
Appl. Math. Inf. Sci.10, No. 5, 1697-1703 (2016) 1697

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100508

A Note on the Log-Alpha-Skew-Normal Model with
Geochemical Applications.

Osvaldo Venegas1,∗, Heleno Bolfarine2, Diego I. Gallardo3, Alberto Vergara-Ferńandez4 and H́ector W. Ǵomez3
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Abstract: In this paper we introduce an extension of the log-normal distribution, based on the alpha-skew-normal distribution
introduced by Elal-Olivero [10]. Basic properties, moments, moment estimators, maximum likelihood estimators and a simulation
study are discussed. We apply the approach developed in thispaper to data sets related to neodymium and nickel concentrations in soil
samples. Model fit indicates good performance of the proposed model when compared with less flexible models.
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1 Introduction

Vistelius [27] showed that chemical element
concentrations in soil samples follow an asymmetric
distribution. Ahrens [1,2,3] studied chemical element
concentrations using many data sets and concluded that a
large part of the data sets present positive asymmetry. For
most of these cases, however, a logarithm transformation
reduced asymmetry leading to the formulation of the
fundamental law of biochemistry:“the concentration of a
chemical element in soil samples follows a log-normal
distribution”.

Quantification of soil sources provides fundamental
information for studies of weathering rates, groundwater
geochemistry, and cation/nutrient cycling in ecosystems,
see Miller et al. [20]. The variable solubility and mobility
of cations in the soil environment, however, has made
constraining the components from which soils and
paleosoils are derived problematic. Apart from their
occurrence in primary minerals, we know rather little
about the specification, concentrations in soil solution,
and solubility relations to acid-base conditions of soils for
most of them. Knowledge of soil solution concentrations
and the solubility of elements, in relation to soil acidity or
acidity-neutralizing measures, is of great importance in
studying their biochemical cycles and availability to

plants. Neodymium (Nd) is present in rock, weathered
rock (arene) and saprolite, sediment and soil, shallow and
deep groundwater, and surface waters. Neodymium
isotopes fluctuate least between bedrock and weathering
products. Weathering is the breakdown and alteration of
rocks and minerals at or near the Earth’s surface into
products that tend towards equilibrium with the
conditions found in this environment [21]. In rivers
draining igneous and metamorphic terrains, preferential
dissolution of silicate minerals (plagioclase, pyroxene,
amphibole and garnet) may be more important and may
induce a weak shift in the Nd isotopic composition.
However, the Nd isotopic composition generally appears
to be a good indicator of the weathered parent rock, [16,
22]. Nickel (Ni) is present in all soils, derived from parent
material (lithosphere), anthropogenic deposition, or both
[15]. The concentration of Ni in most cultivated soils
seldom exceeds 50 mg/kg [19], but in areas in which
mafic and ultramafic bedrock is present, it can rise to
more than 10,000 mg/kg, [7]. Ultramafic rocks such as
peridotite, dunite, and pyroxenite have the highest Ni
content, followed by mafic (gabbro and basalt) and
intermediate rocks, [18]. On the other hand,
environmental geochemical baselines are needed in order
to assess the present state of the surface environment and
provide guidelines and quality standards for
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environmental legislation and political decision-making,
especially in the assessment of contaminated soils, [12].

Given that support for the skew-normal distribution is
the real line, it is important to modify it to deal with
geochemical data as in Mateu-Figueras et al. [17] where
the log-skew-normal distribution is used. This distribution
is also used by Azzalini et al. [6], for family income data.

Azzalini [5] introduces the {SN(λ ) ,λ ∈R}
skew-normal distribution, with asymmetry parameterλ ,
where SN(0) is the standard normal distribution. We
denoteX ∼ SN(µ ,σ ,λ ) with probability density function
(pdf) given by

f (x|θ ) = 2
σ

φ (y)Φ (λy) , x,λ ∈ R (1)

whereθ = (µ ,σ ,λ ), y = x−µ
σ , µ is a location parameter,

σ a scale parameter,φ andΦ is the pdfN (0,1) and its
cumulative distribution function (cdf). Some properties of
this distribution are:

E (X) = µ +

√
2
π

σλ√
1+λ 2

,

Var(X) = σ2
[
1− 2λ 2

π (1+λ 2)

]
. (2)

Elal-Olivero [10] introduced the{ASN(α) ,α ∈R}
the alpha-skew-normal distribution, with shape parameter
α, so thatASN(0) corresponds to the standard normal
distribution. That is,X ∼ ASN(µ ,σ ,α) and its pdf is
given by

f (x|θ ) =
(
(1−αy)2+1

σ(2+α2)

)
φ(y), x,α ∈ R (3)

wherey= x−µ
σ , θ = (µ ,σ ,α), µ is a location parameter,σ

a scale parameter andφ(·) denotes the pdf of theN(0,1).
Some properties for this distribution are

E (X) = µ − 2ασ
2+α2 ,

MX(t) =

[
1−ασ t

(
2−ασ t
2+α2

)]
exp

(
µt +

σ2t2

2

)
. (4)

More recently, Bolfarine et al. [8] proposed a bimodal
version for the log-skew-normal distribution version of
the bimodal distribution introduced in Elal-Olivero et al.
[11]. Therefore, we can say that the random variableX
follows the log-bimodal-skew-normal distribution
(LBSN) if its density function is given by

f (x|θ ) = 2
σx

(
1+αy2

1+α

)
φ(y)Φ(λy), (5)

where x> 0,µ ∈R, σ > 0, λ ∈ R, α > 0,

with parameter vectorθ = (µ ,σ ,λ ,α) andy = log(x)−µ
σ .

We denoteX ∼ LBSN(µ ,σ ,λ ,α).
This paper focuses on introducing the

log-alpha-skew-normal distribution so that the log-normal
model is a special case and hence the model can be used
for modeling chemical data. This model is flexible in the
sense that for some values ofα it is suitable for fitting
bimodal data, similar to the model studied by Bolfarine et
al. [8].

The paper is organized as follows. In Section 2 we
introduce the log-alpha-skew-normal distribution, its
basic properties, moments, log-likelihood function and
Fisher information matrix. In Section 3 we conduct a
simulation study. Section 4 illustrates application to real
data sets related to concentrations of nickel and
neodymium in soil samples from the Mining Department
of Universidad de Atacama in Chile.

2 The log-alpha-skew-normal distribution

In this section we define the new distribution by presenting
its pdf and study some of its properties and moments.

2.1 Density and properties

Definition 2.1. If the density of the random variableX has
pdf given by

f (x|θ ) =
(
(1−αy)2+1
(2+α2)σx

)
φ(y), x> 0, α ∈ R (6)

where y =
log(x)−µ

σ , then we say thatX is distributed
according to the log-alpha-skew-normal distribution
(LASN) with parameter θ = (µ ,σ ,α). We denote
X ∼ LASN(µ ,σ ,α).

That (6) is a density can be verified by direct
integration. Using the notation previously established, we
have the following properties:

1. f (x|µ ,σ ,α = 0) = 1
σxφ

(
log(x)−µ

σ

)
, x> 0.

2. lim
α→∞

f (x|µ ,σ ,α) =
y2

σx
φ(y), x> 0.

Remark 2.1. Property 1 establishes that the new
distribution contain to the log-normal distribution as
α = 0. The second result indicates that asα → ∞ the new
distribution converges to a log-gamma-type distribution.

Figure1 depicts graphs of the new density for some
parameter combinations. Notice its bimodal nature for
some values ofα.
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Fig. 1: Top panel: LASN(0,0.5,-1.5) (solid line),
LBSN(0,0.5,1,2) (dashed line) and LSN(0,1,1) (dotted line).
Panel below: LASN(0,0.2,3) (solid line), LBSN(0,0.2,-0.5,1)
(dashed line) and LSN(0,0.2,1) (dotted line)

2.2 Moments

In this section we present moments and moment
estimators for the LASN distribution. We make use of the
moment generating function presented in (4). That is, if
X ∼ LASN(µ ,σ ,α) andY ∼ ASN(µ ,σ ,α) then it can be
verified that

E(Xr) = E (exp(rY)) = MY(r)

=

[
1−ασ r

(
2−ασ r
2+α2

)]
exp

(
µr +

σ2r2

2

)
,

wherer = 1,2,3, . . ..
Using this result, it can be verified that

1. E(X) =
[
1−ασ

(
2−ασ
2+α2

)]
exp

(
µ + σ2

2

)
;

2. E(X2) =
[
1−4ασ

(
1−ασ
2+α2

)]
exp

(
2(µ +σ2)

)
,

from where Var(X) can be computed. Note that the
expressions for the moment estimators are relatively
simple, because the method needs to solve the following
equations forµ , σ andα
[
1−ασ r

(
2−ασ r
2+α2

)]
exp

(
µr +

σ2r2

2

)
= mr ,

wheremr = n−1∑n
i=1xr

i , r = 1,2,3. Those equations can be
solved using numerical procedures, for instance, using the
nleqslvpackage [13] available in the R software [23]. This
us allow to obtain the moment estimators(µ̂M, σ̂M, α̂M) of
the vector(µ ,σ ,α).

2.3 Likelihood function

Let X1, . . . ,Xn be a random sample from the distribution of
the random variableX ∼ LASN(µ ,σ ,α), so that the log-

likelihood function forθ andyi =
log(xi)−µ

σ is given by

l(θ) = −n
2

log(2π)−nlog(σ)−nlog(2+α2)− 1
2

n

∑
i=1

y2
i

−
n

∑
i=1

log(xi)+
n

∑
i=1

log((1−αyi )
2+1). (7)

Differentiating (7) above with respect to the model
parameters, we arrive at the following likelihood
equations:

∂ l
∂ µ

= 2α
n

∑
i=1

1−αyi

(1−αyi)2+1
+

n

∑
i=1

yi = 0 (8)

∂ l
∂σ

=
n

∑
i=1

y2
i +2α

n

∑
i=1

(1−αyi)yi

(1−αyi)2+1
−n= 0 (9)

∂ l
∂α

=
nα

2+α2 +
n

∑
i=1

(1−αyi)yi

(1−αyi)2+1
= 0. (10)

The maximum likelihood estimator forθ = (µ ,σ ,α) is
obtained by solving the system of equations(8)− (10),
which has to be done numerically. The derivation of the
observed information matrix is also obtained using
numerical procedures. Initial values for those procedures
can be obtained although the moment estimators.

2.4 Fisher information matrix

The log-likelihood function for θ=(µ ,σ ,α) and

y= log(x)−µ
σ based on a single observationX, is given by

l(θ ) = −1
2

log(2π)− log(σ)− log(2+α2)− 1
2

y2

− log(x)+ log((1−αy)2+1). (11)

2.4.1 Score function:

∂ l(θ ;x)
∂ µ

=
2α(1−αy)

σ [(1−αy)2+1]
+

y
σ
,

∂ l(θ ;x)
∂σ

=
2αy(1−αy)

σ [(1−αy)2+1]
− 1

σ
+

y2

σ
,

∂ l(θ ;x)
∂α

=
−2y(1−αy)
(1−αy)2+1

− 2α
2+α

.
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The second derivatives ofl(θ ;x) = l(θ ) are:

∂ 2l(θ)
∂ µ2 =

2α2

σ2[(1−αy)2+1]
− 4α2(1−αy)2

σ2[(1−αy)2+1]2
− 1

σ2 ,

∂ 2l(θ)
∂ µ∂σ

=
(4α2y−2α)[(1−αy)2 +1]−4α2y(1−αy)2

σ2[(1−αy)2+1]2

− 2y
σ2 ,

∂ 2l(θ)
∂ µ∂α

=
2−4αy

σ [(1−αy)2+1]
+

4αy(1−αy)2

σ [(1−αy)2 +1]2
,

∂ 2l(θ)
∂σ2 =

(6α2y2−4αy)[(1−αy)2 +1]−4α2y2(1−αy)2

σ2[(1−αy)2+1]2

+
1

σ2 − 3y2

σ2 ,

∂ 2l(θ)
∂σ∂α

=
(2y−4αy2)[(1−αy)2+1]+4αy2(1−αy)2

σ [(1−αy)2+1]2
,

∂ 2l(θ)
∂α2 =

2y2[(1−αy)2+1]−4y2(1−αy)2

[(1−αy)2+1]2
− 4−2α2

(2+α2)2
.

After extensive algebraic manipulations, it follows that
the Fisher information matrix is given by

I(θ ) =




4α2b0−α2+2
σ2(2+α2)

4α2b1−2α
σ2(2+α2)

− 4αb1+2
σ(2+α2)

4α2b1−2α
σ2(2+α2)

4α2b2+2α2+4
σ2(2+α2)

4α(1−b2)
σ(2+α2)

− 4αb1+2
σ(2+α2)

4α(1−b2)

σ(2+α2)

4b2(α2+2)−4α2

(2+α2)2


 ,

whereZ ∼ N(0,1) andbk = E
[
Zk (1−αZ)2

(1−αZ)2+1

]
, k = 0,1,2,

which has to be evaluated numerically.
On the other hand, whereα = 0, the Fisher information

matrix is

I(θ) =




1
σ2 0 − 1

σ
0 2

σ2 0
− 1

σ 0 1


 ,

which is singular. Using the methodology introduced by
Rotnitzky et al. [24], with a suitable reparametrization, as
used by Chiogna [9], Salinas et al. [25], Elal-Olivero [10],
among others, a non-singular matrix is obtained.

3 Simulation study

In order to verify the performance of the procedure
estimation, we present a brief simulation study. We fix the
location and scale parameters at the standard values, i.e.,
µ = 0 andσ = 1. The values forα were chosen in the set
{−1.5,−0.5,0.1,1}, i.e., two values that provide two
modes in the distribution and two values that produce an
unimodal distribution. The sample sizes vary in the set
{50,100,200}. For values drawn from the model, we can
use the algorithm presented by Elal-Olivero [10] in his
Proposition 3.5 and apply the exponential transformation.

We then apply the maximum likelihood estimators and
estimate the standard errors using the Hessian matrix. We
present the average bias (AB) and the mean of the
standard errors (SE). Results are presented in Table1.
Note that the bias is acceptable for all cases, considering
that the sample sizes are relatively small. However, the
bias for all parameters appears greater for the cases where
|α| is not close to zero. On the other hand, the mean of
the standard errors also decreases whenn increases,
suggesting good performance of the estimators in finite
samples.

Table 1: Simulation study for the LASN model. AB and SE
denote the average bias and the average of the estimated standard
errors respectively.

true n= 50 n= 100 n= 200
α parameter AB (SE) AB (SE) AB (SE)

−1.5 µ 0.050 (0.167) 0.034 (0.117) 0.016 (0.083)
σ -0.087 (0.082) -0.057 (0.062) -0.033 (0.046)
α -0.268 (0.501) -0.132 (0.310) -0.080 (0.210)

−0.5 µ 0.076 (1.475) 0.040 (0.845) 0.040 (0.694)
σ -0.110 (0.097) -0.074 (0.073) -0.048 (0.053)
α -0.155 (1.741) -0.099 (0.941) -0.064 (0.721)

0.1 µ -0.096 (5.305) -0.067 (3.416) -0.038 (2.716)
σ -0.057 (0.096) -0.042 (0.069) -0.023 (0.050)
α -0.052 (5.458) -0.034 (3.596) -0.018 (2.811)

1.0 µ -0.417 (3.082) -0.301 (1.604) -0.224 (0.802)
σ -0.077 (0.094) -0.057 (0.072) -0.035 (0.054)
α -0.259 (3.514) -0.217 (1.856) -0.210 (0.925)

4 Illustrations with real data sets

To illustrate the applicability of the proposed model, we
provide two real data sets. They related to neodymium
and nickel concentrations in soil samples obtained from
the Mining Department of Universidad de Atacama,
Chile. To compare the fit of the various models, Akaike
information criterion (AIC) [4], the consistent version of
the AIC criterion (CAIC) [14] and the Bayesian
information criterion (BIC) [26] are used.

In Illustration 1 the LASN, LBSN and LSN models
are fitted to the neodymium concentration data set. In
Illustration 2, we fit the same models to the nickel
concentration data set studied in Bolfarine et al. [8].
Figures 2 and 3 depict the model fits for the three models
with the neodymium data set (Illustration 1) and nickel
data set (Illustration 2) respectively.

4.1 Illustration 1. Neodymium concentration

Table 2 presents basic descriptive statistics for the data
set. We use the notation

√
b1 andb2 to represent sample

asymmetry and kurtosis coefficients. Additionally, the
moment estimators for this data set arêµM = 3.69,
σ̂M = 0.577 andα̂M = 1.216. These values can be used as
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Table 2: Descriptive statistics for the Neodymium
Data set n X S2 √

b1 b2

Nd 86 35.020 1171.741 3.648 18.216

initial values to initialize the maximization procedure of
the log-likelihood function for the LASN model.

Table 3: Parameter estimates of the LSN, LBSN and LASN models.
Parameter estimates LSN LBSN LASN

µ 2.826(0.222) 2.258(0.144) 3.749(0.107)
σ 0.835(0.140) 0.777(0.076) 0.645(0.051)
λ 0.989(0.598) 1.543(0.381) -
α - 3.607(2.241) 0.986(0.273)

AIC 752.663 750.254 748.757
CAIC 752.956 750.747 749.050
BIC 760.026 760.071 756.120

Table 3 depicts maximum likelihood estimates for
parameters in the LSN, LBSN and LASN models; to
compare the models, AIC, CAIC and BIC criteria are
used. These criteria suggest that the LASN model fits the
data better than the other models. Moreover, estimated
standard deviations for the LASN model are smaller than
for the other models, leading to shorter confidence
intervals.

Neodymium
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Fig. 2: Fitting of the LASN (solid line), LBSN (dashed line) and
LSN (dotted line)

4.2 Illustration 2. Nickel concentration

We consider now the nickel data set using the same
models as in the previous illustration. Table4 presents
basic descriptive statistics for the data set. For this data
set, the moment estimators areµ̂M = 2.279, σ̂M = 0.704
andα̂M =−1.221.

Table 4: Descriptive statistics for the Nickel

Data set n X S2 √
b1 b2

Ni 86 21.337 276.861 2.440 12.043

Table 5: Parameter estimates of the LSN, LBSN and LASN models.
Parameter estimates LSN LBSN LASN

µ 3.486(0.155) 1.785(0.164) 2.372(0.092)
σ 0.980(0.128) 0.779(0.077) 0.633(0.050)
λ -1.596(0.588) 1.254(0.297) -
α - 4.957(3.467) -1.201(0.268)

AIC 671.010 665.684 665.638
CAIC 671.306 666.184 665.935
BIC 678.338 675.455 672.966

Table5 presents the maximum likelihood estimates for
the data set under study for the LSN, LBSN and LASN
models. The AIC, CAIC and BIC indicate that the LBSN
and LASN models fit the data set quite similarly. However,
under the principle of parsimony the LASN is preferred
over the LBSN model.
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Fig. 3: Fitting of the LASN (solid line), LBSN (dashed line) and
LSN (dotted line)
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4.3 Final conclusions

This paper presents a new model that has a smaller
number of parameters, the log-alpha-skew-normal model
which, as shown, presents good fit in dealing with
chemical data. Properties such as moments and maximum
likelihood estimation are discussed. Special cases of the
model are the log-normal and a gamma type model. It
also makes Ahrens’ law more flexible.
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received the PhD degree
in Statistics at the Pontificia
Universidad Católica of
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