
Appl. Math. Inf. Sci. 6 No. 2S pp. 505S-511S (2012)

A Layer-by-Layer Levenberg-Marquardt algorithm for

Feedforward Multilayer Perceptron

Young-Tae Kwak
1
 and Heeseung Jo

1,2

1
 Department of Information Technology Engineering, Chonbuk National University, 664-14, Deokjin-dong, Jeonju, 561-

756, Republic of Korea, Email: ytkwak@jbnu.ac.kr
2
 Corresponding author: Email: heeseung@jbnu.ac.kr

Received July 1, 2011; Revised August 15, 2011; Accepted September 5 2011

Published online: 1 January 2012

Abstract: The error backpropagation (EBP) algorithm for training feedforward multilayer perceptron

(FMLP) has been used in many applications because it is simple and easy to implement. However, its

gradient descent method prevents EBP algorithm from converging fast. To overcome the slow

convergence of EBP algorithm, the second order methods have adapted. Levenberg-Marquardt (LM)

algorithm is estimated to be much faster than other algorithms if the size of FMLP is not large.

However, it needs a lot of memory and expensive operations to calculate a Jacobian matrix and its

inverse.

This paper proposes an improved LM algorithm that trains the weights of FMLP layer-by-layer.

FMLP doesn’t have full connections between each output node and between each hidden node.

Therefore, our algorithm updates output weights with a Jacobian matrix reduced by its block diagonal

matrix. Then we define a new error function for hidden layer derived from output layer’s error signals.

According to the new error function, we update hidden weights with hidden layer’s block diagonal

Jacobian matrix. The proposed method can save both memory required and expensive operations of

LM algorithm by downsized Jacobian matrices. We tested an iris classification and a handwritten

digit recognition for this work. As a result, we found that our method improved training speed and

reduced the memory of Jacobian matrix by 30% in the classification and by 10% in the recognition.

Keywords: Error backpropagation, Feedforward multilayer perceptron, Levenberg-Marquardt algorithm, Jacobian matrix

1 Introduction

Since artificial neural network was devised,

feedforward multilayer perceptron (FMLP) has

been widely used in many applications because it is

the first and simplest type of artificial neural

network. In the 1980s, some researchers proposed

the error backpropagation (EBP) algorithm with a

gradient descent method [1,2]. However, the

method can take a long time on flat error surfaces,

which makes EBP algorithm slow. To speed the

training of EBP up, different approaches such as

momentum [3], dynamic learning rates [4] and

Layer-by-Layer (LbL) algorithms [5-7], have been

suggested. Even with all these methods, the

convergence of EBP was not able to be improved

considerably.

To overcome the slow convergence of EBP

algorithm, the second derivatives of error functions

have been used in Conjugate Gradient method [8],

Quasi-Newton method [9], Gauss-Newton method

and Levernberg-Marquardt (LM) algorithm [10,11].

These second order algorithms can train FMLP

faster than EBP algorithm owing to approximating

the second derivatives.

LM algorithm is estimated to be much faster

than other algorithms if the size of FMLP is not

very large. However, LM algorithm must calculate

Jacobian matrix to obtain quasi-Hessian matrix.

Saving the Jacobian matrix and calculating the

inverse of quasi-Hessian matrix have been critical

problems. To solve these problems, Costa restricted

Applied Mathematics & Information Sciences

 An International Journal
© 2012 NSP

 @ 2012 NSP

 Natural Sciences Publishing Cor.

 Young-Tae Kwak, Heeseung Jo: A Layer-by-Layer LM Algorithm for FMLP

506

the norm of weight vectors to speed LM algorithm
up [12]. Lera proposed a way to train local nodes of
FMLP to save both memory required and expensive
operations [13]. Wilamowski took quasi-Hessian
matrix directly from the gradient vector of each
pattern, without Jacobian matrix multiplication and
storage [14]. However, the size of his quasi-Hessian
matrix was not reduced. Chan suggested both
asynchronous and synchronous weight updating
with block diagonal matrix to speed LM algorithm
[15]. The experimental results showed that the
asynchronous updating method with constraints
gave the best improvement in the training time.

FMLP has been used in many applications more
often than other networks, except fully connected
cascade networks used in two-spiral task [16]. In
such FMLP, There are no weights between each
output node, in other words, the output layer is not
fully connected. When we apply LM algorithm to
the FMLP, the Jacobian matrix becomes a sparse
matrix. Therefore, the proposed method can get rid
of block matrices whose elements are 0 in the
Jacobian matrix and reduce the Jacobian matrix for
updating the output weights. Here, we use the
inverse of block diagonal matrix for quasi-Hessian
matrix.

Layer-by-Layer algorithms update the weights
of output layer at first, and define a new error
function at hidden layer and update the weights of
hidden layer according to the defined error function.
For our Layer-by-Layer LM (LbL LM) algorithm,
we define a new hidden error function derived from
the error signals of output layer. It is composed of
the sum of squared errors between error signals and
hidden outputs. Here, we can also obtain a block
diagonal Jacobian matrix for hidden layer because
the weights between each hidden node are also not
connected. The reduced hidden Jacobian matrix is
used for updating the weights of hidden layer. As a
result, our LbL LM algorithm can not only improve
training time but also reduce considerable memory
through the inverse of block diagonal Jacobian
matrices.

In the simulation, we tested both a simple
classification and a complicated recognition. The
results of simulations confirmed that our approach
was able to improve training speed and save a lot of
memory. Even in the problem with huge weights,
our method performed a fast and high-quality
convergence with smaller memory and operations.
This paper is organized as follows. Section 2
introduces LM algorithm and proposes a Layer-by-
Layer LM algorithm with a new hidden error
function. The experimental results and analyses are

shown in Section 3. Finally, we will give our
conclusion in Section 4.

2 Layer-by-Layer LM Algorithm
2.1 FMLP and Notation

We use a single hidden-layer perception in the
figure 2.1 because it is universal approximation
theorem [17]. The notations of FMLP are as follow.
The bold upper cases stand for matrices and the
bold lower cases vectors.

1 2 ((1),)

1 2 (,)

(,) (, (1)) ((1),)
0

(,) (,)

(,) (, (1)) ((1),)
0

[1, , , ,] , 1, , ,
[, , ,] ,

, (2.1)

(), () (2.2)

, (2.3)

T
p p p Ip I P

T
p p p Kp K P

I
s s
jp ji ip J P J I I P

i
s s

jp jp J P J P
J

s s
kp kj jp K P K J J P

j

x x x p P
t t t

y v x

y f y f

z w y



 


 


 



 

 

 





x X
t T

Y V X

Y Y

Z W Y

 



1 2

(,) (,)

1 2

here, [1, , , ,] add a bias
(), (),

[, , ,] (2.4)

T
p p p Jp

s s
kp kp K P K P

T
p p p Kp

y y y
z f z f

z z z

 

 



y
Z Z
z




For activation function, tanh function is used. tkp

is the target value of the kth output and the pth
pattern, zkp is the actual value of the kth output and
the pth pattern. P is the number of patterns, and K is
the number of the network outputs.

2.2 LM Algorithm and Block Diagonal Matrix

The error function to be minimized by LM
algorithm, the sum of squared errors for a weight
vector s , is defined as

2 2

1 1 1 1

11 1 21 2 1

1 1() ()

1 , [, , ,]

(2.5)
K P K P

kp kp kp
k p k p

T T
P P K KP

E t z e
P P

e e e e e e
P

s

es es es

= = = =

= − =

= =

∑∑ ∑∑

   

where 10 11 10 11 (,1)[, , , , ,]T

JI Nw w v v vs   consists of all
weights of the network. ((1) (1))N J I K J      is
the number of the weights.

LM’s weight updating is carried out from a

1
x

I
x

i
x

1 1

I J K

((1))J I 
V

((1))K J 
W

ji
v

kj
w

0j
v

0k
w

1
y

1
sy

j
ys

j
y

J
y

s
J

y

1
z

1
sz

k
zs

k
z

K
zs

K
z

1
t

k
t

K
t

Figure 2.1: Feedforward single hidden-layer perception

Young-Tae Kwak and Heeseung Jo: A Layer-by-Layer LM Algorithm for FMLP

507

modification of the Gauss-Newton method.

 
 

1

1

T T

T









  

 

s Js Js I Js es

qH I g
 (2.6)

((),) (,) (,1), and K P N N N NJs qH g are Jacobian matrix, quasi-
Hessian matrix and a gradient vector respectively in
relation to a weight vector s. μ is called a damping
parameter and I is an identity matrix. The damping
parameter is adjusted according to the evaluation of
E(s) in equation (2.5). If E(s) is lower than a trial
error E(strial) that is calculated by a new weight, μ is
increased by a factor λ (0< λ<1) called decay rate in
equation (2.7). Reversely, if E(s) is higher, μ is
decreased by λ and the new updated weight is
accepted.

if () ()
if () ()

trial

trial

E E
E E

 


 

   

s s
s s

 (2.7)

Each element of Js in equation (2.6) is equal to
equation (2.8). However, all elements don’t need to
be computed like equation (2.9) because the weights
between output nodes in FMLP are not fully
connected. Then, Js becomes a sparse matrix and
can be changed into equation (2.10) containing
block matrices.

11 11 11 11 11 11

10 11 10 11

12 12 12 12 12 12

10 11 10 11

1 1 1 1 1 1

10 11 10 11

21 21 21

10 11

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , ,

KJ JI

KJ JI

P P P P P P

KJ JI

e e e e e e
w w w v v v
e e e e e e
w w w v v v

e e e e e e
w w w v v v
e e e
w w

     
     

     
     

     


     

  
  

Js

 

 



 



21 21 21

10 11

10 11 10 11

, , , ,

, , , , , , ,

KJ JI

KP KP KP KP KP KP

KJ JI

e e e
w v v v

e e e e e e
w w w v v v

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
    
 
 
       
        





 

 (2.8)

if , , 1, ,

0 otherwise

kp
p

kj
j

e
Ke

w
w





   
   



 (2.9)

1

2

0 0
0

0
0 0

k

K

 
 
   
 
 
 
  

JW JV

Jw
Js Jw

Jw
Jw

 

  

  

 

 (2.10)

In equation (2.10), Jwk are block matrices related
to each output node in equation (2.11). JV is a block
Jacobian matrix according to weight V.

 , ,

1, , 0, ,

k
k

k

e
jw jw

w
P J


 


 


 


 

Jw

 

 (2.11)

When Js is used to approximate quasi-Hessian
matrix qH, the block matrix JV affects qH on the
whole. The inverse of qH is also affected by JV.
However, if we apply a Layer-by-Layer algorithm
to FMLP, the block JV can be disregarded because
one layer is only considered. Therefore we can use
the following property of block diagonal matrix in
equation (2.12): The inverse of a block diagonal
matrix is another block diagonal matrix, composed
of the inverse of each block.

1 1
1 1

1
2 2

1

0 0 0 0
0 0 0 0

0 0 0 0n n

A A
A A

A A

− −

−

−

  
  
   =   
  
    







  
  




 (2.12)

2.3 Layer-by-Layer LM Algorithm

Our LbL LM algorithm updates the weights of
output layer through such error function as defined
in equation (2.5), and defines a new error function
for hidden layer and updates the weights of hidden
layer according to the new error function. When the
Jacobian matrix of equation (2.5) is computed with
respect to the only weight W, it shows the block
diagonal matrix JW like equation (2.10). Each
element of Jwk can be computed by equation (2.13).
The proposed method uses the inverse of a block
diagonal matrix for removing 0 elements. Therefore
we can accomplish the weight updating of output
layer like equation (2.14).

 , () , 1, ,s T
k p p k p pf z p P  Jw jw jw y  (2.13)

1

1 2

() , 1, ,
, [, , ,]

(2.14)T T
k k k k k

T
k k k kP

k K
e e e

    


ww Jw Jw I Jw ew
ew




To update the hidden layer’s weights, we have to

define a new error function. The error function is
derived from the error signals of output layer like
equation (2.15). This way is similar to a gradient
descent method. In equation (2.16), the new error
function is composed of the sum of squared errors
between error signals and hidden outputs.

   
1

2

1 1

11 1 1

()()

1 1()

, [, ,]

(2.15)

(2.16)

K
s

jp kj kp kp kp
k

J P Thid h h h
jp

j p
h h h h h h T
jp jp jp P J JP

w f z t z

E e
P P

e y e e e e







 

 

 

  



v ev ev

ev   
Since Layer-by-Layer algorithm considers only

one layer, we just pay attention to the error function

 Young-Tae Kwak, Heeseung Jo: A Layer-by-Layer LM Algorithm for FMLP

508

Ehid and weight V. The weights between hidden
nodes at hidden layer are also not connected. So we
can obtain a block diagonal Jacobian matrix Jv like
equation (2.17). The matrix in equation (2.17) has
the same shape of output layer’s Jw.

1

2

0 0
0

0
0 0

j

J

 
 
 
   
 
 
  

Jv
Jv

Jv
Jv

Jv



 

 



 (2.17)

Our algorithm follows the repetitive processes of
the output layer for obtaining Jv and hidden layer’s
updating. Each element of Jvj is computed by
equation (2.18) and the weight updating of hidden
layer is accomplished like equation (2.19).

 , () , 1, ,s T
j p p j p pf y p P  Jv jv jv x  (2.18)

  1

1 2

, 1, ,

[, , ,]

T T
j j j j j

h h h T
j j j jP

j J

e e e




   


vv Jv Jv I Jv ev

ev





 (2.19)

Each LM algorithm runs in each layer. Then the
damping parameters (μw, μv) are adjusted according
to each error function. Our LbL LM algorithm can
be summarized as follows:

1. Initialize the weights and parameters μw, μv and λ
 (for example, set μw = μv =0.01 and λ =0.1)
2. Stop if the number of iteration exceeds the maximum

iteration or E(s) in equation (2.5) is below a desired
error

3. Compute E(s) in equation (2.5) after passing all input
patterns

4. Compute each Jacobian matrix Jwk in equation (2.13)
5. Solve equation (2.14) to get the weight changes ∆wk
6. Recompute E(strial) using wtrial = w +∆wk over all

patterns
 IF E(strial) > E(s) THEN
 μw = μw / λ
 go back to step 5

 ELSE
 μw = μw · λ
 E(s) = E(strial), w = wtrial

7. Evaluate Ehid(v) in equation (2.16) with the updated w
and Y

8. Compute each Jacobian matrix Jvj in equation (2.18)
9. Solve equation (2.19) to get the weight changes ∆vj

10. Recompute Ehid(vtrial) using vtrial = v +∆vj over all
patterns

IF Ehid(vtrial) > E(s) THEN
 μv = μv / λ
 go back to step 9

 ELSE
 μv = μv · λ

 E(s) = Ehid(vtrial), v = vtrial
11. go back to step 2

For saving Jacobian matrix, LM algorithm needs
KPN memory but our Layer-by-Layer algorithm has
PN memory so that it can save (K-1)PN. In quasi-
Hessian matrix operation, LM algorithm allocates
N2 memory. On the other hand, our method only
requires K(J+1)2+J(I+1)2 memory. Through saving
these memories, we can not only train LM
algorithm fast but also reduce a lot of memory.

3 Experiments
For our simulation, we tested both an iris

classification and a handwritten digit recognition
[18,19]. Our LbL LM algorithm was implemented
with Matlab scripts not using Matlab NN Toolbox.
To compare fairly with EBP and LM methods, we
equally initialized the initial weights. In addition,
our simulation was run in standard alone without
any running program to measure exact time. We
tried to train FMLP for 20 runs according to each
number of hidden nodes to get more general results.

3.1 Iris Classification

Iris classification is that FMLP gets 4 input data
and classifies three types of iris. So FMLP consisted
of 4 input nodes, 3 output nodes and 7-9 hidden
nodes. We used 150 input patterns and the error
function in equation (2.5). The criterion to stop
training was that the maximum iteration was 300 or
equation (2.5) was less than 0.1. If the iteration of a
training exceeded the maximum, we considered the
training as a failure.

Table 1 is the iris results averaged after trying 20
runs. EBP algorithm failed in all trials but we
showed them to compare with other methods. In the
table, Iteration, Total time, Time/Epoch stand for
the number of epochs, the whole time taken to
finish a run, the time per epoch, respectively.
Memory cost is the memories to store Jacobian
matrices. Here, Nil means that any Jacobian matrix
is not needed in both EBP and Wilamowski
algorithm. Wilamowski’s method calculates quasi-
Hessian matrix directly from each training pattern.
Then it doesn’t have Jacobian matrix but stores
quasi-Hessian matrix not reduced into small size. So
we will compare our method with LM algorithm.
LbL rows are our method. WM rows are the results
of Wilamowski method.

As Table 1 shows, the speed difference between
LM and LbL LM algorithm is not large because the
iris problem is simple. The total time and iteration
mostly depend on the number of failures. However,
we should notice that LbL LM algorithm is shorter

Young-Tae Kwak and Heeseung Jo: A Layer-by-Layer LM Algorithm for FMLP

509

than LM algorithm in the time per epoch and it can
save about 70% memory for storing Jacobian
matrix. In the case of 9 hidden nodes, the total time
of LbL LM is similar to the LM’s total time even
though LbL LM takes two times more iteration,
because the Time/Epoch of LbL LM is shorter. On
the whole, we can see that LbL LM algorithm
outperformed other methods in training speed as
well as saving memory.

Figure 3.1 shows the training iterations obtained

by 7 hidden nodes for 20 runs. We magnified the
important part to distinguish the figure clearly.
Through this figure, we can find that our method

has faster training speed than others. Figure 3.2
illustrates the comparison of training errors on the
7th run among the results of figure 3.1. Our method
and EBP algorithm reduced its training error
smoothly, while LM algorithm made frequent
oscillations. It was caused by adapting the damping
parameter to seek target weights. These oscillations
made LM algorithm slower.

3.2 Handwritten Digit Recognition

To test a more complicated problem and get
more general results, we applied our approach to a
handwritten digit recognition. We used 1000 input
patterns, 100 patterns of each digit. Each digit was
12x12 pixels and each pixel had a hexadecimal
value by gray level. FMLP had 144 input nodes and
10 output nodes, and we trained it by changing 20-
22 hidden nodes to simulate FMLP having a huge
weight space. These FMLPs cost a lot of time
because of huge weights.

Table 2 shows the results of CEDAR data. All
EBP trials also failed in this test. This table tells us
that our method obtained better results than other
methods in training time and memory storage. In
the total time, our results were shorter than LM
algorithm’s results and even EBP algorithm’s
results. They took about 15% of LM algorithm’s
total time. In this test, LbL LM algorithm took
much more iteration than LM algorithm. However,
because its Time/Epoch is even shorter, LbL LM
algorithm was able to train faster than other
algorithms. We must pay attention to the memory
cost that our method needed the 10% of LM
algorithm for saving Jacobian matrix. This reduced
memory made LbL LM algorithm train faster than
others.

Figure 3.3 is the results of CEDAR used with 20
hidden nodes. Figure 3.4 represents the training
errors of the 10th run among figure 3.3. Figure 3.3

Figure 3.2: Training errors of 7th run among iris results

trained with 7 hidden nodes

Figure 3.1: Comparison of iterations in iris results trained

with 7 hidden nodes

Table 1 Comparison of Iris results
Hidden nodes

/Method Iteration Time/Epoch
(10-2) Total time Number of failures Memory cost

(KByte)

7

LM
WM

32.1
37.5
28.2
300

6.04
5.91
4.28
2.44

1.75
1.75
0.93
7.35

0
1
1

20

207
Nil
70
Nil

LbL
EBP

8

LM
WM

48.3
21.4
13.5
300

4.77
5.93
2.66
2.99

1.83
1.24
0.35
8.99

2
0
0

20

235
Nil
79
Nil

LbL
EBP

9

LM
WM

20
28.9
41.5
300

4.6
6.06
2.91
2.28

0.92
1.58
1.08
6.87

0
0
2

20

263
Nil
89
Nil

LbL
EBP

 Young-Tae Kwak, Heeseung Jo: A Layer-by-Layer LM Algorithm for FMLP

510

shows that LbL LM algorithm required more
iteration number than LM algorithm. However,
when we refer the Time/Epoch in Table 2, we can
know that our method took the less total time than
other methods. Like the iris classification, Figure
3.4 displays that LM algorithm was still oscillating,
while our way had a fast and smooth convergence.

As Table 1 and Table 2 show, the rate of failure

of the proposed LbL LM algorithm is higher than
the LM algorithm. That is why our method makes a
partial Jacobian matrix in each layer. Since each
layer’s Jacobian matrix doesn’t have the Jacobian

matrix of other layer, our method can’t calculate
more accurate weight direction than the LM
algorithm. However, the rate of the failure is so rare
that the LbL LM algorithm can bring better benefit
such as saving memory and time in practical
applications.

4 Conclusion
LM algorithm is estimated to be much faster

than other algorithms if the size of network is not
very large. However, it must calculate and save
Jacobian matrix for quasi-Hessian matrix. The
manipulations and operations of Jacobian matrix
have been critical problems. Then we proposed a
Layer-by-Layer LM algorithm using block diagonal
matrix to converge FMLP faster and save memory
for Jacobian matrix.

FMLP have no weights between output nodes
because they are not fully connected. Each element
of Jacobian matrix related to different output nodes
become zero. So our LM algorithm updated output
weights with a reduced block diagonal Jacobian
matrix. For hidden layer, we defined a new error
function derived from output layer’s error signal.
According to the error function, we updated hidden
weights layer-by-layer by the hidden layer’s block
diagonal Jacobian matrix, because each hidden node
is also not fully connected. The proposed method
took a less training time and storage than other
algorithms through downsized Jacobian matrices.

We were able to confirm our algorithm through
the simulations. Even though our method took a
little longer iteration time, we were able to train
FMLP faster than others because its time per epoch
was even shorter. We also reduced Jacobian
matrix’s memory by 30% in iris classification and
by 10% in CEDAR recognition. Our approach has
the merit of converging FMLP faster and spending

Figure 3.4: Training errors of 10th run among CEDAR results

trained with 20 hidden nodes

Figure 3.3: Comparison of iterations in CEDAR results

trained with 20 hidden nodes

Table 2 Comparison of CEDAR results
Hidden nodes

/Method Iteration Time/Epoch Total time Number of failures Memory cost
(MByte)

20

LM
WM

16.8
14.15
58.4
300

4.64
4.36
0.25
0.04

78.9
18.4
12.1
12.9

0
0
1

20

237.2
Nil
23.7
Nil

LbL
EBP

21

LM
WM

14.4
16.6
43.3
300

5.05
0.44
0.26
0.04

73.3
11.6
9.09
13.4

0
0
1

20

249.0
Nil
24.9
Nil

LbL
EBP

22

LM
WM

13.2
14

51.5
300

5.43
5.76
0.25
0.04

72.2
13.4
11.4
13.5

0
0
1

20

260.9
Nil
26.0
Nil

LbL
EBP

Young-Tae Kwak and Heeseung Jo: A Layer-by-Layer LM Algorithm for FMLP

511

memory less than LM algorithm when it is used for
an application having huge weight space.

Acknowledgements
This paper was supported by research funds of
Chonbuk National University in 2010.

References

[1] R. P. Lippman, An Introduction to Computing with
Neural Nets, IEEE ASSP Magazine, Vol. 4, No. 2,
(1987), 4-22.

[2] D. E. Rumelhart and J. L. McClelland, Parallel
Distributed Processing, MIT Press, Cambridge, MA,
(1986), 318-362.

[3] T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink and D.
L. Alkon, Accelerating the Convergence of the Back-
Propagation method, Biological Cybernetics, Vol. 59,
(1988), 256-263.

[4] Xiao-Hu Yu, Guo-An Chen and Shi-Xin Cheng,
Dynamic Learning Rate Optimization of the
Backpropagation Algorithm, IEEE Trans. on Neural
Networks, Vol. 6, No. 3, (1995), 669-677.

[5] S. Ergezinger and E. Thomsen, An accelerated learning
algorithm for multilayer perceptrons optimization Layer
by Layer, IEEE Tarns. on Neural Networks, Vol. 6, No.
1, (1995), 31-42.

[6] Gou-Jen Wang and Chih-Cheng Chen, A fast multilayer
neural-network training algorithm based on the layer-by-
layer optimizing procedures, IEEE Tarns. on Neural
Networks, Vol. 7, No. 3, (1996), 768-775.

[7] Sang-Hoon Oh and Soo-Young Lee, A New Error
Function at Hidden Layers for Fast Training of
Multilayer Perceptrons, IEEE Tarns. on Neural
Networks, Vol. 10, No. 4, (1999), 960-964.

[8] C. Charalambous, Conjugate gradient algorithm for
efficient training of artificial neural networks, IEEE
Proceedings, Vol. 139, No. 3, (1992), 301-310.

[9] Rudy Setiono and Lucas Chi Kwong Hui, Use of a Quasi-
Newton Method in a Feedforward Neural Network
Construction Algorithm, IEEE Tarns. on Neural
Networks, Vol. 6, No. 1, (1995), 273-277.

[10] Martin T. Hagan and Mohammad B. Menhaj, Training
feedforward networks with the Marquardt algorithm,
IEEE Trans. on Neural Networks, Vol. 5, No. 6, (1994),
989-993.

[11] Martin. T. Hagan, Howard B. Demuth and Mark Beale,
Neural Network Design, PWS Publishing Company,
(1995).

[12] Marcelo Azevedo Costa, Antonio de Padua Braga and
Benjamin Rodrigues de Menezes, Improving generation

of MLPs with sliding mode control and the Levenberg-
Marquardt algorithm, Neurocomputing, Vol. 70, (2007),
1342-1347.

[13] G. Lera and M. Pinzolas, Neighborhood Based
Levenberg-Marquardt Algorithm for Neural Network
Training, IEEE Trans. on Neural Networks, Vol. 13, No.
5, (2002), 1200-1203.

[14] Bogdan Mo Wilamowski and Hao Yu, Improved
Computation for Levenberg-Marquardt Training, IEEE
Trans. Neural Networks, Vol. 21, No. 6, (2010), 930-937.

[15] Lai-Wan Chan and Chi-Cheong Szeto, Training
Recurrent Network with Block-Diagonal Approximated
Levenberg-Marquardt Algorithm, Proc. IJCNN, Vol. 3,
(1999), 1521-1526.

[16] J. R. Alvarez-Sanchez, Injecting Knowledge into the
Solution of the Two-Spiral Problem, Neural Computing
& Applications, Vol. 8, (1999), 256-272.

[17] Kur Hornik, Maxwell Stinchcombe and Halber White,
Multilayer Feedforward networks are universal
approximators, Neural Networks, Vol. 2, (1989), 359-
366.

[18] D. Aha, A. Asuncion and D. Newman, UCI Machine
Learning Repository, Availabe:
http://archive.ics.uci.edu/ml/index.html

[19] Jonathan J. Hull, A Database for Handwritten Text

Recognition Research, IEEE Tarns. on Pattern Analysis

and Machine Intelligence, Vol. 16, No. 5, (1994), 550-

554.

Young-Tae Kwak received the B.S.,
M.S., and Ph.D. degrees in computer
engineering from the Chungnam
National University, Republic of Korea,
in 1993, 1995, and 2001, respectively.
He joined the faculty of the Chonbuk
National University in 2002. His

research interests include pattern recognition and neural
networks.

Heeseung Jo received the B.S. degree in
computer science from the Sogang
University, Republic of Korea, in 2000,
and the Ph.D. degree in computer
science from the Korea Advanced
Institute of Science and Technology
(KAIST), in 2010. He joined the faculty

of the Chonbuk National University in 2010. His
research interests cover computer hardware and system
software.

	Young-Tae Kwak1 and Heeseung Jo1,2
	Received July 1, 2011; Revised August 15, 2011; Accepted September 5 2011
	Keywords: Error backpropagation, Feedforward multilayer perceptron, Levenberg-Marquardt algorithm, Jacobian matrix
	1 Introduction
	2 Layer-by-Layer LM Algorithm
	2.1 FMLP and Notation
	2.2 LM Algorithm and Block Diagonal Matrix
	2.3 Layer-by-Layer LM Algorithm
	ELSE
	E(s) = E(strial), w = wtrial
	ELSE
	E(s) = Ehid(vtrial), v = vtrial
	3 Experiments
	4 Conclusion

