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Abstract: The Schnakenberg model can be used to describe the emerggratterns on the animal skin. The problem is numerically
challenging for two reasons. First the organism grows scctmputational domain changes. Second the domain is tojgaloga
sphere and hence cannot be considered as a subset of thelplane approach we consider the computational domain ahersp
whose Riemannian metric changes and use special paraatietniof the sphere to formulate the discrete problem. Ouwicehof
parametrization allows a very convenient way to treat agatgss of surfaces in a straightforward way and in a simiky ane could
treat other PDE systems on surfaces. The same kind of idedseaased also to compute on surfaces which are not diffednitoip a
sphere. We have used finite elements in the discretizatienhaVe also analyzed how the eigenfunctions of the Laplaoamnelated

to the emergence of patterns.
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1 Introduction there, or one parametrizes the surface so that all

computations are reduced to parameter domain. There are
ome advantages and disadvantages in both approaches.
hen the surface is considered as a submanifol®bf

one can treat it "globally” but one necessarily has an extra

source of error because in essence one replaces the

éurface by an approximation. When one parametrizes the

numerical point of view, se€[3,4,5,6,7] and references ﬁ;ﬂg‘cggze:ﬁ Iztng erlrg_rtlof 252;3)('2?61?10; b;thaorgetthr? gigir
therein. The models are quite challenging numerically. Y xphicitly u P zatl

Typically they are nonlinear so that even basic existenca!aPs- In addition one parameter domain is never enough
and one must somehow put together different parameter

and uniqueness results may be unavailable. Also in .
biological and other contexts the computational domain isdomalns.
not fixed but evolves with time. Finally if the patterns are In this article we consider the second possibility. In
on the skin of the animal then it is most reasonable topjological applications for the emergence of patterns the
consider the domain as a two dimensional manifoldsurface is a topological sphere which evolves over time.
without boundary. However, since the topological type of the surface does

Due to the numerical difficulties the actual not change we can consider it as a fixed sphere whose
computations in]] were carried out in flat domains with Riemannian metric changes. Hence we can apply here the
homogeneous Neumann boundary conditions. In thissame ideas that were already used3®[. The change in
situation one obviously hopes that the solution in thethe Riemannian metric can be sometimes interpreted as a
interior would be "qualitatively correct” although near kind of moving grid method. This idea is developed in the
boundaries it is more or less arbitrary. present context for example it(]. However, the analogy

To compute the solution on some surface there aras strictly speaking valid only when one considers two
two basic possibilities: either one considers the surface adimensional domains iR2. When one considers surfaces

a submanifold ofR® and then one tries to approximate it then the moving grids are constructed®d and at most

The models describing the emergence of patterns have
long history which can be traced at least back to Turing’s
work on diffusion driven instability. The basic reference
on the applications to biology i4]. In recent years there

has been a lot of interest on these questions from th
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one can say that in some situations it is possible that orThe standard gradient (resp. divergence and Laplacian)

the numerical level the moving grid method could be operator in Euclidean spaces is denotedibyresp. -

close to our approach. Note also that on the practical leveandA) as usual. In a coordinate system we can write

one should take care that the mesh tangling is avoided in N g

the moving grid method. However, in our method such grad(u) = G '0Ou= ijou 9

problems cannot arise. i;j:l oX;j 0%
One contribution of our paper is that in this 1

framework we can quite easily do simulations on quite a9(grad(u), grad(v)) = (Ou, G™"1v)

large class of surfaces. It would even be possible toThe divergence of a vector field = Tiwid/d% is given

incorporate realistic shapes of animals in this framework.in coordinates by

The second contribution is to analyze more precisely the

role of the eigenfunctions of the Laplacian on the surface. 1 0

It appears that at least in certain situations the emerging = W Iz 0% (\/ det(G) Wi)

patterns can be qualitatively predicted by analyzing the

eigenvalues and the eigenfunctions of the Laplacian. Agsjpally the Laplacian of u is given by

before, perhaps because the round sphere is the moghtained by combining the formulas for divergence and

common example and this has a very atypical structure ofradient. However, the coordinate formulas for Laplacian

eigenvalues. and divergence are not in fact needed in our
In this paper we use the well known Schnakenbergeomputations.

model [L1] to study the emergence of patterns and we  The divergence theorem is valid also for general
have implemented our method when the evolving surfac&ljemannian manifolds.

is topologically a sphere. However, our approach can als . . .
IS fopologicatly a sp wev ur app ?{heorem 2.1.Let.” be a compact Riemannian manifold,

be adapted to other types surfaces. Also our code Cawavectorfield ony andv the outer unit normal field of
easily be adapted to other diffusion type models. the boundary.#. Then

The structure of the article is as follows. First in
section 2 we recall some necessary background from
differential geometry. In section 3 we introduce the / div(w)wyz/ g(wW, V) wy. o
Schnakenberg model first in the standard 2 dimensional 7 97

domain and recall some of the properties of the modelyt o js 4 manifold without boundary the right hand side
Then we formulate the model on arbitrary compact timesf the above formula vanishes. The following formulas

dependent manifold. In section 4 we show how to USefq|iow immediately. Ifu andv are functions andv is a
finite elements and method of lines to solve numericallyygctor field then

the resulting system. We also show how in this context
one can conveniently define time dependent families of

surfaces. In section 5 we give several numerical results
: : : g - VAgyuwy + | g(grad(u),grad(v)) wy =
and finally in section 6 we give some general conclusions. & &

div(w)

/ vg(grad(u),v) @y o
. 0.7
2 Preliminaries :
g(grad(u). Wiy + [ udivwie,
We start by recalling some facts from differential S Js
geometry. More details can be found it?]. ugWw,v) @y o
0.7 ’

2.1 Riemannian geometry One can define the usual Sobolev spaces/0onsing
local charts and the above formulas are thus valid for same
Let g be a Riemannian metric on some smooth orientablespaces as in the case whereis a domain inR".
manifold .7 with (possibly empty) boundary.”. The
components ofj in the coordinate system are denoted by
gij, and the resulting matrix i§. The components &~ 5 5 Growth, eigenvalues and eigenfunctions
are denoted by'. The canonical volume form of” is
denoted bywy and the corresponding volume byl (.¥) Let.¥ be a com ; ;
AR ) pact manifold without boundary and let
or volg(.#’). The induced volume form od.” is denoted us denote the eigenvalues ofd, by A or A(g) if

by wy .
S . . needed. Recall thadlg = 0 < A; < A, < ... and that
Then ifw is some vector field o” we can define the A — @ whenk — w. It is also convenient sometimes to

gradient ofu by the formula write eigenvalues without multiplicities in which case we
0(grad(u),w) = duw= w(u) write Ag = 0 < A1 < A2 < .... For the unit sphere with
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standard metric the eigenvalues (and even the
eigenfunctions) are known and we have

mg=2k+1 (1)

{Ak:k(k+ 1)

Heremy are the corresponding multiplicities. If we scale
the metric by gy, = pg then the volume scales as
volg, () = u"?voly(.#) wheren is the dimension of
. Also the minimax characterization of the eigenvalues
readily implies that

Fig. 1: The system@) can have diffusion driven instability
only if (a,b) is in the blue region.

Then using®; and settingd' = detd®!) we obtain the

A(Qu) = M 2 corresponding formula o1y’
u
d " ) X
In case.# is embedded in somBN then we obtain the &/q/ aJwy = /% (b+d'V(V)) Jwy

same effect by scaling the embedding linearly,/jy.
Let us then denote b any smooth surface which is But since7 is arbitrary this implies that
diffeomorphic to the standard sphere. We have the

following interesting estimate for the smallest eigenealu & (aj) = (b+ div(v)) Jt (5)
of the laplacian on such surfacds3[ p. 410].
Theorem 2.2. Our model and the numerical computations will be based
0 on this equation and the corresponding variational
1,1, 1 3vl(S) formulation.
A1 A Az T 8

The equality is attained only for the standard round metric

In particular '3 Schnakenberg model

8m  8m 3.1 Standard setting
M(Gu) = volg, () Hvolg(S) 3)

Let us first recall the formulation of th&chnakenberg
Finally recall that the eigenfunctions are orthogonal & th modelin a standard setting. L&2 ¢ R? be some domain
sense that ifi, andu, are two different eigenfunctions of and letu : Q — R?. The model is given by
—A o then
2

) (6)

Guz — dpAuz = y(b — ujuy)
where d;, a, b and y are some positive constants. As
boundary conditions one typically takes homogeneous
Neumann boundary conditions. It is also useful to
consider the corresponding stationary problem

2.3 Balance laws

Let us consider a family of Riemannian manifoldgsuch
that they are all diffeomorphic to some fixed manifoid

Let us further denote bg : . — . the corresponding — diAus = y(a— Uy + )

diffeomorphisms. We denote lgy the Riemannian metric (7)
of . and bywgy the corresponding volume form. — daAuy = y(b— U3up)
LetthenZ C . and® (% ) = % C -%;. Suppose now
that for all% we have We are only interested in nonnegative solutions. Note that
the model admits the constant solution
d
olt/az/t A /14 ben +/aa//tg‘(v’v)wm u=(a+b, b ) (8)
(a+hb)?

wherea, b are some functions andis a vector field. This . ]
is called themaster balance lawin [14]. Using the Let us then summarize the reasons for choosing
divergence theorer®.1we write this as certain values for parameters. For an extensive discussion

and background on this we refer tf [In diffusion driven

d ) instability we first choosea and b so that without
dt Jy, 29N~ /74 (b+d'V(V)) W diffusion the equilibrium solution given bygJ is stable.
(@© 2015 NSP
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This gives the condition (indicated by the blue region in 3.3 Changing manifold
Figurel)

(a+b)*+a—b>0 and a<b

Next we must choose diffusion parameters such that linear
stability analysis shows some unstable modes. This giveg, the biological context a flat domain iR2 is not very

the necessary condition realistic. If the goal is to analyse the patterns on the skin
d a+b)(atb++/2b(a+b) it is more natural to consider the problem on a compact
2> ( )( ( )) surface without boundary. It seems that all the examples

d1 b—a
In particulard, > d;. Consider now the polynomial

Po(y) = did2(a+ b)y2+ ((a+ b)3d1+(a— b)dz)y+ (a+ b)3 Definition 3.1. A family of surfaces#; with Riemannian
metricg' is nice, if there are mapsh and the surface”

If the parameters are chosen as indicated above thigith following properties:

polynomial has 2 positive roots, denotedyy, andymax.

We call the intervalleic = (Ymin,Ymax) the critical

interval. Then consider the polynomial

that are found in the literature are of the following form.

()& : .7 — A is diffeomorphism for alt > 0.

p1(U,y) = (a+b)u?+ po(y) (ithe map® defined by®(t,x) = @ (x) is smooth.
(iiijthe limit ., = limy_, .# is well defined and
+ ((dl +dy)(a+b)y+(a+b)*+a— b)“ T IS diffeomorphﬁ: tas.

(iv)the limit g° = lim;_, ¢ is well defined and

Suppose thak is an eigenvalue of A and letv, be the g” is a Riemannian metric ot

corresponding eigenfunction. IfA/y € l.i: then
p1(u,A/y), considered as a polynomial ip, has a
positive root, denoted by, . In this case the linearized
problem has an exponentially growing solution of the  The surface¥} is called theinitial surface (or initial
form cv, (x) exp(yu. t) wherec € R?. shape) and” is called thefinal surface(or final shape).
Note that this analysis shows that the paramgisiin Note that® is "almost” an isotopy betweery and.%.
a sense superfluous: the scaling/ias the same effecton However, in the present context it is more convenient to
(in)stability as scaling the domain, sed.( consider the infinite interval0,») instead of some
bounded interval as in the usual definition.

3.2 Some (in)existence results - _ _
Definition 3.2. Schnakenberg modeh a nice family of

Let us recall some results froni§]. We consider the surfaces is the system

model @) with homogeneous Neumann boundary

condition and with appropriate nonnegative initial

cch]ndmon. Thenr\]/ve have o | | & (3t uy) — diJt Aguy = y(a—ug + u§u2)Jt = £,

Theorem 3.1. The system as at least one solution t t o\t t

which is smooth, bounded and global in time. %(J Uz) — 02T Azt = y(b—uilp)J" = f2J
Now when modelling for patterns one expects that the

solution would tend to a stationary solution which is not

the constant solutior8]. Hence there should be more than

one solut|on to the stationary problei).(However, there standard Schnakenberg’s mod8). (We are not aware of
is the following result. . : .

) . any rigorous existence and uniqueness results for the
Theorem 3.2.There is a positive constantsuch that 7) system 9) in Sobolev spaces. However, it there are
has no nonconstant solutionsAif > c. some results for similar systems. The functiansare

Recall that eigenvalues scale as #). (This implies  jefined on and the corresponding functions ofi are
that if the domain is too small there can be no stable%iven byul (x,t) = ui(q,t—l(x) t)
i\ st)-

patterns. Note that this does not necessarily mean that th

solution @) is stable. The model could still in principle Note that the constant solutioB)(is not a solution of
have oscillating solutions which do not tend to a definitethe system9) becausél' is not constant. However, since
limit. Anyway for the emergence of patterns it is thus g® is well defined there is also som¥ = lim_,e J'.
necessary that the constant solution is unstable and thadence it is still quite possible that in some situations the
the domain is big enough. In other words the growth of solution tends asymptotically to8Y However, when
the domain really seems to be essential in the emergencgtudying the emergence of patterns one is naturally
of patterns. interested in stationary solutions which are not constant.

9)

Here we have combined the balance I&y &nd the
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4 Numerical model

4.1 Variational formulation

Our goal is to solve the mode®). Let ¢ : . — R be
some function and lept(x) = (@ 1(x)). Then we have

/ (d(JtUi)—dthAin)wwy:
54
& /y uy s +d // glgrad(u), grad(@)) 3 wy —

o[ dutas+d | dleradd).gadu))os =

tot
/, fiy wx
A

Evidently M (resp.R) is symmetric and positive definite
(resp. positive semidefinite). Als&, M and M are
symmetric and we have

Lemma 1E and M are positive definiteM is positive
definite, if the approximations y and w , are positive.

ProofLeta € R™andv =S, aiyi. Then

2
(a,Ma) :/y(v‘)z(uih) wy >0
Similarly
(a.Nia) = [ ()2 ooy > 0
A

if uph > 0 anduyp > 0. E is said to be positive definite

This is the basis of our numerical computations. Let usif y;,, Eijc,/Aij A > 0 for all symmetric nonzero matrices
now proceed in the context of finite element methods. LetA. Let A5, 1 < s< m, be the eigenvalues éfand letw® be
Vi, be some finite dimensional space of functions definedhe corresponding eigenvectors. gt= 5; Wiy Then

on.Y”:

Vh:SPan{‘,Ula---aq—’m} (10)
Let us first look for the approximate solution of the form
Un = (Ugh,Uz ) Where

3

¢ (O (X) ~ ui(x.t)

1

Ui7h(X,t) =

J

_%Eijkeﬁqukz = /y (z,\s(\é)z)zw% ~o
ijke A NL

One could say thaM is "only” conditionally positive
definite in the sense that this property depends on the fact
that the solution stays positive while the positive
deifiniteness oM and E does not depend on this. Note

This leads to the following semi discrete variational that if the approximate solution does not stay positive

formulation:
(V)find (uyn, Uz ) of the above form such that for dll<
j<m
& [ s+ [ deradhp).grad(y)ws -
% 7
flut
/:54 1’~p1 A
& [ e+ [ derad(th).grad 4o =
% 7

tot
/% foy s

To obtain a more convenient formulation we introduce the

following (time dependent) matrices and tensors:
Mij (t) = /:54 U Yy
Ri(0) = | d(erad(uh).grad(y]) )y
Eijke(t) = /:54 (ITSUHTNITAPA
A= [ oy
Mij (t) = gEijke(t)Cﬁ(t)Cf(t)

N (1) = ga Ke(OCHOCH D)

then the numerical solution has failed so that in successful
computationsl must be positive definite.

Setting nowcl(t) = (c}(t),...,ch(t)) we can now
write our semidiscrete problem as

& (Mct) + diRct = y(aF — Mct + Mct)
6 (Mc?) + d,RE = y(bF — Mc?)
To obtain a fully discrete formulation we need more

notation. Letdt be the time step and let the superscript
denote the approximation or the value of some quantity at

time instanindt. In particularcij’n ~ cij (ndt) and
m
uly = _Zlcij’”wi A Uj (X, ndt) &~ uj(x,ndt)
i=

Now if we use implicit Euler method to solve the
semidiscrete system we should solve a nonlinear
algebraic system at each time step because matkices
andM depend on the solution. To "linearize” the resulting
system we use the approximations

Mn+1cl7n+1 ~ Mncl,n+1 and Mn+1C2,n+1 ~ Mncz,n+1
This gives the following system
(Mn+l+ 5t (VMn+1+len+1_ yMn)>Cl‘n+l — ML 4 ot yaF™!

(M2 5t (cgR™ 2 yNI") ) 2L = MG+ 5t ybF™ !
(11)
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The equations can be solved independently. Note that th&low the computation of all terms in the fully discrete
second equation can be solved for any time step, but fosystem {1) has been reduced to standard integration in
the first equation we can only say that it is solvable for Euclidean domains. Next we discuss how to construct
sufficiently smalldt. Hence our fully discrete problem is appropriate mapg} and how to choosg ;.

well-posed for sufficiently smaldt. In general, however,

there is no guarantee that the numerical solution stays

positive. Note finally that we do not need to construct 4,3 Sphere and its triangulation

explicitly the tensorE because we can directly compute

the elements ofi" andM" using the formulas Up to now our approach has been very general in the

. ot R 2 sense that the surfaces we have considered have been

Mi] :// YU ey o M :// Yy (urh) "y quite arbitrary. Now we turn our attention to the case
% 2, 7 ,

(12) where the surfaces are topological spheres. Note however
that the general methodology that we employ can also be
used to study other types of surfaces.

Let us first consider the unit sphere. We define the
parameter domains D; = (-1,1) x (-1,1),

To actually solve the systen{) we have to evaluate the D2 = (1,3) x (=1,1) andD3 = (-1,1) x (1,3) and the

relevant integrals which define the matrices. To this endcorresponding mapg : D, — S* C R® as follows

we introduce

4.2 Domain Composition

Definition 4.1. The mapsp, : Dy — ., 1 < /¢ <sare an 1 = ~1/2 ;1 by = ~12(
admissible parametrizationof . if the following 1=N 1] & , 2,
properties hold: 1
(leachD, c R? is open andy, is a diffeomorphism. _1/2 15
() 4(D) (i) = D for (£ K b=y | 1| where (o)
(iii) 7 = Uyde(Dy) - ,
Given such a system of maps, the bas@) énd a nice W=1+7Z+% , p=1+(@-2°+%
family of surfaces we can define the functions =142+ (22— 2)
- — U —ut — uto ot .
Be=yiopr=yioBod,=yiod, Let us further seD,,3 = D, and¢,.3 = —¢,. It is easy
jhe=Ujpo ¢, = u‘Lho ®roy = u‘j’hoqb} to check that the mapg, : D, — S, 1 < ¢ < 6 give an
_ _ , . admissible parametrization according to Definitib@
Denoting the coordinates & by zwe have first Considering the images of these maps leads to the
- identifications of the boundaries of the parameter
M;j =/{, U i :/( Yy det(ddr) wy domains which are indicated in Figu& The relevant
A 7 metric in the subdomains is then given 8y = d¢2—d¢g
:;/(p o) Uiy, det(dcp[)@y (13) and the area form is
4 (\r

W = \/de(G)dz Adz =y, ¥ %dz A dz, .

Using the basic maps defined id5) we can now
. construct more complicated topological spheres with the
Let us setw} = det(d¢})dz Adz. Now the metric in the g . . .
coordinate domains D, are given by matrices maps¢t£ = @ o¢ by choqsmg a s_unable time d_ependent

; ATyt | ~ map ®'. The corresponding matrlcéstg which give the
G| = (d¢y) d¢;. Hence proceeding as above and USiNORjemannian metric  in  this case are then

:;/D 0o, ¢ det(dg})dz A dz,

the formulas {2) we obtain G) I: (d¢})Tdg; = %¢€T(d®t)Td¢tq§§é o d
t remains to choose appropriafle ;. We have use
Rij :/54 d' (grad(y), grad (¢})) ', standard finite elements. First we triangulate each
' subdomainD, separately but in such a way that the
:Z/ <D¢Ji’4,(G;)*1D¢j’g>w} triangulations are compatible on subdomain boundaries.
/Dy In Figure3 there is a simple example of this situation. In
NiD — / TN RO the initial triangulation there are 42 nodes but after all
Z p, T PIELRE2 N (14)  identifications only 26 distinct nodes remain. We have
R ) usedFreeFEM to triangulate the subdomaing7. Note
M) :Z/ BioWi (07 ) ) that when triangulating it is useful to have a triangulation
7 /Dy ' which is almost uniform in the given metric. This can be
_ toy P, done by giving the relevant metric to the triangulation
R _/;4 Wiws = Z/ch i oo algorithm [L8]. In Figure4 there is an example where the
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Fig. 2: The construction of the sphere using the maps  Fig. 4: Onthe left the triangulations of the subdomains and

The arrows indicate the orientation of the boundary usedhe resulting triangulation of the surface. Since the rtév

in the identification. metric was taken into account in the triangulation of the
subdomains the resulting triangulation on the surface is
almost uniform.

consider a single diffeomorfis®. Letp : R3\ {0} — R

be a positive and a positively homogeneous function, i.e.
p(cx) = p(x) for all c > 0 and let us define a mag :

S — .7 by the formula®(x) = p(x)x. Evidently.7 is

a smooth surface which is a topological sphere and it is
given by the equatiofx| = p(x). In this case we compute

do =pl +x®dp =
doTd® =p?l +p(x@dp+dp@X) + [x?dp @ dp

But we will always evaluatel®"d® on the unit sphere
where|x|? = 1. Moreover the columns af¢; are tangent
Fig. 3: A simple mesh which shows the original to the unit sphere which implies thely|x« dp = 0 and
numbering of the nodes as well as the numbering after aldp ® xd$; = 0. Hence
appropriate identifications.

Gj =d¢]doTdedg; = p’d] dg; +dpdg; © dpd;

=p°Gj+dpdg; @ dpdg;

triangulation is far from uniform in the standard metric
but almost uniform in the relevant metric of the surface. We will consider 2 different kinds op in the examples

Having constructed the triangulation we compute thebelow. To obtain a surface of revolution one can choose
relevant integrals in13) and (L4) in the standard way.
Finally in assembling the resulting global matrices we p=pio& where & (x)= X3
have to take into account the identifications indicated in |
Figures2 and 3. We have implemented our code fBy
andP, elements. andp; : [—1,1] — Ris the function which gives the profile

of the surface. The metric in this case is given by

(16)

4.4 Explicit construction of various surfaces Gj = p?(x3)Gj + (pi(x3))2(d51d¢j ® dsldqb,-) where

Let us next describe one convenient way to define a larg&lé1 = (— X1X3, —X2X3,X§+X§)
class of maps! which we use in the examples given later.
Let us for the moment suppress the time dependence anldecall that everything is evaluated on the unit sphere.
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Table 1: Parameters used for the the surface giver2dy. (
To construct a more general surface we can choose

[o]d [ v Ta[bJa[llal[B[r]kI/p]
[1 100500 0.1] 09] 0.1 05| 08] 03] 05]05]5]

p=p20¢&2 where

X \/ X3+ X2 (17)
& :( )

\/ X3+ %3 X
Let us first consider the surface which was studied?|n [
Now it may appear thad is not well defined becausg is The equation of the surface is given by
not defined on th&; axis. However, this is easy to arrange .
X . . X p
by choosing a suitablp,. In particular we consider only x§+x§+q2 (X_L3) 2 (20)

5.1 A simple surface

polynomial maps —4
Pa(y) = Z Cay® Herep is constant butj andL depend on time:
a —kt
a=0o(1+a(l—e™))
wherea is a multi index ando; < ay. In this case the Lo
resulting mapp is smooth and the metric can now again L= W

be written as
. One can check that this gives a nice family of surfaces
Gj = p°G; +dpd¢; @ dpde; according to Definitior8.3. The relevant parameters for
the surface and the Schnakenberg model are given in
There are of course many ways to introduce timeTablel. We have chosen the parameter values which were
dependence to the problem. One relativelyused in P]. Using these parameters we have
straightforward and natural way is to use a linearl.; ~ (0.0130.78) and initially there are 16 unstable
homotopy. We define the initial shape Ip: and the  modesA;/y € . for 1 < j < 16.

final shape by, and set Initially the surface is a short "snake” which then
becomes longer and a bit thicker as the time goes by.
pr(X,t) = (1= (t)) Pinic + () Pfin (18)  Since the shape of this surface is so close to a sphere this

is easiest to parametrize by modifying directly our basic
Here { is a function with the following properties: (i) mapsin (5). The relevant maps are given by
{(0) =0, (ii) {'(t) > 0 and (iii) M- { (t) = 1.

In biological context it is rather natural to tajg;; as qa
the constant map, or at least quite close to constant. The ¢ 12
map ps, should then give the shape of the organism as an b1=v, 4z )
adult and consequently it must be quite complicated in J2-1/4p
realistic cases. We do not attempt to go so far as to model Vll L
a specific species but anyway we feel that the examples q
below are at least suggestive of biological shapes.
Anyway when p;,i; iS constant we can write the time ¢5: y£1/2 a2
dependent metric as

C o v/ > VL2 2) (21)
G| = pfGj + {“dpsin dgj @ dpsin d; (19) 9z

& Numerical resd oy=y, " q

umerical results

yé/Z 1/4pL(2_22)

In all cases below we have us@dfinite elements in the w=1+zZ+23,

computations and the initial condition was taken as a 4
smaIFI) random perturbation of the constant solutigh [n Yo=1+(@2-2"+ z% ’

Figures red corresponds to large and blue to small values V5= 1+z§+ (22— 2)4p

of the solution. In all computations the solution stayed

positive for the time-steps we used. Also computationsThen we set}, ; = —¢} as usual. The formula for the
were stable for these time-steps. In other words choosingnetric is quite messy so we will not give it explicitly but it
a time-step which seems reasonable from the point ofs anyway quite straightforward to program.

view of accuracy always produced stable and positive  The triangulation used in the computation is shown in
solutions. Figure 4. In Figure 5 there are solutions at two time
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Table 2: Another set of parameters for surfa@8y

instants. The solution approaches rather quickly a
stationary solution. This seems rather natural because T Td
there are initially already many unstable modes so one 12

. . . . 1]120(72)02]| 10
expects the evolution to be quite rapid and indeed already
att = 1.6 the solution is quite far from constant.

¢ ¢

(a) Onthe left 0l < u; <7.08 and on the right.06 < u, < 0.66.

Fig. 6: On the left the eigenfunction corresponding to the
eigenvaluel, of the Laplacian on the surfac2Q) att =
~ 1.6. On the right the solution; att = 1.6. wherea = 0.2

/‘. ,b=1,d1=1,dr,=20andy="72.

oscillate more and more. Hence the final solutions
corresponding to largg tend to have finer patterns than
(b) On the left 009 < u; < 8.11 and on the right A4 < up < the solutions ‘_N'th smay. o
0.59. Note again that the value of has no intrinsic
meaning, only the value of relative to the size of the
Fig. 5: On the first row there are solutions andu, at surfape. Recall finally that accordi_ng to Theqrérﬁ the
t — 1.6 and on the second B 2.75. solution tends to a constant solution if the first nonzero
eigenvalue is too big. Hence the emergence of patters is
impossible if the surface is too small and in this way the
Let us then consider another case where we car@rowth of the surface is essential to the emergence of

illustrate the role of eigenfunctions to the resulting Patterns.
patterns. Using the parameters given in Tablwe have
lit &~ (0.17,0.43). In this case there are initially no .
unstable modes. However, tat 1.6 we haved,/y € lgi 5.2 Surface of revolution
and in Figure6 there is the corresponding eigenfunction . , )
as well as the solution to the problem. The patterns ard-et us then consider the final surfaog, = pyo ¢y as in
almost identical. (16) where
In general we could say that when the surface grows pi(s) =1+3¢" - 25’ (22)
the eigenvalues tend to move to the left. Hence if there ar&yvhen we evaluate on the unit sphere we obtain
no unstable modes initially the solution is likely to be
characterized by the eigenfunction corresponding to the Pfin :1+3x§—2x§
first Aj/y which enters the critical interval from the right. 2
Recall that for general surfaces the eigenvalues are simple dprin =6x3(1 — X3) ( —X1X3, —XoX3,1— x3)
so it is possible to have so clear a correspondence as in . ] ]
Figure 6. On the other hand in the atypical case of the USing the linear homotopyl@) and choosingi: = 1 and

sphere where there are high multiplicities of eigenvalues$ (t) =1— e__st we can compute the metric by the formula
this sort of phenomenon is not likely. (19. Choosing parameters as shown in Tablee have

Let us also recall that the eigenfunctions of the the critical intervallg;; =~ (0.15,0.55). Now initially we

Laplacian are always orthogond)( This implies that the have the unit sphere so that accordinglipWje haveAs/y,
eigenfunctions corresponding to larger eigenvaluesis/y € | and there are thus initially 16 unstable modes.
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Table 3: Parameters for surfac2Z). Table 4: Parameters for surfac2d)
dy | do y a b dy | do y a b
1|10|50|01]| 08 10| 90| 10| 01| 08

. . L When evaluated on the unit sphere we have
In Figure7 there are solutions for some time instants.

There were 2890 nodes in the mesh and we dded 0.1 o 5 2

as the time-step. Since there are already initially some Pin = (34 2x1) (4+ 3G — 303 + 15

unstable modes the solution stabilizes quite fast. For then Figure 8 there are solutions for some time instants. In
final surface there are 127 unstable modes sincehis case there were 2756 nodes in the mesh and the time-
Aj/Y € leris for 56 < j < 182. step wasdt = 0.1. The parameters were chosen as in Table
4 and the critical interval i$.i: ~ (0.0180.051). In this
case there are initially no unstable modes so it is natural
that it takes a long time before patterns start to emerge
and the even more before the solution settles. For the final
surface we have 97 unstable modes siAggy € I for
52< j < 148.

6 Conclusion

We have formulated the Schnakenberg model on the
evolving surface and computed the solution in various
cases when the surface is topologically a sphere.
However, our approach can also be used to other types of
surfaces, as long as the topological type of the surfaces
() On the left 18 < u; < 1.79 and on the right 89 < u, < 1.39remains the same during the computation. Our method of
computation allows a very flexible way to define
appropriate families of surfaces. Our code can also be
adapted to handle similar nonlinear diffusion models.

Our approach is based on explicitly taking into
account the changing Riemannian metric of the surface
which makes all computations completely intrinsic.
Hence we avoid all problems related to approximating
surfaces as submanifolds &°. In particular the mesh
tangling which sometimes is problematic in moving grid
type methods cannot arise in our framework.

In our method we use six coordinate patches to cover
the whole sphere. Using spherical coordinates one could
in principle use only one patch. However, this coordinate
system is singular at the "poles” which would lead to
numerical difficulties. While it is perhaps possible to
. ) work around these difficulties the resulting scheme is
Fig. 7: On the first rowu; andu; att = 10. On the second  pecessarily somewhat ad hoc. Our coordinate systems are
row u; andu att = 30. always numerically stable.

In the case of the sphere one could also try to use
spherical harmonics in numerical approximation like in
[5]. However, it is not clear how to extend this approach
: to more general surfaces. Indeed it was one of our goals
5.3 More complicated surface to treat a large class of surfaces in a unified way.
Let us now consider the case whéi@) = 1 — e, pyic = We have also analyzed the role of the eigenfunctions
1 and the final surface is given Ing, = p; o & whereé&, of the Laplacian in the emergence of patterns and it seems
is as in (L7) and that at least in some cases one can pre_d|ct the overall nature
of patterns simply by studying appropriate eigenvalues and
P2 = (3+2y1y2) (4+ 3y3(16y; — 20y + 5y1)) (23)  eigenfunctions. These observations seem to be new.

(b) On the left 029 < u; < 2.02 and on the right. 82 < u, < 1.29
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