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Abstract: In this paper we introduce an extension of the log-normalridistion, based on the alpha-skew-normal distribution
introduced by Elal-Olivero I0]. Basic properties, moments, moment estimators, maximkeliHood estimators and a simulation
study are discussed. We apply the approach developed ipapér to data sets related to neodymium and nickel con¢iemisan soil
samples. Model fit indicates good performance of the prapasedel when compared with less flexible models.
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1 Introduction plants. Neodymium (Nd) is present in rock, weathered
rock (arene) and saprolite, sediment and soil, shallow and
Vistelius [27] showed that chemical element deep groundwater, and surface waters. Neodymium
concentrations in soil samples follow an asymmetricisotopes fluctuate least between bedrock and weathering
distribution. Ahrens 1,2,3] studied chemical element products. Weathering is the breakdown and alteration of
concentrations using many data sets and concluded thatracks and minerals at or near the Earth's surface into
large part of the data sets present positive asymmetry. Fgproducts that tend towards equilibrium with the
most of these cases, however, a logarithm transformatiogonditions found in this environmen]]. In rivers
reduced asymmetry leading to the formulation of thedraining igneous and metamorphic terrains, preferential
fundamental law of biochemistr§the concentration of a  dissolution of silicate minerals (plagioclase, pyroxene,
chemical element in soil samples follows a log-normalamphibole and garnet) may be more important and may
distribution”. induce a weak shift in the Nd isotopic composition.
Quantification of soil sources provides fundamentalHowever, the Nd isotopic composition generally appears
information for studies of weathering rates, groundwaterto be a good indicator of the weathered parent rotk, [
geochemistry, and cation/nutrient cycling in ecosystems22]. Nickel (Ni) is present in all soils, derived from parent
see Miller et al. 2Q]. The variable solubility and mobility material (lithosphere), anthropogenic deposition, othbot
of cations in the soil environment, however, has made[15. The concentration of Ni in most cultivated soils
constraining the components from which soils andseldom exceeds 50 mg/kd 9, but in areas in which
paleosoils are derived problematic. Apart from their mafic and ultramafic bedrock is present, it can rise to
occurrence in primary minerals, we know rather little more than 10,000 mg/kg/]. Ultramafic rocks such as
about the specification, concentrations in soil solution,peridotite, dunite, and pyroxenite have the highest Ni
and solubility relations to acid-base conditions of sails f content, followed by mafic (gabbro and basalt) and
most of them. Knowledge of soil solution concentrationsintermediate rocks, 1j§. On the other hand,
and the solubility of elements, in relation to soil acidity o environmental geochemical baselines are needed in order
acidity-neutralizing measures, is of great importance into assess the present state of the surface environment and
studying their biochemical cycles and availability to provide guidelines and quality standards for
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environmental legislation and political decision-making
especially in the assessment of contaminated sdi, [

Given that support for the skew-normal distribution is
the real line, it is important to modify it to deal with
geochemical data as in Mateu-Figueras et &f] fvhere
the log-skew-normal distribution is used. This distributi
is also used by Azzalini et al6], for family income data.

Azzalini [5] introduces the {SN(A),A € R}
skew-normal distribution, with asymmetry parameier
where SN(O) is the standard normal distribution. We
denoteX ~ SN(u, 0,A) with probability density function
(pdf) given by

((K0)= Zom)@(Ny), xA€R (1)

where@ = (u,0,A), y= % U is a location parameter,
o a scale parameteq and @ is the pdfN (0,1) and its
cumulative distribution function (cdf). Some propertids o
this distribution are:

2 oA
E“>:“+¢;¢fn?
2
Var(X) = g2 [1— ﬁ] . 2)

Elal-Olivero [10] introduced the{ASN(a),a € R}

with parameter vectof = (u,0,A,a) andy = %
We denoteX ~ LBSN i, 0,4, ).
This paper focuses on introducing the

log-alpha-skew-normal distribution so that the log-norma
model is a special case and hence the model can be used
for modeling chemical data. This model is flexible in the
sense that for some values afit is suitable for fitting
bimodal data, similar to the model studied by Bolfarine et
al. [8].

The paper is organized as follows. In Section 2 we
introduce the log-alpha-skew-normal distribution, its
basic properties, moments, log-likelihood function and
Fisher information matrix. In Section 3 we conduct a
simulation study. Section 4 illustrates application tol rea
data sets related to concentrations of nickel and
neodymium in soil samples from the Mining Department
of Universidad de Atacama in Chile.

2 The log-alpha-skew-normal distribution

In this section we define the new distribution by presenting
its pdf and study some of its properties and moments.

the alpha-skew-normal distribution, with shape parametern 1 Density and properties

a, so thatASNO) corresponds to the standard normal
distribution. That is,X ~ ASNu,o0,a) and its pdf is
given by

(1-ay)?+1
o(2+a?)

fx0) = ( Jow.  xack @
wherey=*E, 6 = (u,0,a), p is alocation parametes,
a scale parameter amg{-) denotes the pdf of thi (0, 1).
Some properties for this distribution are

200
2+ a2’

Mx (t) = [1—aot <2

_ 2:2
720;” exp(ut+ %) . @)

2+

EX)=wu

More recently, Bolfarine et al8] proposed a bimodal
version for the log-skew-normal distribution version of
the bimodal distribution introduced in Elal-Olivero et al.
[11]. Therefore, we can say that the random variakle
follows the log-bimodal-skew-normal distribution
(LBSN) if its density function is given by

Definition 2.1. If the density of the random variab¥has
pdf given by

(1-ay)®+1
(2+a?)ox

f(x|6):( )qo(y), x>0, R (6)

wherey = %, then we say thaK is distributed
according to the log-alpha-skew-normal distribution
(LASN) with parameter8 = (u,0,0). We denote
X ~LASNuU,0,0).

That ©) is a density can be verified by direct
integration. Using the notation previously established, w
have the following properties:

1. f(x|u,o,a:O):U—1x(p(%), x> 0.

2
4 v,

8(qo x> 0.

2. Jmof(xw,o,a):

Remark 2.1. Property 1 establishes that the new
distribution contain to the log-normal distribution as
a = 0. The second result indicates thatoas+ « the new

2 [1+ay? distribution converges to a log-gamma-type distribution.
f(x0) = ox < 1ra > P(y)P(Ay), ®) Figure 1 depicts graphs of the new density for some
parameter combinations. Notice its bimodal nature for
where x>0,ueR, 0>0,A R, a>0, some values oft.
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wherem =n~13N X' r =12 3. Those equations can be
solved using numerical procedures, for instance, using the
nlegslvpackage13] available in the R softwarefj. This

us allow to obtain the moment estimatgfs,, om,dm) of

the vector(u, 0, a).

2.3 Likelihood function

LetXy,..., Xy be arandom sample from the distribution of
the random variablX ~ LASN u,0,a), so that the log-

I S S likelihood function for@ andy; = log(x) ) H'is given by

1(6) = —glog(zm—nlog(w—nl09<2+“2)— é.Zy‘z

—__ilog(Xa) +__ilog((1— ayi)?+1). @

Differentiating (/) above with respect to the model
parameters, we arrive at the following likelihood

s equations:
o dl n 1 ayl
~ —2a = 8
N o zi 1= ay) 271 + ZM (8)
0.0 05 10 15 20 al n 1 ay')y| _
AN e s a LI
Fig. 1: Top panel: LASN(0,0.5-1.5) (solid line), g na D (1-ay)yi

LBSN(0,0.5,1,2) (dashed line) and LSN(0,1,1) (dotted )line (10)

Panel(below: |_)A(SN(0,0.2,3) gsond Iine),(LBSl)\I((0,0.Z,-ﬂ).}S da  2+a? igl(l_“yi)hfl

(dashed line) and LSN(0,0.2,1) (dotted line) The maximum likelihood estimator fo = (u,0,a) is
obtained by solving the system of equatidi®s — (10),
which has to be done numerically. The derivation of the
observed information matrix is also obtained using

2.2 Moments numerical procedures. Initial values for those procedures

can be obtained although the moment estimators.
In this section we present moments and moment

estimators for the LASN distribution. We make use of the

moment generating function presented 4. (That is, if 2 4 Fisher information matrix
X ~LASNu,0,a) andY ~ ASNu,o,a) then it can be

verified that The Iog likelihood function for 6=(u,o0,a) and
E(X") = E (exp(rY)) = My(r) y = 29%—¥ hased on a single observatidnis given by
l-aor 2-aor ex r+ﬁ 1 1
2+az )| TP\ ) 1(6) = —3log(2m) —log(0) ~log(2+ a?) — 5y
wherer =1,2.3,.... —log(x) +log((1— ay)®+1). 11
Using this result, it can be verified that o) all Y) ) (1)
2

1. E(X) = [1— ao (22:2,(2’)} eXP(H + 07) 2.4.1 Score function:

2. E(X?) = [1—40{0(121—‘2‘5)} exp(2(u+a?)),
from where Var(X) can be computed. Note that the 91(6:x) - 2a(1—¢1y) +X’
expressions for the moment estimators are relatively 9H ol(l-ay)+1 o
simple, because the method needs to solve the following| (6;x) 2ay(1—ay) 1y
equations fou, o anda do oll-ay?+1 o T

2—aor or? 1(6;x) —2y(1—-ay) 2a
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The second derivatives 6f0;x) = 1(6) are: We then apply the maximum likelihood estimators and
5 P 201 2 estimate the standard errors using the Hessian matrix. We
dal(f) = 53] 2a i 2401 (1 O;y)lz—iz, present the average bias (AB) and the mean of the
H of(@-ay)?+1] o*(l-ay*+12 o standard errors (SE). Results are presented in Table
02(0)  (4ay—2a)[(1—ay)? +1] — 4a?y(1— ay)? Note that the bias is acceptable for all cases, considering
= that the sample sizes are relatively small. However, the

2 2 2
ouoe o-ay+4 bias for all parameters appears greater for the cases where
—&2, |a| is not close to zero. On the other hand, the mean of
o the standard errors also decreases winemcreases,
92(6) 2—4ay 4ay(1— ay)? suggesting good performance of the estimators in finite
= + samples.

opda  o[(l—ay)?+1]  o[(1—ay)?+1]2’

d2(0)  (6a2y?—4ay)[(1—-ay)?+1] —4a2y?(1-ay)?

902 0?[(1-ay)>+1]? Table 1: Simulation study for the LASN model. AB and SE
1 3y denote the average bias and the average of the estimatedistan
+ﬁ T g2 errors respectively.
true n=>50 n=100 n=200
2 _ _ 2 _ 2 a parameter AB (SE) AB (SE) AB (SE)
Q) = (y—4ay?)[(1—ay)®+1]+4ay*(1-ay) , ~15 m 0.050(0.167)  0.034(0.117) _ 0.016 (0.083)
doda ol(1—ay)2+1)2 o -0.087 (0.082)  -0.057 (0.062)  -0.033 (0.046)
a -0.268 (0.501)  -0.132(0.310)  -0.080 (0.210)
02| ) 2y2[(1 _ ay)2 +1]— 4y2(1 — ory)2 4—2q? —05 o 0.076 (1.475)  0.040(0.845)  0.040 (0.694)
5 = > 5 - Ve o -0.110 (0.097)  -0.074(0.073)  -0.048 (0.053)
Jda [(1—ay)?+1] (2+a%) a -0.155 (1.741)  -0.099 (0.941)  -0.064 (0.721)
0.1 m 0.096 (5.305)  -0.067 (3.416)  -0.038 (2.716)
After extensive algebraic manipulations, it follows that g o0s7 gg-ggg; 042 g-gggg 0023 Eg-gi‘l’g
the Fisher information matrix is given by 10 I 0417 (3.082) 0301 (L604) -0.224 (0.802)
o -0.077 (0.094)  -0.057 (0.072)  -0.035 (0.054)
4a2bg—a2+2  4ab—2a 4aby+2 a -0.259 (3.514)  -0.217(1.856)  -0.210 (0.925)
02(2+a?) 02(2+a?) T o(2+a?)
1(8) = 40%b1—2a  4a’bpy+20%+4  4a(l-by)
- 02(2+a?) 02(2+a?) o(2+a?) ’
_ 4aby42 4a(1-by)  4by(a?+2)—4a?
o(2+a?) o(2+a?) (2+a?)?

whereZ ~ N(0,1) andby — E Zk( ﬁ}gftl}' k=012 4lllustrations with real data sets

which has to be evaluated numerically.

On the other hand, whete— 0, the Fisher information To illustrate the applicability of the proposed model, we

provide two real data sets. They related to neodymium

matrixis 109 _1 and nickel concentrations in soil samples obtained from
1(9) = %2 2 OU the Mining Department of Universidad de Atacama,
- | 9 ' Chile. To compare the fit of the various models, Akaike

-5 0 1 information criterion (AIC) #], the consistent version of

which is singular. Using the methodology introduced by the AIC criterion (CAIC) [14] and the Bayesian
Rotnitzky et al. 4], with a suitable reparametrization, as information criterion (BIC) 6] are used.

used by Chiognad], Salinas et al.25], Elal-Olivero [10], In lllustration 1 the LASN, LBSN and LSN models
among OtherS, anon_singu|ar matrix is obtained. are fitted to the neodym|um concentration data set. In

lllustration 2, we fit the same models to the nickel
concentration data set studied in Bolfarine et &]. [
; ; Figures 2 and 3 depict the model fits for the three models
imulation : : . )
3 Simulation study with the neodymium data set (lllustration 1) and nickel

In order to verify the performance of the procedure data set (lllustration 2) respectively.

estimation, we present a brief simulation study. We fix the

location and scale parameters at the standard values, i.e.,

u =0 ando = 1. The values forr were chosen in the set 4.1 lllustration 1. Neodymium concentration
{-15,-0.5,0.1,1}, i.e., two values that provide two

modes in the distribution and two values that produce arTable 2 presents basic descriptive statistics for the data
unimodal distribution. The sample sizes vary in the setset. We use the notatiogtb; andb, to represent sample
{50,100,200}. For values drawn from the model, we can asymmetry and kurtosis coefficients. Additionally, the
use the algorithm presented by Elal-Olivert] in his moment estimators for this data set gug = 3.69,
Proposition 3.5 and apply the exponential transformation gy = 0.577 anddy = 1.216. These values can be used as

(@© 2016 NSP
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Table 2: Descriptive statistics for the Neodymium 4.2 lllustration 2. Nickel concentration
Dataset n X g vbi by
Nd 86 35020 1171741 3648 18216

We consider now the nickel data set using the same
models as in the previous illustration. Tablepresents
basic descriptive statistics for the data set. For this data
set, the moment estimators giig = 2.279, 6y = 0.704

initial values to initialize the maximization procedure of andaw = —1.221,
the log-likelihood function for the LASN model.

Table 4: Descriptive statistics for the Nickel

Dataset n X g NS
Table 3: Parameter estimates of the LSN, LBSN and LASN models. -
Parameter estimates LSN LBSN LASN Ni 86 21337 276861 2440 12043
m 2.826(0.222) 2.258(0.144)  3.749(0.107)
o 0.835(0.140)  0.777(0.076)  0.645(0.051)
A 0.989(0.598)  1.543(0.381) -
a - 3.607(2.241)  0.986(0.273)
AIC 752.663 750.254 748.757
CAIC 752.956 750.747 749.050
BIC 760.026 760.071 756.120 Table 5: Parameter estimates of the LSN, LBSN and LASN models.
Parameter estimates LSN LBSN LASN
u 3.486(0.155) 1.785(0.164) 2.372(0.092)
o) 0.980(0.128)  0.779(0.077) 0.633(0.050)
A -1.596(0.588)  1.254(0.297) -
a - 4.957(3.467)  -1.201(0.268)
i i H H : AIC 671.010 665.684 665.638
Table 3 depicts maximum likelihood estimates for CAlC 671306 ote 184 P

parameters in the LSN, LBSN and LASN models; to BIC 678.338 675.455 672.966

compare the models, AIC, CAIC and BIC criteria are

used. These criteria suggest that the LASN model fits the

data better than the other models. Moreover, estimated

standard deviations for the LASN model are smaller than  Tap|e5 presents the maximum likelihood estimates for

for the other models, leading to shorter confidencene gata set under study for the LSN, LBSN and LASN

intervals. models. The AIC, CAIC and BIC indicate that the LBSN
and LASN models fit the data set quite similarly. However,
under the principle of parsimony the LASN is preferred
over the LBSN model.
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LSN (dotted line) LSN (dotted line)

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1702

N SS ¥

0. Venegas et al.: A note on the log-alpha-skew-normal model

4.3 Final conclusions

[13] Hasselman, B.

nlegslv: Solve Systems of Nonlinear
Equations. R package version 2.9.1 (2015).

This paper presents a new model that has a smallefl4] Hurvich, C.M, Tsai, C. Regression and time series model

number of parameters, the log-alpha-skew-normal model

selection in small sampleBjometrika76, 297-307 (1989).

which, as shown, presents good fit in dealing with [151 Kapata—Perldias, A Behgvioural properties of traceaiae
chemical data. Properties such as moments and maximum in soils.Applied. Geochemistrg, 3-9 (1993). _
likelihood estimation are discussed. Special cases of thél6] Martin, C.E., McCulloch, M.T. Nd-Sr isotopic and

model are the log-normal and a gamma type model. It

also makes Ahrens’ law more flexible.
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