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Abstract: The error backpropagation (EBP) algorithm for training feedforward multilayer perceptron 

(FMLP) has been used in many applications because it is simple and easy to implement. However, its 

gradient descent method prevents EBP algorithm from converging fast. To overcome the slow 

convergence of EBP algorithm, the second order methods have adapted. Levenberg-Marquardt (LM) 

algorithm is estimated to be much faster than other algorithms if the size of FMLP is not large. 

However, it needs a lot of memory and expensive operations to calculate a Jacobian matrix and its 

inverse. 

This paper proposes an improved LM algorithm that trains the weights of FMLP layer-by-layer. 

FMLP doesn’t have full connections between each output node and between each hidden node. 

Therefore, our algorithm updates output weights with a Jacobian matrix reduced by its block diagonal 

matrix. Then we define a new error function for hidden layer derived from output layer’s error signals. 

According to the new error function, we update hidden weights with hidden layer’s block diagonal 

Jacobian matrix. The proposed method can save both memory required and expensive operations of 

LM algorithm by downsized Jacobian matrices. We tested an iris classification and a handwritten 

digit recognition for this work. As a result, we found that our method improved training speed and 

reduced the memory of Jacobian matrix by 30% in the classification and by 10% in the recognition.  
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1  Introduction 

Since artificial neural network was devised, 

feedforward multilayer perceptron (FMLP) has 

been widely used in many applications because it is 

the first and simplest type of artificial neural 

network. In the 1980s, some researchers proposed 

the error backpropagation (EBP) algorithm with a 

gradient descent method [1,2]. However, the 

method can take a long time on flat error surfaces, 

which makes EBP algorithm slow. To speed the 

training of EBP up, different approaches such as 

momentum [3], dynamic learning rates [4] and 

Layer-by-Layer (LbL) algorithms [5-7], have been 

suggested. Even with all these methods, the 

convergence of EBP was not able to be improved 

considerably.  

To overcome the slow convergence of EBP 

algorithm, the second derivatives of error functions 

have been used in Conjugate Gradient method [8], 

Quasi-Newton method [9], Gauss-Newton method 

and Levernberg-Marquardt (LM) algorithm [10,11]. 

These second order algorithms can train FMLP 

faster than EBP algorithm owing to approximating 

the second derivatives. 

LM algorithm is estimated to be much faster 

than other algorithms if the size of FMLP is not 

very large. However, LM algorithm must calculate 

Jacobian matrix to obtain quasi-Hessian matrix. 

Saving the Jacobian matrix and calculating the 

inverse of quasi-Hessian matrix have been critical 

problems. To solve these problems, Costa restricted 
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the norm of weight vectors to speed LM algorithm 
up [12]. Lera proposed a way to train local nodes of 
FMLP to save both memory required and expensive 
operations [13]. Wilamowski took quasi-Hessian 
matrix directly from the gradient vector of each 
pattern, without Jacobian matrix multiplication and 
storage [14]. However, the size of his quasi-Hessian 
matrix was not reduced. Chan suggested both 
asynchronous and synchronous weight updating 
with block diagonal matrix to speed LM algorithm 
[15]. The experimental results showed that the 
asynchronous updating method with constraints 
gave the best improvement in the training time. 

FMLP has been used in many applications more 
often than other networks, except fully connected 
cascade networks used in two-spiral task [16]. In 
such FMLP, There are no weights between each 
output node, in other words, the output layer is not 
fully connected. When we apply LM algorithm to 
the FMLP, the Jacobian matrix becomes a sparse 
matrix. Therefore, the proposed method can get rid 
of block matrices whose elements are 0 in the 
Jacobian matrix and reduce the Jacobian matrix for 
updating the output weights. Here, we use the 
inverse of block diagonal matrix for quasi-Hessian 
matrix. 

Layer-by-Layer algorithms update the weights 
of output layer at first, and define a new error 
function at hidden layer and update the weights of 
hidden layer according to the defined error function. 
For our Layer-by-Layer LM (LbL LM) algorithm, 
we define a new hidden error function derived from 
the error signals of output layer. It is composed of 
the sum of squared errors between error signals and 
hidden outputs. Here, we can also obtain a block 
diagonal Jacobian matrix for hidden layer because 
the weights between each hidden node are also not 
connected. The reduced hidden Jacobian matrix is 
used for updating the weights of hidden layer. As a 
result, our LbL LM algorithm can not only improve 
training time but also reduce considerable memory 
through the inverse of block diagonal Jacobian 
matrices. 

In the simulation, we tested both a simple 
classification and a complicated recognition. The 
results of simulations confirmed that our approach 
was able to improve training speed and save a lot of 
memory. Even in the problem with huge weights, 
our method performed a fast and high-quality 
convergence with smaller memory and operations. 
This paper is organized as follows. Section 2 
introduces LM algorithm and proposes a Layer-by-
Layer LM algorithm with a new hidden error 
function. The experimental results and analyses are 

shown in Section 3. Finally, we will give our 
conclusion in Section 4. 
 

2 Layer-by-Layer LM Algorithm 
2.1 FMLP and Notation  

We use a single hidden-layer perception in the   
figure 2.1 because it is universal approximation 
theorem [17]. The notations of FMLP are as follow. 
The bold upper cases stand for matrices and the 
bold lower cases vectors. 
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For activation function, tanh function is used. tkp 

is the target value of the kth output and the pth  
pattern, zkp is the actual value of the kth output and 
the pth pattern. P is the number of patterns, and K is 
the number of the network outputs. 
 
2.2 LM Algorithm and Block Diagonal Matrix 

The error function to be minimized by LM 
algorithm, the sum of squared errors for a weight 
vector s , is defined as 
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Figure 2.1:  Feedforward single hidden-layer perception 
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modification of the Gauss-Newton method. 
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(( ), ) ( , ) ( ,1), and K P N N N NJs qH g are Jacobian matrix, quasi-
Hessian matrix and a gradient vector respectively in 
relation to a weight vector s. μ is called a damping 
parameter and I is an identity matrix. The damping 
parameter is adjusted according to the evaluation of 
E(s) in equation (2.5). If E(s) is lower than a trial 
error E(strial) that is calculated by a new weight, μ is 
increased by a factor λ (0< λ<1) called decay rate in 
equation (2.7). Reversely, if E(s) is higher, μ is 
decreased by λ and the new updated weight is 
accepted. 
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Each element of Js in equation (2.6) is equal to 
equation (2.8). However, all elements don’t need to 
be computed like equation (2.9) because the weights 
between output nodes in FMLP are not fully 
connected. Then, Js becomes a sparse matrix and 
can be changed into equation (2.10) containing 
block matrices. 
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In equation (2.10), Jwk are block matrices related 
to each output node in equation (2.11). JV is a block 
Jacobian matrix according to weight V. 
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When Js is used to approximate quasi-Hessian 
matrix qH, the block matrix JV affects qH on the 
whole. The inverse of qH is also affected by JV. 
However, if we apply a Layer-by-Layer algorithm 
to FMLP, the block JV can be disregarded because 
one layer is only considered. Therefore we can use 
the following property of block diagonal matrix in 
equation (2.12): The inverse of a block diagonal 
matrix is another block diagonal matrix, composed 
of the inverse of each block. 
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2.3 Layer-by-Layer LM Algorithm 

Our LbL LM algorithm updates the weights of 
output layer through such error function as defined 
in equation (2.5), and defines a new error function 
for hidden layer and updates the weights of hidden 
layer according to the new error function. When the 
Jacobian matrix of equation (2.5) is computed with 
respect to the only weight W, it shows the block 
diagonal matrix JW like equation (2.10). Each 
element of Jwk can be computed by equation (2.13). 
The proposed method uses the inverse of a block 
diagonal matrix for removing 0 elements. Therefore 
we can accomplish the weight updating of output 
layer like equation (2.14). 
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To update the hidden layer’s weights, we have to 

define a new error function. The error function is 
derived from the error signals of output layer like 
equation (2.15). This way is similar to a gradient 
descent method. In equation (2.16), the new error 
function is composed of the sum of squared errors 
between error signals and hidden outputs. 
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Since Layer-by-Layer algorithm considers only 

one layer, we just pay attention to the error function 
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Ehid and weight V. The weights between hidden 
nodes at hidden layer are also not connected. So we 
can obtain a block diagonal Jacobian matrix Jv like 
equation (2.17). The matrix in equation (2.17) has 
the same shape of output layer’s Jw. 
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Our algorithm follows the repetitive processes of 
the output layer for obtaining Jv and hidden layer’s 
updating. Each element of Jvj is computed by 
equation (2.18) and the weight updating of hidden 
layer is accomplished like equation (2.19). 
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Each LM algorithm runs in each layer. Then the 
damping parameters (μw, μv) are adjusted according 
to each error function. Our LbL LM algorithm can 
be summarized as follows: 

 
1. Initialize the weights and parameters μw, μv and λ  
    (for example, set  μw = μv =0.01 and λ =0.1) 
2. Stop if the number of iteration exceeds the maximum 

iteration or E(s) in equation (2.5) is below a desired 
error 

3. Compute E(s) in equation (2.5) after passing all input 
patterns 

4. Compute each Jacobian matrix Jwk in equation (2.13) 
5. Solve equation (2.14) to get the weight changes ∆wk  
6. Recompute E(strial) using wtrial = w +∆wk over all 

patterns 
        IF E(strial) > E(s) THEN 
             μw = μw / λ  
             go back to step 5 

  ELSE 
 μw = μw · λ 
 E(s) = E(strial),   w = wtrial  

7. Evaluate Ehid(v) in equation (2.16) with the updated w 
and Y 

8. Compute each Jacobian matrix Jvj in equation (2.18) 
9. Solve equation (2.19) to get the weight changes ∆vj 

10. Recompute Ehid(vtrial) using vtrial = v +∆vj  over all 
patterns 

IF Ehid(vtrial) > E(s) THEN 
             μv = μv / λ 
             go back to step 9 

  ELSE 
       μv = μv · λ 

 E(s) = Ehid(vtrial), v = vtrial 
11. go back to step 2 

For saving Jacobian matrix, LM algorithm needs 
KPN memory but our Layer-by-Layer algorithm has 
PN memory so that it can save (K-1)PN. In quasi-
Hessian matrix operation, LM algorithm allocates  
N2 memory. On the other hand, our method only 
requires K(J+1)2+J(I+1)2 memory. Through saving 
these memories, we can not only train LM 
algorithm fast but also reduce a lot of memory. 
 

3 Experiments 
For our simulation, we tested both an iris 

classification and a handwritten digit recognition 
[18,19]. Our LbL LM algorithm was implemented 
with Matlab scripts not using Matlab NN Toolbox. 
To compare fairly with EBP and LM methods, we 
equally initialized the initial weights. In addition, 
our simulation was run in standard alone without 
any running program to measure exact time. We 
tried to train FMLP for 20 runs according to each 
number of hidden nodes to get more general results. 
 
3.1 Iris Classification 

Iris classification is that FMLP gets 4 input data 
and classifies three types of iris. So FMLP consisted 
of 4 input nodes, 3 output nodes and 7-9 hidden 
nodes. We used 150 input patterns and the error 
function in equation (2.5). The criterion to stop 
training was that the maximum iteration was 300 or 
equation (2.5) was less than 0.1. If the iteration of a 
training exceeded the maximum, we considered the 
training as a failure. 

Table 1 is the iris results averaged after trying 20 
runs. EBP algorithm failed in all trials but we 
showed them to compare with other methods. In the 
table, Iteration, Total time, Time/Epoch stand for 
the number of epochs, the whole time taken to 
finish a run, the time per epoch, respectively. 
Memory cost is the memories to store Jacobian 
matrices. Here, Nil means that any Jacobian matrix 
is not needed in both EBP and Wilamowski 
algorithm. Wilamowski’s method calculates quasi-
Hessian matrix directly from each training pattern. 
Then it doesn’t have Jacobian matrix but stores 
quasi-Hessian matrix not reduced into small size. So 
we will compare our method with LM algorithm. 
LbL rows are our method. WM rows are the results 
of Wilamowski method. 

As Table 1 shows, the speed difference between 
LM and LbL LM algorithm is not large because the 
iris problem is simple. The total time and iteration 
mostly depend on the number of failures. However, 
we should notice that LbL LM algorithm is shorter 
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than LM algorithm in the time per epoch and it can 
save about 70% memory for storing Jacobian 
matrix. In the case of 9 hidden nodes, the total time 
of LbL LM is similar to the LM’s total time even 
though LbL LM takes two times more iteration, 
because the Time/Epoch of LbL LM is shorter. On 
the whole, we can see that LbL LM algorithm 
outperformed other methods in training speed as 
well as saving memory. 

 

 
Figure 3.1 shows the training iterations obtained 

by 7 hidden nodes for 20 runs. We magnified the 
important part to distinguish the figure clearly. 
Through this figure, we can find that our method 

has faster training speed than others. Figure 3.2 
illustrates the comparison of training errors on the 
7th run among the results of figure 3.1. Our method 
and EBP algorithm reduced its training error 
smoothly, while LM algorithm made frequent 
oscillations. It was caused by adapting the damping 
parameter to seek target weights. These oscillations 
made LM algorithm slower. 
 
3.2 Handwritten Digit Recognition 

To test a more complicated problem and get 
more general results, we applied our approach to a 
handwritten digit recognition. We used 1000 input 
patterns, 100 patterns of each digit. Each digit was 
12x12 pixels and each pixel had a hexadecimal 
value by gray level. FMLP had 144 input nodes and 
10 output nodes, and we trained it by changing 20-
22 hidden nodes to simulate FMLP having a huge 
weight space. These FMLPs cost a lot of time 
because of huge weights. 

Table 2 shows the results of CEDAR data. All 
EBP trials also failed in this test. This table tells us 
that our method obtained better results than other 
methods in training time and memory storage. In 
the total time, our results were shorter than LM 
algorithm’s results and even EBP algorithm’s 
results. They took about 15% of LM algorithm’s 
total time. In this test, LbL LM algorithm took 
much more iteration than LM algorithm. However, 
because its Time/Epoch is even shorter, LbL LM 
algorithm was able to train faster than other 
algorithms. We must pay attention to the memory 
cost that our method needed the 10% of LM 
algorithm for saving Jacobian matrix. This reduced 
memory made LbL LM algorithm train faster than 
others. 

Figure 3.3 is the results of CEDAR used with 20 
hidden nodes. Figure 3.4 represents the training 
errors of the 10th run among figure 3.3. Figure 3.3 

 
Figure 3.2:  Training errors of 7th run among iris results 

trained with 7 hidden nodes 

 
Figure 3.1:  Comparison of iterations in iris results trained 

with 7 hidden nodes 

Table 1 Comparison of Iris results   
Hidden nodes 

/Method Iteration Time/Epoch 
(10-2) Total time Number of failures Memory cost  

(KByte) 

7 

LM 
WM 

32.1 
37.5 
28.2 
300 

6.04 
5.91 
4.28 
2.44 

1.75 
1.75 
0.93 
7.35 

0 
1 
1 

20 

207 
Nil 
70 
Nil 

LbL 
EBP 

8 

LM 
WM 

48.3 
21.4 
13.5 
300 

4.77 
5.93 
2.66 
2.99 

1.83 
1.24 
0.35 
8.99 

2 
0 
0 

20 

235 
Nil 
79 
Nil 

LbL 
EBP 

9 

LM 
WM 

20 
28.9 
41.5 
300 

4.6 
6.06 
2.91 
2.28 

0.92 
1.58 
1.08 
6.87 

0 
0 
2 

20 

263 
Nil 
89 
Nil 

LbL 
EBP 
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shows that LbL LM algorithm required more 
iteration number than LM algorithm. However, 
when we refer the Time/Epoch in Table 2, we can 
know that our method took the less total time than 
other methods. Like the iris classification, Figure 
3.4 displays that LM algorithm was still oscillating, 
while our way had a fast and smooth convergence. 

 

 
As Table 1 and Table 2 show, the rate of failure 

of the proposed LbL LM algorithm is higher than 
the LM algorithm. That is why our method makes a 
partial Jacobian matrix in each layer. Since each 
layer’s Jacobian matrix doesn’t have the Jacobian 

matrix of other layer, our method can’t calculate 
more accurate weight direction than the LM 
algorithm. However, the rate of the failure is so rare 
that the LbL LM algorithm can bring better benefit 
such as saving memory and time in practical 
applications. 
 

4 Conclusion 
LM algorithm is estimated to be much faster 

than other algorithms if the size of network is not 
very large. However, it must calculate and save 
Jacobian matrix for quasi-Hessian matrix. The 
manipulations and operations of Jacobian matrix 
have been critical problems. Then we proposed a 
Layer-by-Layer LM algorithm using block diagonal 
matrix to converge FMLP faster and save memory 
for Jacobian matrix.  

FMLP have no weights between output nodes 
because they are not fully connected. Each element 
of Jacobian matrix related to different output nodes 
become zero. So our LM algorithm updated output 
weights with a reduced block diagonal Jacobian 
matrix. For hidden layer, we defined a new error 
function derived from output layer’s error signal. 
According to the error function, we updated hidden 
weights layer-by-layer by the hidden layer’s block 
diagonal Jacobian matrix, because each hidden node 
is also not fully connected. The proposed method 
took a less training time and storage than other 
algorithms through downsized Jacobian matrices. 

We were able to confirm our algorithm through 
the simulations. Even though our method took a 
little longer iteration time, we were able to train 
FMLP faster than others because its time per epoch 
was even shorter. We also reduced Jacobian 
matrix’s memory by 30% in iris classification and 
by 10% in CEDAR recognition. Our approach has 
the merit of converging FMLP faster and spending 

 
Figure 3.4:  Training errors of 10th run among CEDAR results 

trained with 20 hidden nodes 

 
Figure 3.3:   Comparison of iterations in CEDAR results 

trained with 20 hidden nodes 

Table 2 Comparison of CEDAR results   
Hidden nodes 

/Method Iteration Time/Epoch Total time Number of failures Memory cost  
(MByte) 

20 

LM 
WM 

16.8 
14.15 
58.4 
300 

4.64 
4.36 
0.25 
0.04 

78.9 
18.4 
12.1 
12.9 

0 
0 
1 

20 

237.2 
Nil 
23.7 
Nil 

LbL 
EBP 

21 

LM 
WM 

14.4 
16.6 
43.3 
300 

5.05 
0.44 
0.26 
0.04 

73.3 
11.6 
9.09 
13.4 

0 
0 
1 

20 

249.0 
Nil 
24.9 
Nil 

LbL 
EBP 

22 

LM 
WM 

13.2 
14 

51.5 
300 

5.43 
5.76 
0.25 
0.04 

72.2 
13.4 
11.4 
13.5 

0 
0 
1 

20 

260.9 
Nil 
26.0 
Nil 

LbL 
EBP 
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memory less than LM algorithm when it is used for 
an application having huge weight space. 
 
Acknowledgements 
This paper was supported by research funds of 
Chonbuk National University in 2010. 
 
References 

[1] R. P. Lippman, An Introduction to Computing with 
Neural Nets, IEEE ASSP Magazine, Vol. 4, No. 2, 
(1987), 4-22. 

[2] D. E. Rumelhart and J. L. McClelland, Parallel 
Distributed Processing, MIT Press, Cambridge, MA, 
(1986), 318-362. 

[3] T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink and D. 
L. Alkon, Accelerating the Convergence of the Back-
Propagation method, Biological Cybernetics, Vol. 59, 
(1988), 256-263. 

[4] Xiao-Hu Yu, Guo-An Chen and Shi-Xin Cheng, 
Dynamic Learning Rate Optimization of the 
Backpropagation Algorithm, IEEE Trans. on Neural 
Networks, Vol. 6, No. 3, (1995), 669-677. 

[5] S. Ergezinger and E. Thomsen, An accelerated learning 
algorithm for multilayer perceptrons optimization Layer 
by Layer, IEEE Tarns. on Neural Networks, Vol. 6, No. 
1, (1995), 31-42. 

[6] Gou-Jen Wang and Chih-Cheng Chen, A fast multilayer 
neural-network training algorithm based on the layer-by-
layer optimizing procedures, IEEE Tarns. on Neural 
Networks, Vol. 7, No. 3, (1996), 768-775. 

[7] Sang-Hoon Oh and Soo-Young Lee, A New Error 
Function at Hidden Layers for Fast Training of 
Multilayer Perceptrons, IEEE Tarns. on Neural 
Networks, Vol. 10, No. 4, (1999), 960-964. 

[8] C. Charalambous, Conjugate gradient algorithm for 
efficient training of artificial neural networks, IEEE 
Proceedings, Vol. 139, No. 3, (1992), 301-310. 

[9] Rudy Setiono and Lucas Chi Kwong Hui, Use of a Quasi-
Newton Method in a Feedforward Neural Network 
Construction Algorithm, IEEE Tarns. on Neural 
Networks, Vol. 6, No. 1, (1995), 273-277. 

[10] Martin T. Hagan and Mohammad B. Menhaj, Training 
feedforward networks with the Marquardt algorithm, 
IEEE Trans. on Neural Networks, Vol. 5, No. 6, (1994), 
989-993. 

[11] Martin. T. Hagan, Howard B. Demuth and Mark Beale, 
Neural Network Design, PWS Publishing Company, 
(1995). 

[12] Marcelo Azevedo Costa, Antonio de Padua Braga and 
Benjamin Rodrigues de Menezes, Improving generation 

of MLPs with sliding mode control and the Levenberg-
Marquardt algorithm, Neurocomputing, Vol. 70, (2007), 
1342-1347. 

[13] G. Lera and M. Pinzolas, Neighborhood Based 
Levenberg-Marquardt Algorithm for Neural Network 
Training, IEEE Trans. on Neural Networks, Vol. 13, No. 
5, (2002), 1200-1203. 

[14] Bogdan Mo Wilamowski and Hao Yu, Improved 
Computation for Levenberg-Marquardt Training, IEEE 
Trans. Neural Networks, Vol. 21, No. 6, (2010), 930-937. 

[15] Lai-Wan Chan and Chi-Cheong Szeto, Training 
Recurrent Network with Block-Diagonal Approximated 
Levenberg-Marquardt Algorithm, Proc. IJCNN, Vol. 3, 
(1999), 1521-1526. 

[16] J. R. Alvarez-Sanchez, Injecting Knowledge into the 
Solution of the Two-Spiral Problem, Neural Computing 
& Applications, Vol. 8, (1999), 256-272. 

[17] Kur Hornik, Maxwell Stinchcombe and Halber White, 
Multilayer Feedforward networks are universal 
approximators, Neural Networks, Vol. 2, (1989), 359-
366. 

[18] D. Aha, A. Asuncion and D. Newman, UCI Machine 
Learning Repository, Availabe: 
http://archive.ics.uci.edu/ml/index.html 

[19] Jonathan J. Hull, A Database for Handwritten Text 

Recognition Research, IEEE Tarns. on Pattern Analysis 

and Machine Intelligence, Vol. 16, No. 5, (1994), 550-

554. 

Young-Tae Kwak received the B.S., 
M.S., and Ph.D. degrees in computer 
engineering from the Chungnam 
National University, Republic of Korea, 
in 1993, 1995, and 2001, respectively. 
He joined the faculty of the Chonbuk 
National University in 2002. His 

research interests include pattern recognition and neural 
networks. 

 
Heeseung Jo received the B.S. degree in 
computer science from the Sogang 
University, Republic of Korea, in 2000, 
and the Ph.D. degree in computer 
science from the Korea Advanced 
Institute of Science and Technology 
(KAIST), in 2010. He joined the faculty 

of the Chonbuk National University in 2010. His 
research interests cover computer hardware and system 
software. 


	Young-Tae Kwak1 and Heeseung Jo1,2
	Received July 1, 2011; Revised August 15, 2011; Accepted September 5 2011
	Keywords: Error backpropagation, Feedforward multilayer perceptron, Levenberg-Marquardt algorithm, Jacobian matrix
	1  Introduction
	2 Layer-by-Layer LM Algorithm
	2.1 FMLP and Notation
	2.2 LM Algorithm and Block Diagonal Matrix
	2.3 Layer-by-Layer LM Algorithm
	ELSE
	E(s) = E(strial),   w = wtrial
	ELSE
	E(s) = Ehid(vtrial), v = vtrial
	3 Experiments
	4 Conclusion

