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Abstract: In this paper, a fractional order prey-predator model widge structure incorporating a prey refuge is establisimed a
analyzed. The predation is modelled using a Hollings typéutictional response. The existence, uniqueness, nortiviggand
boundedness of the solutions of the model is establisheatidition to investigating the stability of the equilibriymoints, conditions
for the stability and Hopf bifurcation are obtained. The @aopof fractional order, prey refuge and conversion coeifficion the
stability of the fractional-order system are theoreticalhd numerically investigated.
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1 Introduction

The incorporation of stage structure in a prey-predatorehizda way to introduce life history into the model and this
inclusion can provide a richer dynamics to facilitate bettiederstanding of the interactions in the ecological syste

can take into account significant biological parameters siscdifferent death rates for mature and immature predators
Some studies of the dynamical behaviour of prey-predatataisowith stage structure includé,p,3,4,5,6,7,8]. The
interaction between predator and their prey was investéjay incorporating stage-structure for the predators.

Some prey-predator models assume that a predator constamapiured food at a constant rate immediately after
killing the prey P, 10]. The Rosenzweig-MacArthur (R-M) moded,[L0] assumes that the consumption process is not
constant. There have been many studies on the R-M model eriddludes [L1,12,13]. Further, the R-M model normally
assumes the attack rate of predator increases at a degrestsiwvith prey density until it becomes constant due tasati
(i.e. Holling type Il functional response} 4.

Rosenzweig-MacArthur model was extended to a prey-predatalel with stage structure for a predator with the
assumption that predators can be divided into two stagesainre and matur&[15]. Only mature predators are assumed
to attack preys and have reproductive ability. Immaturelgters, on the other hand, are assumed not to have the ability
to attack the prey and also have no reproductive abilityyTre also assumed to obtain their living resources front thei
parents. This type of biological scenario is commonly obsgtin mammals and birds as follows 15]:

dx X bxz

o () - Trax

dy cbxz

2 _ 1
dt  1+ax (D+dy, @
dz

Frie Dy—dyz

All the parameters are non-negative constants for all timreD. The state variables and parameters for systBnare
described in Tabl@.
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Table 1: Parameters table for systef (
Parameter  Description
X Density of the prey at time

y Density of the immature predator at tirhe
z Density of the mature predator at tihe
r Intrinsic growth rate of the prey.
k Carrying capacity of the prey.
c Coefficient in converting prey into a new immature predator.
dy The death rate of the immature predator.
do The death rate of the mature predator.
D Rate of immature predator becoming mature predator.
%( Holling type Il functional response of the mature predator.

Including a refuge (a safe area for preys) can be more rieahist it takes into account the reduced mortality.
Investigations of the dynamical behaviour of prey-predatodels incorporating refuge have been reported in a number
of papers which includell, 7,13,17,18,19,20,21].

Fractional order differential equations have the abilily grovide a reasonably accurate description of certain
phenomenaf, 22,23,24,25,26]. This is because systems with memory have a connection fvathional differential
equations18]. In [5,15 a global stability of a prey-predator system with stagactire for the predator was proposed.
However, fractional order case and a prey refuge were not deth. In this paper, we study a fractional order
prey-predator model with stage structure of the predatcorimorating a prey refuge by extending the integer-order
model () as follows:

Cmd sy X b(1—9d)xz

Dx(t) =rx (1- R) T Iral-ox

cmawy  Ch(1—0d)xz (2)
D¥y(t) = Tra(l—o)x (D+dyy,

‘DY(t) = Dy —d,z

with initial conditions
X(0) =x0 >0, y(0) =yo0 >0, z(0) = 25 > 0,

0 €[0,1) and dx is the population density of the prey at tihevhich is protected due to the refuge. HER¥ is the
standard Caputo differentiation amde (0,1]. The parameters of fractional-order syste2h gre all non-negative. The
Caputo fractional derivative of orderis defined as32,27):

1 t
°DYf(t :7/ t—s)" 91 (s)ds, n—1<a<n neN.
(t) I'(n—a)o( ) (s)ds, <a<nneg
As far as we are aware, the dynamical analysis of a fractmna@r Rosenzweig-MacArthur model with stage structure
and a prey refuge has not been previously investigated., Thukis paper, we propose and analyse a fractional order
Rosenzweig-MacArthur model with stage structure whicludes a prey refuge.

2 Analysis

2.1 Existence and uniqueness

The sufficient condition for existence and uniqueness ofsthiation of fractional-order systen2)(are investigated as
follows.

Theorem 1The sufficient condition for existence and uniqueness afdheions of the fractional-order syste®) {n the
region® x (0, T] with initial conditions X0) = Xy and te (0, T] is

__ T 2n ~ . Cer
H= FlatD max{r <1+ " >+b(1 0)n(1+c); 2D +dy; b(1 6)n(1+c)+d2} <1
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ProofThe existence and uniqueness are based on contractionmgappiciple and this principle has been used 24| [
The fractional-order systen2) can be written as follows

DIX(t) =F(X(t)), te(0,T], X(0)=Xy,

where b1
—O0)XZ
X X0 rXb((ll ;))Ti) ~ Tra(i-o)x
— — — Cli —0)XZ
X = v Xo=|Yo |, F(x)=1| 2% —(D+dyy
% Dy—d,z

Define the maximum norm as follows
[N[| = max [N(t)].
te(0,T]

The norm of the matris = [my; [t]] is defined by

M| = maxy | .
i=

The existence and uniqueness of the solution are studiée iregion® x (0, T] where
0= {(xy,2) e RS :max(|x|,lyl,|z) < n}.

Thus, the solution of fractional-order systeB) is obtained as

X=X+ % /0t (t—9) 7 F(X(s))ds= G(x).

So
G0 ~ 60X = o7 [ (1= 9% H(FOK(8) - F (o))

Thus, one gets the following inequality

60w - B0 < s [[[(t-9 HF0x(5) ~ FOxe(9)| s
that yields
1G(Xe) — GO%)|| SI'(;-iil) max{r (1+ 2?'7) +b(1-3)n[l+d;
2D+ di; b(L— 8)n[L+ ] + o} X4 — X
<H|[[X1— X2,
where .
H= ﬁ max{r <1+ 2%) +b(1-90)n(1+c); 2D+dy; b(1—-9)n(1+ c)+d2}.

The Lipschitz condition is thus satisfied I8(X). If H < 1, then the mappingX = G(X) is a contraction mapping.
Consequently, the existence and uniqueness of fractmnaliglr system2) follows.

2.2 Non-negativity and boundedness

The solutions of the systen@)(are the densities of the interacting populations and sd beison-negative and bounded.
This is investigated in this section.

Theorem 2The solutions of fractional-order systeR) gtarting inRi are uniformly bounded and non-negative.
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ProofThe approach used bg§] is utilized. Define the functiokV(t) = x(t) + 2 (y(t) + z(t)), then

DIW(t) = “DIx(t) + %CD"y(t) + %CD"z(t)
=rX (1— 5) — ﬂy— %z.

For eachy > 0, one has

X dp o da y. . VY
cna — _ _ _ = -
DIW(t) + yW(t) =rx oY Cz+yx+ Cy+ o2
2 1 1
= —rx?+rx+ VX+E(V_d1)y+ E(V_ d)z

Let us choosey < min{dy,d}. Thus

2
r+y)> +k(r+y)2

SDIW(L) + PW(t) < —& <x— k( X =

Now applying the standard comparison theorem for fractiorder [28], one gets

K(r +y)?

0 <W(t) W(0)Ea(~y(H)) + =

(t)aEa,aJrl(_V(t)a)a
Eq is the Mittag-Leffler function. In accordance with Lemma Bi&@orollary 6 in R8], by takingt — oo, this gives

K(r +y)?
4yr

0<W(t) <

Hence, the solutions of fractional-order systeétngtarting inRi are uniformly bounded within the regidf, where

K(r+y)?
4yr

wlz{(x,y,z)eRi: W(t) < +£,£>0}. (3)

We now seek to show that the solutions of the fractional-Hosgistem 2) are non-negative.
From Eq. 1 of systen?®), one gets

Cma B Xy b(1-9d)xz
Dx(t) =rx (1 k) Irall_d)x @
From (3), it can be observed that
K(r +y)?
1 < -
X+z(y+2) < ayr 6. (5)

Based on4) and 6), one has

°Dx(t) > rx (1— %) —cbh(1—9)61x

> (r—%—cb(l—é)&)x

> yiX, where yy =r — % —ch(1—90)6s.
From the standard comparison theorem for fractional or2igy find the positivity of Mittag-Leffler functiokq 1(t) > O,
foranya € (0,1] [29], one gets
X > X0 Eq1(yit?).
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Then, we have
x> 0.

From Eg. 2 of systen?), one has

cmaygy . CP(A=9)xz
> —(D+dy)y
> —yY, where y» = D +d.
Therefore,
Y > YoEq 1(—yt?).

Then, we have
y>0.

From Eg. 3 of system?, one has
‘DY%z(t) = Dy —d,z
> —dyz

Therefore,
Y Ea,l(_dzta).

Then, we have
z>0.

Hence, the solutions of the fractional-order syst@ra¢e non-negative.

2.3 Equilibrium Points and Stability

The basic reproduction numb&y is then used in this section to investigate equilibrium po&nd stability. For the
fractional-order systen®f, we have
Theorem 3For the fractional-order systen®, Ry is given by
cbD(1-9)k
(1+a(1—0)k)(D+dy)dy

Proof.To obtainRy for the fractional-order systen?), we utilize the next generation methagl)]. The fractional-order
system ) can be rewritten

Ro=

cmaw sy CO(1—0d)xz

DYy(t) = m—(D+d1)y,

‘DY%(t) = Dy —d,z (6)
CRT ey X b(1—-9)xz

D X“)—fx(l—k)‘m-

The system@), in turn, can be written:
DIX(t) = f(X) —v(X),

f1 fJE(l_é)XZ Vi (D+d)y
(1-9)
f(X) = [ f2] — [ aO X , VX)=|w| = b(ligﬁ(?y— d22) NE
0 V3 T ok~ X (1-%)

The matriced- (X) andV (X) are defined as follows:

where

ot 0fy 9%y v v v

A X%z
_ 2 0fy 0fp — | 9v2 dVv2 oV
FX) =% 7% | VO =|% 7% %
oty i3 0fs Vs dva dvg
dy 0z 0x dy 0dz O0x
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Thus, one has

[o ChL-8)x _ cb(1-0)z
FOO =1, 1+a%—6)x (1+ a(10— 5)x)2
LO 0 0
rD+dq 0 0
-D d 0
V(X) = 0 b(1—25)x ., b(1— 8)z
- Tra1-ox’ <?_ )‘m

To obtain the eigenvalues Bf-V 1, at the predator-extinction equilibrium poiE (k, 0,0), the equation
|F-v-t—pul|=0,

has to be solvedu are the eigenvalues ards the identity matrixF -V 1 is the next generation matrix for modél)(
U1, M2 and uz can be computed g =0, tp = 0 andpys = ( cbD(1-0)k . The spectral radius of matri -V 1 is

T+a(1-8)K)(D+dy)dp
p(F-V™1) =maxp), i=123.
In accordance with Theorem 2 iB(], the basic reproduction number of the fractional-ordedei@?) is

cbD(1— &)k
(1+a(1l—0)k) (D +dp)dy

The basic reproduction number has a clear biological iné¢agion. It is the mean number of offspring by every predato

Ry =

In order to obtain the equilibrium points of the fractiormatler system3), we set
‘Dx(t) =0, °D%(t) = 0 and°DYz(t) = 0.

Then, the fractional-order syster®) has three equilibrium points as follows:

1.The trivial equilibrium poinEy(0,0,0) always exists.
2.The predator-extinction equilibrium poiig (k, 0,0) always exists.
3.The coexistence equilibrium poiBg(x*,y*,z") where

= %, where d3 = cbD—a(D + d;)ds.
~ chbr(1—9)d3(1+a(1—d)k)(D+dy)
y = ;(1—6)2kd§ (Ro—1).
D

If Ry > 1, the coexistence equilibrium poiBg(x*,y*, z*) exists.

The local stability analysis for the fractional-order at@) around equilibrium points is obtained by calculating the
Jacobian matrix corresponding to equilibrium points. Taeobian matrix of the fractional-order syste®) &t any point
(x,y,2) is as follows

2rx b(1-9)z b(1—9)x
 k (1+al-9)x)?2 “1+a(l-9)x
J(x,y,2) = cb(1-9)z _(D+dy) ch(1—9)x
(I+a(1—0)x)? (D+d 1+a(l—d)x
0 D —do

The stability of trivial equilibrium pointEg(0,0,0), predator-extinction equilibrium poir; (k,0,0) and coexistence
equilibrium pointEx(x*,y*,z") can be stated in the following theorems.

Theorem 4The fractional-order systen2) around the trivial equilibrium point K0, 0, 0) is unstable saddle point.
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ProofBy virtue of Matignon’s condition31,32], the trivial equilibrium pointEg of the fractional-order systen2)is an
unstable saddle point if one of the eigenvalpgsi = 1,2,3, of the Jacobiad(Ep) satisfy|arg(yi)| < %F. The Jacobian
matrix of systemZ) around the trivial equilibrium poiri is as follows

r 0 0
J(Ep) = (O—(D+d1) 0 ) )
0 D —dy

The eigenvalues of the characteristic equatiod(&p) arep; =r, yp = —(D+d;) andus = —d,. It can be observed that
larg(py)| =0< Y forall0<a < 1.

Theorem 5The fractional-order system2) around the predator-extinction equilibrium point; &,0,0) is locally
asymptotically stable if )< 1 and unstable if > 1.

ProofMatignon’s condition 81,32 states that the predator-extinction equilibrium pdiqtof the fractional-order system
(2) is locally asymptotically stable if all the eigenvalyas i = 1,2,3, of the Jacobiad(E;) satisfy|arg(u;)| > &. The
Jacobian matrix of systen2) around the predator-extinction equilibrium polfitis given by

. o __ba-oKk

1ra(l_ok

8| o v L0
0 D ~d;

The eigenvalues af(E;) areu; = —r and the other two eigenvalugs 3 are the roots of the following equation:
p%+up+v=0,

where

u=D+di+dz, v=da(D+d1)(1—Ry).
The predator-extinction equilibrium poift; is locally asymptotically stable jfi; 3 < 0, that is,dx(D+d;)(1—Rp) >0
which givesRy < 1.

The stability of coexistence equilibrium poiBs(x*,y*,z*) is now investigated. The Jacobian matrix of syst@ratound
the coexistence equilibrium poifb is

_axt b(1-9)z ~ b(1-9)x
k (1+a(1—-9)x*)2 1+a(l-9)x
J(Ep) = cb(1—-90)z* _(D+dy) cb(1—0)x*
(I+a(l—0)x)2 Yo T¥aa-o)x
0 —dp
The eigenvalues af(Ey) are the roots of the following cubic equation:
F(u) = u®+Bip® +Bou +Bs =0, )

where
2rx* bD(1-9d)y*

k (1+a(1-9)x*)2d,’

By — rda(D +dy)(D+d;+do)
bckD(1— 9)d3

1
Bz = rdz(D+d1) (1— %> .

Bi=D+di+do—r+

locD(1— a(1— &)k) +a(1+a(1— 8)k)(D -+ dy)da,

Also the coefficients of equatiof)can be written in the following form,
By =Dz +dz2+2Z'g/(x") — f'(x"),
Bz = (D2+d2)(Z'g (X") — (X)),
Bz = D2d2 Zkg/(X*)
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Where b1 o)
X —0)X
109 =% (1) 000 = 7o 2102 = D+

. . k
Itis clear thaBBsz > 0. B; andB; are positive whernx* > >
The discriminanD(F) of the polynomiaF () is

D(F) = 18B1B,Bs + (B1B)? — 4B3B; — 4B3 — 27B3.

According to B3,34], one obtains the following proposition.
Proposition 11t is assumed that the coexistence equilibrium poineksts in]Ri.

1IfD(F) > 0, B; > 0, Bs > 0 and BB, > Bg, then the coexistence equilibrium pointig locally asymptotically stable
forO<a <1l

2If D(F) <0, By >0, B, > 0, BiB, =Bz and a € (0,1), then the coexistence equilibrium poing 5 locally
asymptotically stable.

3.fD(F) <0, B;1 <0, B;<0anda > % then the coexistence equilibrium pointi& unstable.

4.The necessary condition for the coexistence equilibpomt E,, to be locally asymptotically stable, iB- 0.

2.4 Global stability

We now study the sufficient conditions for the global asyrtiptstability of the predator-extinction equilibrium poiB;
and coexistence equilibrium poiBp of the fractional-order systen2),

Theorem 6The predator-extinction equilibrium point E,0,0) is globally asymptotically stable § > 1 — “Dtig;)dz.

ProofConsider the positive definite Lyapunov function as follows

X 1 1D+d;
x—k—kInE) YIS

1
VY2 = o 6)k(

Thea-order derivative o¥ (x,y,z) along the solution of systen2)is now computed. By virtue of Lemma 3.34],

1 k 1 1D +d
cnha < - cha
DV (xy.2) —1+a(1—5)k< ) D"z

1 X b(1-9)z
<= (x— A IO Sl
STrai— ok k><r(1 k) 1+a(1—6)x)

b(1-d8)xz D+d; 1D+d;
lrai-ox ¢ Ytc D (Dy—d22)

_ Mlepa —cha
1 < Dx(t)+CDy(t)+C D (t)

+

ro (x—k)? (D+dy)dy chD(1— )k

== KItal-ok = D ((D+d1)(1+a(1—6)k)d2 _1> z
ro (x—k)? (D+d1)dy

STK@rail oK @ (e lz

Thus,*D?V(x,y,z) < 0, whenRy < 1 which is equivalent t&® > 1 — “Dtig;)dz. In accordance with Lemma 4.6 in Huo et

al. [36], the predator-extinction equilibrium poift is globally asymptotically stable & > 1 — %.

Theorem 7The coexistence equilibrium poing&*,y*, z") is globally asymptotically stable ifx > ‘g

ProofThe approach used irb] is adopted. To prove global stability &, we define the positive definite Lyapunov
function as follows

V(X,Y,2)

_ * * X 1 Yy D+d1 z
_1+ax*(x—x xlnx*)+c<y y* y*lny*>+ D (z z z*Inz*).
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We now calculate the-order derivative o¥/(x,y, z) along the solution of systen2); According to Lemma 3.135]. One

obtains that
g(x) —9(x") 1 y D+d; z
cnha < cna - cna cna
DYV (x,Y,2) ) D x(t)+C 1 y D%(t) + c 1 - DYz(t)

900 —90C) ¢y i,y .
< 0D (1% - g2+ 3 (1~ ) cawz— D+
+ D:_Ddl (1— %) (Dy—d>2)
9(x) —g(x’) o, Dtdi . (9X) zy Zy  9gXx)
<t TGS o= 20y (G 20+ S04 55 -9)
D+d; .9(x*) D+ds D+d;
e Va0 e VT

Sinceg(x) = BL4% this yields

cna gx)—g(x) D+4di . /9 zy Zy 9gKXx)
vy <t RG-Sy (F5 2T 55+ 5 )
D+d; g(x*)
e W(W‘l)
<i%<u £))(9() — 9(x)
D4di9x) zy Zy 9x)
CV%MMfy+zy+mm‘®'

From the inequality of arithmetic and geometric means, dtésr that

o0 2 2, 9

+ >3,
g(x*) zy" g% —
with equality if and only if
90 zy' _zZy _ox)_,
gx)zy zyr gx)

thatis,x =x* and = y_2
y* Tz
If x> 3 K fort > to. Then sincef (x) is strictly decreasing ng,oo) andg(x), in turn, is strictly increasing of0, ), it
follows that

Thus,*D?V (x,y,z) < 0, whenx > 'z‘ which satisfieins > 'z‘, wherexns < liminfi_ X(t). In accordance with Lemma 4.6
in Huo et al. Bf], the coexistence equilibrium poifb is globally asymptotically stable ¥ns > ‘g

2.5 Hopf Bifurcation
Consider the fractional order commensurate system:
DX = f(mx), (8)

wherea € (0,1], x € R3 and further suppose thBtis an equilibrium point of systen8. In [34], a fractional order Hopf

bifurcation is proposed. It states that systé@nundergoes a Hopf bifurcation through the equilibriimat the valuem,
of mif:

—The characteristic equation of the Jacobian matrix haseslesigenvalugi; and two complex-conjugate eigenvalues
H2 3,
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—0123(a,mgr) =0, where 6(a,m) = 07”— larg(ui(my)|, i=1,23.
00153
_Wh‘:n’tr #0.

3 Numerical simulations

For the numerical simulation of the fractional-order sys{g) the generalized Adams-Bashforth-Moulton type predictor
corrector scheme is applied. We carry out numerical siranatso as to demonstrate the qualitative behavior of the
fractional-order systen®]. We choose the following set of parameter values:

r=3,a=2c=1b=1 D=1 d; =0.1, dp = 0.2 andk = 1.5,

as they were used for the integer-order systgmn [
For the above set of parameter values, one gets the presdinction equilibrium pointE; (1.5,0,0) and the
coexistence equilibrium poirt;(0.4910 0.9008 4.5041) whered = 0.2.

0=0.9
a=0.7
0=0.6 H

L L L L L L L L L
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Fig. 1: State trajectories of the fractional-order syst@nwith different fractional ordersr andd = 0.2.

From Fig.1, itis observed that the fractional order affects the cogwrce speed of the solutions of the fractional-order
system ). It also can be observed that the convergence speed testemse equilibrium poiri,(0.49100.9008 4.5041)
increases with increasing fractional order(0 < a < 1).

In Fig. 2, all trajectories with different initial conditions comge to the predator-extinction equilibrium point
E;(1.5,0,0). This shows that the predator-extinction equilibrium pdin is globally asymptotically stable. In this case
Ro = 0.672< 1 and this coincides with Theorefrands = 0.8 > 1— 278U% and this coincides with Theorefn

The coexistence equilibrium poifh(0.5238 0.9297,4.6485) is globally asymptotically stable for valie= 1, é =
0.25 anda = 0.98 with different initial values as shown in Fig.

A bifurcation diagram is drawn around the coexistence égjitiim pointE;(0.49100.9008 4.5041) with respect to
the fractional ordetr so as to understand the roleaf The fractional-order systen2undergoes Hopf bifurcation at the
supercritical Hopf bifurcation value* = 0.972627 as shown in Figd. The coexistence equilibrium poiBp is stable for
o < a* as shown in Fig4; for example, wherr = 0.95, the coexistence equilibrium poiBt is locally asymptotically
stable as shown in Fid. (c). Fora > a*, the system shows limit cycle behaviour as shown in Ejdgor example, when
o = 0.98, the coexistence equilibrium poiB} loses its stability and stable limit cycle occurs aroundildzium point
E, as shown in Fig5 (b).

When a < a* all trajectories of the fractional-order syster®) (converges to a coexistence equilibrium point
E»(0.49100.90084.5041) as shown in Fig4, 5 (c); while with a being increased to pass*, the coexistence
equilibrium pointE; loses its stability and stable limit cycle occurs aroundxistence equilibrium poinE, as shown in
Fig. 4, 5 (b). In integer-order case when= 1, a stable limit cycle emerges to which all trajectoriesaiteacted. The
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a =0.98, 6=0.8

Fig. 2: Globally asymptotically stable of the predator-extinatequilibrium pointE; (1.5,0,0) with different initial values.

c=1, @ =0.98, 6=0.25

Fig. 3: Globally asymptotically stable of the coexistence equiiliim pointE(0.5238 0.9297,4.6485 with different initial values.
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Fig. 4: Bifurcation diagram of the fractional-order syste®) With respect tax whend = 0.2.

amplitude of the stable limit cycle is, however, now biggsrirdicated in Fig4, 5 (a). The integer-order systent)(
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Fig. 5: Time series and phase portraibof andz with different values ofx whend = 0.2.

around the coexistence equilibrium poly which is unstable as stated i, L5 becomes asymptotically stable in the
fractional-order systen®] which we consider in this paper.

| I I I L I I I I
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

)

Fig. 6: Bifurcation diagram of the fractional-order syste®) with respect tad whena = 1.

To better understand the effect of refuge sizaround the coexistence equilibrium pol0.49100.9008 4.5041),
a bifurcation diagram with respectéanda = 1 is drawn as shown in Fig. The systemZ) undergoes Hopf bifurcation
at the supercritical Hopf bifurcation valde = 0.220689 and a transcritical bifurcation valde = 0.738095 can be seen
in Fig. 6. Whend < &* the system shows limit-cycle behaviour as shown in Bigor example, wherd = 0.19, the
coexistence equilibrium poirtf, loses its stability and stable limit cycle occurs aroundildaziium point E; as shown in
Fig. 7 (c). Ford > d* the coexistence equilibrium poiBp is locally asymptotically stable as shown in Fégfor example,
whend = 0.25, E; is locally asymptotically stable as shown in Fgg(b). But for d > &, the predator population goes
extinct from the system and the prey population then attdiascarrying capacity as indicated in Fig).for example,
whend = 0.8, the population follows the same trajectory as can be seEigi 7 (a).

It is interesting to note that the prey refuge has stabibiregffects. The coexistence equilibrium polftis unstable
without prey refuge as shown ih(d) and it becomes asymptotically stable by incorporatipgey refuge as shown in
Fig. 7 (b), whered < &c.
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Fig. 7: Time series and phase portraitof andz with different values o® whena = 1 andc = 1.

a=0.9

1.5 T T

Fig. 8: Bifurcation diagram of the fractional-order syste®) with respect ta whena = 0.9.

Now, we draw the bifurcation diagram with respecttanda = 0.9 as shown in Fig8. The fractional-order system
(2) undergoes Hopf bifurcation at the supercritical Hopf liation valued* = 0.1383 and a transcritical bifurcation value
Ay = 0.738095 as shown in Fi@. It is seen from Fig8 that whend < &* the system shows limit cycle behaviour, for
0 > &* the equilibrium poin&; is locally asymptotically stable and far> & the predator population goes extinct from
the system and the prey population attains the environsieattying capacity which coincide with Fi§.

It is to be noted that the fractional-order syste®) i6 more stable than its integer counterpart systéjrbécause
the larger domain of stability. The coexistence equilibripointE; is unstable for integer-order case when= 1 and
0 = 0.19 as shown in Fig7 (c) becomes asymptotically stable for the fractional odeye wherr = 0.9 andd = 0.19
as shown in Fig9 (b).

In order to show the effect of conversion coefficiemt around the coexistence equilibrium point
E»(0.49100.9008 4.5041), one can draw the bifurcation diagram with respeat amda = 1 as shown in Figl0. The
fractional-order system2] undergoes Hopf bifurcation at the transcritical bifurgatvalue c,c = 0.623333 and the
supercritical Hopf bifurcation value® = 0.979802. It is observed from Fid0that whenc < ¢ the predator population
goes extinct from the system and the prey population attamsarrying capacity, far > ¢ the equilibrium poing; is
locally asymptotically stable and far> c* the system undergoes limit cycle behaviour which coincidb #ig. 11.

Now, we draw the bifurcation diagram with respecttanda = 0.9 as shown in Figl2. The fractional-order system
(2) undergoes Hopf bifurcation at the transcritical bifurcataluec,. = 0.623333 and the supercritical Hopf bifurcation
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Fig. 9: Time series and phase portraibof andz with different values o® whena = 0.9 andc = 1.
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Fig. 11: Time series and phase portraitof andz with different values ot whena = 1 andd = 0.2.
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05 Bl

Fig. 12: Bifurcation diagram of the fractional-order syste®) With respect ta& whena = 0.9 andd = 0.2.

valuec* = 1.0715 as shown in Figl2. Whenc < ¢ the predator population goes extinct from the system angrée
population attains the carrying capacity , tor ¢ the coexistence equilibrium poii, is locally asymptotically stable
and the system undergoes stable limit cycle behaviowr foc* as indicated in Figl2.

4 Conclusion

In the present paper, a fractional-order prey-predatorahwith stage structure incorporating a prey refuge is psego
and analyzed. The dynamical behaviours of the fractiorddiosystemZ) have been investigated. The stability conditions
of the predator-extinction equilibrium point and the catence equilibrium point have been established. The global
asymptotic stability of the equilibrium points of the frewtal order system2) has been investigated. Numerical studies
have been conducted to verify the theoretical results. Tdedynamical behaviour indicated by the simulations are in
agreement with the theoretical studies.
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