa is
the point to encrypt. The ordinate of this point is the
encrypted value. Considering that the key points are
sorted by their abscissas (using the ordinates yields,
obviously, the same order), finding the two points to
interpolate can be done in logarithmic time. After that, the
interpolation itself is done in constant time.

Decryption is similar; it requires finding the key
points with ordinates preceding and succeeding the value
to decrypt, and interpolate them to find a point whose
abscissa is the decrypted value. So, its execution time is
the same.

The experimentation results are shown in Table1. It
reflects the number of points of the key, its resulting size,
the generation time for a key of that size,GenT, and the
time needed to encrypt a 64 bit floating point number (type
double in the C language),EncT.

Different amounts of points have been used to test
both key generation and encryption/decryption. The
experimentation has been performed with numbers of
points of the form 2l , for 4 ≤ l ≤ 26, using a 2.4 GHz
computer.

For each value ofl , ten encryption functions have
been generated. Each of these functions has been used to
encrypt a set of one million values between 0 and 1.

Key points coordinates have also been represented as
64 bit floating point numbers, so that the size of a key, in
bytes, is 16 times its number of points.

In order to obtain the generation time of the keys,
columnGenT, we computed the mean of the generation
time of the ten keys of each size. To measure the
encryption time of a single value, columnEncT, we
computed the mean of the encryption time of the ten data
sets of each key size, divided by the number of values of
each set (i.e. 1000000), so that it corresponds to the
encryption time of a single value.

Key generation times are linear in the number of
points, especially for larger keys. For very small ones
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Table 1: Experimental Results of the pNOPE Cryptosystem
l Num. Points Key Size GenT EncT
4 16 256 B 19.6 µs 14.7 ns
5 32 512 B 21.5 µs 18.2 ns
6 64 1 KiB 24.6 µs 21.8 ns
7 128 2 KiB 30.7 µs 25.3 ns
8 256 4 KiB 43.1 µs 28.8 ns
9 512 8 KiB 68.2 µs 33.6 ns

10 1024 16 KiB 121µs 38.9 ns
11 2048 32 KiB 197µs 43.0 ns
12 4096 64 KiB 420µs 46.9 ns
13 8192 128 KiB 854µs 50.7 ns
14 16384 256 KiB 1.64 ms 54.7 ns
15 32768 512 KiB 3.49 ms 58.7 ns
16 65536 1 MiB 6.30 ms 62.4 ns
17 131072 2 MiB 13.0 ms 66.1 ns
18 262144 4 MiB 25.9 ms 70.3 ns
19 524288 8 MiB 53.1 ms 76.6 ns
20 1048576 16 MiB 107 ms 85.4 ns
21 2097152 32 MiB 213 ms 93.7 ns
22 4194304 64 MiB 425 ms 104 ns
23 8388608 128 MiB 848 ms 120 ns
24 16777216 256 MiB 1.63 s 141 ns
25 33554432 512 MiB 3.26 s 178 ns
26 67108864 1 GiB 6.57 s 258 ns

there are some overheads associated which increment
their generation times.

Encryption times are logarithmic. And decryption
times (not shown) were almost identical. So, the
cryptosystem is considerably fast. For example, with a
key of 65536 points (l = 16), the time needed for the
encryption of one million values would be of about 62.4
ms (1000000·62.4 ns).

As for the key length, if its size were a problem, the
random seed used for its generation could be stored in its
place. This way, whenever it is needed, it can be
generated again (maintaining it in memory the maximum
time possible, in order to reduce the number of
regenerations). Obviously, the seed (or the key, if it were
small) must be stored encrypted with an appropriate
cryptosystem.

8 Conclusions

In this paper, two different techniques have been proposed
for the analysis of order preserving cryptosystems. One of
the techniques lead to the design of a new, highly efficient,
cryptosystem (whose security can be improved).

The first technique consists on transforming the
encryption function into a signal and then use a fast
Fourier transform in order to test whether it corresponds
to a noise signal or not, and the color of the noise.

This process can be reversed, so that, from a pink (or
any other color) noise signal, we can obtain an order

preserving encryption function. This cryptosystem is
highly efficient, since encryption/decryption is
logarithmic in the size of the key.

The second technique may be used to quantify the
predictability of the encryption function. It computes the
mean absolute error between the encryption function and
several approximations obtained from the interpolation of
small sets of known plaintext-ciphertext pairs.

We used both techniques to evaluate the security of
the new Noise-based Order Preserving Encryption
methods (NOPE). An experimentation was also
performed, in order to test the pink NOPE (pNOPE)
speed. It confirmed the expected results.

When a database query is made by a legitimate user,
the database manager will be responsible for encrypting
the necessary values to answer the query, and, after that,
decrypting the values to return. So, normally, users have
no access to encrypted data.

If an attacker got access to order-preserving encrypted
values, the amount of information she could obtain will
depend on the randomness of the encryption function and
on the number of plaintext-ciphertext pairs she knew
beforehand (if any). One of the reasons why she might
know some pairs is that she knew the correct value for
some records and then, upon accessing the internal data,
she could relate them to the encrypted data.

For avoiding this problem, it is highly recommended
that all the database fields are encrypted, using one
cryptosystem or another depending on the type of queries
that should be permitted. Moreover, if the database
contains multiple sortable fields, each of them should be
encrypted with a distinct key, to hinder the approximation
of the encryption function by attackers with access to
plaintext-ciphertext pairs of different fields.
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