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Abstract: In this work, an exponential spline method is developed aradyaed for approximating solutions of calculus of vanag
problems. The method uses a spline interpolant, which istoacted from exponential spline. It is proved to be secortbbr
convergent. Finally some illustrative examples are inetltb demonstrate the applicability of the new techniquanstical results
confirm the order of convergence predicted by the analysis.
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1 Introduction with boundary conditions given in Eq2) The above
boundary value problem, does not always have a solution

The calculus of variations has a long history of interactionand if the solution exists, it may not be unique. Note that

with other branches of mathematics such as geometry anti the solution of Euler’s equation satisfies the boundary

differential equations, and with physics, particularly conditions, it is unique.

mechanics. More recently, the calculus of variations has ~ The general form of the variational problem in Edj)

found applications in other fields such as economics andS

electrical engineering. Much of the mathematics o IY1(X); -+ Ym(X)] = )

underlying control theory, for instance, can be regarded as Ja FOGY1(X), o Ym(X), Y1 (X)., - Yin (X)) A

part of the calculus of variationg]; with the given boundary conditions for all functions
The main problem that we will be investigating

throughout the present paper is the following functional yi(a) = ay, y2(a) = az, ..., ym(@) = Om, (5)

which is the simplest form of a variational problem as

b y1(b) = B1, Y2(b) = Bz, .., Ym(b) = Bm. (6)
Iyl :/a Fxy(x),y (x))dx (1) Here the necessary condition for the extremum of the
functional in Eq. §) is to satisfy the following system of
wherel is the functional that its extremum must be found. second-order differential equations
To find the extreme value , the boundary points of the
admissible curves are known in the following form: oOF d oF, o i_12 m 6

oy axlay) =
y(@=a, yb)=58. ()
@ ®) with boundary conditions given in Eq$)¢(6). However,
The necessary condition fgi(x) to extremizedy(x)] is  the above system of differential equations can be solved

that it should satisfy the Euler-Lagrange equation easily only for simple cases. More historical comments
about variational problems are found ih 2, 3].

oF d oOF Many efforts are going on to develop efficient and

5_y - &(W) =Y (3) high accuracy methods for solving calculus of variation
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problems. Gelfandd] and Elsgolts 8] investigated the [23] used cubic spline functions to develop a numerical

Ritz and Galerkin direct methods for solving variational method for the solution of second-order linear two-point

problems. The Walsh series method is introduced toboundary value problems.

variational problems by Chen and Hsia4.[Due to the In this paper, we have developed a new spline function
nature of the Walsh functions, the solution obtained wasmethod for solving problems in calculus of variations by

piecewise constant. The authors 154§, 7] applied some using exponential spline. The main purpose is to analyze
orthogonal polynomials on variational problems to find the efficiency of the exponential spline-difference method
the continuous solutions for these problems. for such problems with sufficient accuracy.

Razzaghi and Marzbar8] introduced a new direct The procedure is to combine a spline approximation
computational method via hybrid of Block-Pulse and for the second order space derivative with a difference
Chebyshev functions to solve variational problems. Thenapproximation for the first order space derivative. The
Razzaghi et al. 9,10] presented direct methods for resultis a finite difference scheme wherein the more usual
solving variational problems using Legendre wavelets.explicit difference schemes are special cases. Also the
The rationalized Haar functions are applied to variationalcombination of a finite difference and an exponential
problems by Razzagi and Ordokhardil[12]. Dehghan spline function techniques provide better accuracy than
and Tatari L3] aimed at producing approximate solutions the finite difference methods. The method involves some
of some variational problems, which are obtained inparameters, which enable us to obtain the classes of
rapidly convergent series with elegantly computablemethods. Our method is a modification of cubic spline
components by the Adomian decomposition techniquemethod for solution of this equation. Application of our
Then, in their earlier researcii4] the He’s variational method is simple and in comparison with the existing
iteration method is employed for solving some problemswell-known methods is accurate. The resulting spline
in calculus of variations. Saadatmandi and Dehgtidh [  difference scheme is analyzed for local truncation error
used the Chebyshev finite difference method for findingand convergence. We have shown that by making use of
the solution of the ordinary differential equations which the exponential spline function, the resulting exponéntia
arise from problems of calculus of variations. t6] the  spline difference scheme gives a tri-diagonal system
homotopy-perturbation method has been intensivelywhich can be solved efficiently by using a tri-diagonal
developed to obtain exact and approximate analyticakolver.
solutions of variational problems by Abdulaziz and his  The outline of this paper is as follows: In Section 2,
co-authors. Dixit et al.17] proposed a simple algorithm we present the formulation of our method and useful
for solving variational problems via Bernstein spline difference formulas are given for discretization of
orthonormal polynomials of degree six. Irlf, the the Equation I). In Section 3, we present the
variational iteration method was implemented to give convergence analysis of the introduced method. In
approximate  solution of the  Euler-Lagrange, Section 4, the numerical results obtained from applying
Euler-Poisson and Euler-Ostrogradsky equations ashe new method on six problems are shown. Finally a
ordinary (or partial) differential equations which arise conclusion is drawn in Section 5.
from the variational problems. Maleki and
Mashali-Firouzi [L9] proposed a direct method using
nonclassical ~ parameterization ~and  nonclassical Description of the method
orthogonal polynomials, for finding the extremal of
variational problems. Nazemi et a2q] employed the 2.1 Exponential spline
differential transform method (DTM) for solving some
problems in calculus of variations. Let us consider a mesh with nodal pointon [a, b] such

The term spline in the spline function arises from the that:
prefabricated wood or plastic curve board, which is called
spline and is used by a draftman to plot smooth curves
through connecting the known points. Spline functionswhereh = bN;f" andx; =a+ih fori=1,....N. We also
can be integrated and differentiated due to beingdenote the function valugx) by y;.
piecewise polynomials and since they have basis with Let S(x) be the exponential spline of the functipfx)
small support, many of the integral that occur in the at the grid poink; and be given by
numerical methods are zero. Thus, spline functions are _ ‘
adapted to numerical methods to get the solution of the S (X) =& +bi(x—X) + G ™) + die T4 (g)
differential equations. Numerical methods with spline for eachi — 0
functions in getting the numerical solution of the
differential equations lead to band matrices which are
solvable easily with some algorithms in the market with
low cost computation. During last four decades, there ha

Aa=Xg<X <X < - <Xy_1<XN=Db,

,...,N, wherea;, b, ¢, andd; are unknown
coefficients,T is a free parameter and= /—1. We first
develop the explicit expressions for the four coefficients i
§8) in terms ofy;, i1, Mj andM;_ 1, where:

been a growing interest in the theory of splines and their S(%) =¥, S(Xi+1) = Yis1,
applications (see2[1,22]). For example, Rashidinia et al. §'(x) = M;, S’ (Xit1) = Mis1. 9)
@© 2015 NSP

Natural Sciences Publishing Cor.



Math. Sci. Lett4, No. 2, 101-108 (2015)www.naturalspublishing.com/Journals.asp NS = 103

Now using @), we can determine the four unknown 1h2 (%) 12 / q )(1— s)5ds
coefficients in 8) as 0
Adding the two equalities above, we
a{ yl T2’ 5
h—lz[q(ml) 20(x) +q(xi-1)] = " (4) + T4 (x)
Miy1—Mi+72(yi11-V) ht (1 5
bi = 2 , +155 /6 1d® (x + sh) + q(®) (x — sh)] (1 — s)°ds 1)
G — Mi—€™M; 4y Similarly, from the following Taylor expansions
h3
gth i _dth ; (. " (4) (5)
d— 52’;;.% 71>M>_ q’(%i+1) = 9" (%) +hd" (x + q (%) + 5 a7 (%)
The continuity of the first derivative & (x) atx = X; (6) (v. 3
yields the following consistency relation: +E/o a7 (4 +sh)(1-s)"ds
Ly .oy . _ h2 h3
2 (Yirr —2yi+Yim1) = (x| — ha” 4 (x)— —g®(x;
(K1Mi_1 + 2KoMi + K1Miy1), (10) T -1) = 40 ) Gq ol
where X — 8
1-e?™ 21the™ / q sh(1-s)°ds

K1 = AC T
(11)  We can obtain
Ko — —1-1th+(1-1Th)e?™ )
2 e et-1) Klq (X|+1)+2K2q (%) + K10 (Xi—1) = 0" (%) + k20 (%)
In the liming case when T — 0, then  +2k1 J[q® (% +sh) +q®(x —sh)](1—s)%ds
(K1.k2) — (3,3), and the relation defined by1Q) (15)
reduces into ordinary cubic spline relation: Subtracting {4) from (15 and using the mean value

L L theorem of integration, we get
ﬁ(yprl—ZYi +Yi-1) = E[Mi+1+4Mi +Mi_1]. (12)
Ti(h) = [Ka0" (42) +2k20" (%) + Kad (%-1)] = 5 [OI(X|+1) 2q(xi)
Now, for analyzing the truncation error of the
equation 10), we present the following lemma. h2 h 1

+006-1)] = 75(121 -1 (E) + 355 | 1A 0+ sh)+

Lemma 2.1. Supposey(x) € C®[a,b]. Then )

1 04 —sh) (1-9)°[5K1 ~3(1—97Jds= (1261 - 1) (§)
Ti(h) = [Kadl" (%-2) 220" (%)) + Kadl" (% -1)] = 5 [A(%+1)

Vi
h2 +pgld® (%80 4% (x — 8h)] /0 (1-9P[5K1 - 3(1-9ds
—2q(%i) +q(Xi-1)] = 12(12K1— 1)g“(&)+ e "
(126 — 1)g (&) + 5= (30k1 — 1)q 0 (&),
30K~ 1 (8) + O(1), R 3607
$€(0,1),& € (Xi—1,Xi+1).
& e (X_1,%41), i=21.. ,N—-1 (13)  This completes the proof.

where X, + 2k = 1.

Proof. According to the Taylor expansion, we have 2.2 Numerical method

W For the sake of the simplicity, we consider a general form
a(xi+1) =a(x)+hd (x q (x.)+ qm( i)+ ﬁq( J(x) of equations3) as follow

5 6 1

+1“—mq () 1“—20 / 9 (x -+ sh) (1~ 9°ds
2 h3 h4

a(xi-1) —hd (% () =5 d"(4)+ —q (%) y(a) =a, yb) =5 (17)

y' =f(xyy), a<x<b, (16)

subjected to boundary conditions
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At the grid point (), we may write differential
equation 16) as

i = (X, ¥, %) (18)
By using moment of spline inl@) we obtain
Mi = (%, i, ¥{)- (19)
Following [24 now we use the following
approximations for first derivative of
_\ +4 3V h2
= A Ty + o),
3 v h2
y = A Ty &) + o), (20)
3yis1—4yi+Yi-1 5h?
Vg = 2RI Sy 1 (1),

Now applying the difference formulalQ) to the
nonlinear equationsl@) and (L7) and using 20), we have
5 (Visr — 29 +Yic1) = [Kaf (xi_1, Y1, A=)
2K F (X, Yi, B Ky f (X, Yigg, DAL
i=12.. N—1

(21)
where k; and kK, are parameters defined iA1) which
2K1+2Ko = 1.

The application of21) at the pointsg,i=1,....N—1
gives the(N — 1) x (N — 1) nonlinear system

1
Say-=9(y) =T(h), (22)
where
-2 1 Y1
1 -21 Y2
1-21 YN-2
1 -2 YN-1
01
02
9g(y) = :
ON-2
ON-1
and

gi (Yi—laYi 7yi+l) = Klf (Xiflayifla}/i_l) + 2K2f (Xl 7yi7>/i)
+Klf(xi+17yi+l7>/i+1)'

In actual practice we usdg) and get

1
SAS—G(S) =0,

N (23)

where.” is an approximation of the solution vectpr

The expressions 02@) and @3) become

dy—h?%(y) =h2T(h), (24)

oS —hqg () =0. (25)
We assume that for all€ [a,b] and all{i,ni € R, i =
0,1, f satisfies the Lipschitz condition,

|f(x,¢0,41) — T(X,n0,N1)| < Z(]¢o—no| + 41— n1l),
(26)
where.Z > 0 is the Lipschitz constant.

Lemma 2.2. The matrix« is invertible.
Proof. See pP5].

Proposition 2.3. Let the Lipschitz constant? satisfies
the inequality .Z||.% ||e (h?|| || + h||Al0) < 1,
then there exists an unique exponential spline that
estimates the exact solution of the problem 16) with
boundary conditionsl(7).

Proof. From EquationZ5), we obtain
S =W g (7). (27)
Putting.Z = ., we introduce the following

W) =Po'9(2)= 2, (28)
where
01(20,21,22) 2
02(21, 22, 23) 2
G(Z)= : and.Z = :
ON-2(ZN-3:ZN-2,ZN-1) N-2
ON-1(ZN-2,ZN-1,2ZN) ZN-1

We will show that the functio has a unique fixed point,
i.e. Equation27) has a unique solution. Suppogé, ¥ €
RN-1, By help of Eq. 28), we have

[W(?) =WVl <
Wl |G (#) =GP )|
Applying the mean value theorem and conditi@e)(
we have
[0, 77 (%), 77 (%)) = £06, 7 (%), 7' (x))| <
LW (%) =V (%) =177 (x) = 7" (%)]) <
ZL (| Holleo + 0 Allo)|# = o
Therefore, we have
19(#) =4 (V)| <
Z(||-o0]les + [ ]l [# = F ]| o
Consequently, using ER9) we obtain

1p(7) =PV <
LN o (0P]| Folleo + | o) [[# = F |

Thus, if.Z||.& 71| (h?[| |eo + h|| 2 |0) < 1 theny
is a strong contraction mapping.

(29)

(30)

(31)

(32)
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3 Convergence Analysis Consequently, itZ |7 ~2(|o (N?|| || + N|.A|e0) < 3,
we obtain

We next discuss the convergence of the mett2i) by [y—leo <

using the method which presented i85]26,27,28]. Z(Qoh?+Q1h) |y ||+ 77 2. (41)

SubstractingZ4) from (25), we get 2’(H%Hw(b—a)*lumuw)

We investigate the convergence analysis of the main
o (y—.7)=h? (%(y) —g(y)> +h?T(h).  (33) schemeZ2l) in the following main theorem.

Theorem 3.2. The exponential spline approximatiorf
converges quadratically to the exact solutignof the
boundary value problem defined by Equatiot$)(and
17, i.e.|lY —.7|o = O(h?).

Proposition 3.1. Let the Lipschitz constant? satisfies
the inequality ||/ (| (N?|| % |eo + h|lw) < 3,
then there exists a constapt’ > 0 which depends only
on the functionf such that

ly—.7|lw < #h2. (34)  Proof. using Proposition 3.1, it can be easily verified that

Proof. Eq. 33) yields ly =7l < #h2.

_ _ From Eq. 38 and the fact that
2 1 2 1
(y—) =h“e (g(Y) _g(y)> +h%e =T (h). Y = Ll < [I[Y =Yl + [[y = Z|lo, We prove the
(35) proposed result.
From Lemmma 2.1 and2(), it is easy to see that
T(h) = ¢(h?), since there exists a consta#f > 0 such  Remark 3.3. Fork, = % andk, = % our method reduces
that|| T (h)[|e < #7102, to the cubic spline method for the solution of equation
Therefore, (16) with boundary conditionsl(7).
o1 1 ly= e < 1 ra (36)  Remark 3.4. According to (L3) and @0), for k1 = -5 and
bl e[| (Y) =4 (7)o + 1] 7 ||h. 5 ) LT D
K2 = 13, our method is optimal second-order method.
Now, following Eq. 6), it is easy to establish that
Remark 3.5. According to (L3) and 0), if we do not have
|fgi(’|$ing;| f(ﬁi(’ yi’y&/?)/lg the termy’ (x) in equation {6), then fork; = & andk, =
i— S == < 5 ; )
LN =Y+ —AD + (¥~ Y+ 1y — D). 12, our method is fourth-order method.
According to Stoer and Bulirsch2§], the interpolation _
with splines of degree 3 gives(h*) uniform norm errors 4 Illustrative test problems
for the interpolant andg'(h*~") errors for ther-th
derivative of the interpolant. Thus, in our case, we haveThis section is devoted to computational results. In order

for anyy € €*[a, b] to check the accuracy and reliability of the proposed
algorithm, four examples whose exact solutions are
ID"(Y —y)|lo = &(h*"), forr =0,1,2,3, (37)  known to us are presented to test the performance of our
) ) . algorithms. All the experiments were performed in
whereD" is the differential operator of order Mathematica 8. In our tests, we use the Newton method
Following (37) there exists a constaf; such that for solving the nonlinear equation. The starting vector is
_ _ _ chosen to be zero.
1YW~y < Qjh )Y @[, for j =0,1,2,3. (38) Also we compare our method with existing methods
) for accuracy, conservation and computational cost. The
From @31), we obtain, Maximum absolute errors are measured by using
19(y) — ()| < following formula

LIy~ Zllo(| %l +h Y Ae)+  (39) L () = mava<icn_1[¥i — vil,
Z(Qoh* + Q11 [y . o
where Y and y represent the exact and approximate

Now from equation6), we get solutions, respectively, we calculate the classical
B B convergence rate
[1— 20| oo ([|- 0]} o0 + D 1 |eo) ]|y = o0 <
.7~ o2 (Qoh 4 Q1) [y o+ 212, In (Lu(h) — In (La (h/2))
(40) R(h) = s :

(@© 2015 NSP
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Table 1: The maximum absolute errors with various values of N Table 2: The observed maximum absolute errors with various

and different values of parametexs and k» for Example 4.1. values of N for Example 4.2.
N Our method R Our method R N Our method Our method CFD NP
K1 = %, Ki= &, Ky = %i Ki= 2, method method
Ky =3 K= Ke=3 ke=1p in[15]5 in[19]6
4 26505x 10 L — 70628x 103 — 3 16167x 1076 1.3574x l(T7 1.8x 1(23 6.3 x 1077
8 6.9076x 102 1.9400 47907x 104 3.8819 4 87687x 10 4.2965x 10~ 15x 10 6.6 x 10
: 2 : - : 5 57169x10°% 18052x10°7 58x10° 1.8x10°
32 42843x10°% 2.0023 18811x10°% 3.9984 7 28760x 106 46916x108 67x10 11 _

64 10706x10°3 2.0005 11760x10~7 3.9996
128 26764x10* 2.0001 73505x 102 3.9999

parameterization methodLP]. According to Table 2, we
find that the presented method provides accurate results

Example 4.1. Consider the following problenip] even for small N. From Table 2, we see that we can
1 achieve a good approximation for the exact solution using
min  Jy(x)] :/ (y(x)+y(x)—4exq3x))2dx, (42) exponential spline method and also our results are in
0 good agreement with the methods introducedlis, 19].
subjected to given boundary conditions Example 4.3. In this example, consider the following
variational problem B,9,11,19]:
y(0)=1, y(1)=exp3). (43) .
The corresponding Euler-Lagrange equation is min  J[y(x)] Z/O (Y (0)?+xY (X) + (y(x)?)dx (48)
y'(x) —y(x) —8exp3x) = 0, (44)  with given boundary conditions
with boundary conditions4@). The exact solution of this 1
problem is Y(x) = exp(3Xx). y(0)=0, y(1)= 7 (49)

In Table 1, the maximum absolute errors between the
exact solution Yx) and the approximate solution and the The exact solution of this problem is
numerical convergence rates with-N4,8,16,32,64,128
and for different values of parameteks and k2. From Y(x) — 1 2—e & e(l-2e)
Table 1, we see that we can achieve a good approximation (x) = 2 + 42 -1) + 4(e2—-1) €
for the exact solution using exponential spline method. We
observe that present method is nearly of second order ofrhe Euler-Lagrange equation of this problem is
convergence with respect to these error norms.

Example 4.2. Consider the following minimization y/(x)_y(x)_:_L =0, (50)
problem [L5,19] 2
114 (y(x))? with boundary condition49).
min  Jly(x)] = / %d)@ (45) This example has been solved by using our scheme
Jo (Y() (21) with different values of N= 4,8, 16,32, 64, 128 and

parametersk; and k. The maximum absolute errors in
solution and the numerical convergence rates and
y(0)=0, y(1)=0.5. (46)  comparison with 8,9,11,19 are tabulated in Tables 3
and 4 respectively. From Tables 3-5, we see that we can
Note that the exact solution to this problem is achieve a good approximation for the exact solution using

with the boundary conditions

Y (X) = sinh(0.481211825K). our method and also our results are in good agreement

The corresponding Euler-Poisson equation is of thewith the methods introduced ii8[9,11,19].
form Example4.4. Consider the problem of finding the extremal

of the functional B,14,15,19
Y/ +Y' ()7 Y)Y (9)? =0, (47) # ]
with boundary condition(g). _ . I[y(x), 2(%)] :/?((y(x))%r(z’(x))2+2y(x)z(x))dx,

We solved the problem, by applying the technique 0 1
described in Section 2 with N 3,4,5,6,7 and for let the bound diti b (1)
different values of parameterg and k,. In Table 2, the '€t the boundary conditions be
results of the presented method are compared with T m

Chebyshev finite difference methdd[and nonclassical y0 =0, y(z)=1 20=0 z3)=-1 (52)

)
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Table 3: The maximum absolute errors with various values of N Table 6: The observed maximum absolute errors Of) ywith

and different values of parametexs and k» for Example 4.3.

various values of N for Example 4.4.

N Our method R Our method R N Our method Our method CFD NP
Ky =1, K= L, Ky = %1 K1 =%, method ‘method
Ko=3 Ko= K2 =3 . K= 15 , |r\[15]4 in[19]
7 201685107 — 65379107 — 4 34816x 1(r4 2.7691x 1(r8 3.7x10 : -
. 8 6 15686x104 54501x108 8.9x 10~ 1.8x 10
16 12522x 1075 2.0009 24442x 1(T9 3.9982 10 56869x l(rS 7.0508x 10r9 26x% lle 1.2 10—12
32 31402x10°8 1.9955 15266x 10710 4.0009 12 39715x10°5 34142x10°° 28x10°15 38x10°15
64 78498x 107 2.0001 95825x 10712 3.9937 14 29295x 105 1.8486x10°° 1.6x10°16 —
128 19624x 107 2.0000 59924x 10713 3.9992

Table 4: Estimated and exact values dfky for Example 4.3.

Table 7: The observed maximum absolute errors ©f) avith
various values of N for Example 4.4.

N Our method Our method CFD NP
K1 = %i Ki= % method method
K2=13 K2 =15 in[15] in[19

4 348169x 104 276910x 10/ 37x10% —

6 156862x104 545018<108 89x107 1.8x1077

8 886597x10°° 1.72236x108 21x10°° —

10 568690x 107> 7.05084x10°° 26x1012 12x10712

12 397151x 1075 3.41424x10° 28x10°1°> 43x10715

14 292958x 105 1.84865x10°° 16x1016 —

X RH X Hybrid Legendre
functions in B] wavelets

in[17] method in P]

— 0.1 0041949 0041949

x € [0, %) 0.0396 02 0079318 0079315

1

X e [§7 é) 0.0761 03 0112472 0112471
X e [g, ﬁ) 0.1146 04 0141750 0141749
X e [g, é) 0.1482 05 0167444 0167443
X € [§7 é) 0.1817 06 0.189805 0189807
X € [g g) 0.2078 07 0.209065 0209064
X € [517 é) 0.2267 08 0225412 0225411
X e [é’ 1) 0.2398 09 0239011 0239010
x=1 0.2515 1 0249999 0249999

Table5: Estimated and exact values dfky for Example 4.3.

with boundary condition$52).

We solved the problem, by applying the presented
method with different values of N 4,6,8,10,12,14 and
parameters; andk». In Tables 5 and 6, the maximum of
absolute errors of the resulting approximate solutions are
compared with those obtained in Saadatmandi and
Dehghan [L5] and Maleki and Mashali-Firouzi 19].
From Tables 6 and 7, we see that we can achieve a good
approximation for the exact solution using presented
method and also our results are in good agreement with
the method introduced irlp,19].

X nonclassical Our method for Exact
parameterization k1= {5, K2 = 1»
in[19] andN =10
0.1 0.04195073 04195073 4195073
0.2 0.07931715 07931715 ®M7931715
0.3 0.11247322 Q11247322 Q11247323
0.4 0.14175080 Q14175080 14175081
0.5 0.16744292 06744292 016744292
0.6 0.18980669 (18980669 Q18980668
0.7 0.20906593 ®0906593 20906592
0.8 0.22541340 ®2541340 ®2541340
0.9 0.23901272 ®3901272 ®3901272
1 0.25000000 @®5000000 @®5000000

5 Conclusion

In this article, we proposed a numerical scheme, based on
the exponential spline method, to solve the problems in
properties  of

calculus  of
non-polynomial

variation.
splines are used

The

to

reduce

the

which has the following analytical solution

Y (X) = sinx,

and Z(x) = —sinx.

Euler-Lagrange equation to the solution of system of
nonlinear algebraic equations. The solution obtained
using the suggested method shows that this approach can
solve the problem effectively and it needs less CPU time.
Comparisons are made between the approximate and
exact solutions and another methods to illustrate the
validity and the great potential of the new technique.

In this case the Euler-Lagrange equations are written in Moreover, employing the new technique only a small

the following form:

y'(x)—2(x) = 0,

and Z'(x) —y(x) =0,

(53)

number of the grid points are needed to obtain a
satisfactory result. One can use the presented method for
solving different types of partial differential equations
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