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Abstract: The inefficiency of the ordinary least square estimator for the parameter estimation of a linear regression model
with multicollinearity problem has led to the development of various ridge regression estimators. These estimators are
recently classified as one-parameter and two-parameter ridge-type estimators. This paper proposes a new two-parameter
estimator following a newly developed one-parameter ridge estimator to handle multicollinearity in the linear regression
model. Theoretical and simulation results show that, under some conditions, the proposed estimator performs better than
some popular existing estimators in that it has a smaller mean square error. Furthermore, we used real-life data to illustrate
the paper's findings establishes the same results from theory and simulation.
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1 Introduction

Consider the general linear regression model define in matrix form as:

y=Xp+e¢, (1)
where ) is a nx1 vector of the response variable, X is a known 71X P full-rank matrix of predictor variables, f is a
p x 1vector of unknown regression parameters to be estimated, and &is 7 x1vector of random error such that E(¢) = 0
and Cov (&)= c’l. Equation (1) can be written in a canonical form as:

y=Za+¢ )
where Z = XQO, a = Q'Band Q is the orthogonal matrix whose columns constitute the eigenvectors of X X . Then
77 = 0'XX0 = A = diag(4,,..., 2, ).
where 4, > A, >...4 >0 are the ordered eigen values X X . The ordinary least square estimator (OLSE) of 3 in (1) can
be defined as:

Gps =N XY 3)
where A = XX is the design matrix.
The OLSE is considered the Best Linear Unbiased Estimator (BLUE) when the assumptions of the classical linear
regression model are not violated [1,2] One of the assumptions is that the explanatory variables are independent [3].

Literature has shown that the OLS will not be the best in the presence of multicollinearity. The problem of multicollinearity
arises whenever two or more explanatory variables are related. Multicollinearity is a situation where there is an exact (or
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nearly exact) linear relation among two or more of the explanatory variables [4,5] Whenever multicollinearity exists, the
OLSE suffers a set back by yielding regression coefficients whose regression coefficients produce wrong signs with large
standard error, imprecise confidence intervals and incorrect small t-ratios [6,7].

Some biased estimators have been developed to deal with the problem of multicollinearity. These estimators include the
Stein estimator [8] the principal component estimator [9] the ordinary ridge regression estimator by Hoerl and Kennard
[10], the modified ridge regression by Swindel [11] Dawoud and Kibria [12,13] The ordinary ridge regression estimator by
Hoerl and Kennard [10], which is one of the most widely used among these estimators, helps overcome multicollinearity by
adding a positive value, £, to the diagonal elements of the Z'Z matrix. This constant & is known as the biasing parameter. A
major problem of the ridge regression parameter is the choice of k because the biasing parameter & plays a very significant
role in controlling the regression's bias toward the mean of the dependent variable [14]. There are several works on the
choice of biasing parameter k. Some of them are Hoerl and Kennard [10], Hoerl et al.[15] McDonald and Galarneau [16],
Hocking et al[17], Lawless and Wang [18], Nomura[19], Firinguetti [20], Kibria [21], Batach et al.[22], among many
others.

Liu [23] proposed another estimator where d is the biasing parameter. This estimator combined the advantages of the Stein
estimator [8] and the ordinary ridge regression estimator by Hoerl and Kennard[10]. Liu Estimator is a linear function of
biasing parameter d, while the ridge regression estimator is a nonlinear function of the biasing parameter k. This makes the
choice of a suitable k remains difficult and the Liu Estimator becomes a preferred choice allowing an appropriate selection
of d [24]. The objective of this paper is to propose a new two-parameter ridge-type estimator for the regression. The
performance of the proposed estimator is compared with OLSE, ridge regression, Liu estimator, Ozkale and Kanciranlar
two-parameter estimator [25], Modified Ridge Type (MRT) by Lukman ef al. [26] and Kibria and Lukman [27].

2 Some Alternative Biased Estimators and the Proposed Estimator

2.1 Some Ridge Estimators as Alternative to OLS

Ridge-type estimators have been proposed as alternative to the OLSE. The canonical form of OLSE is written in Equation
(3). Following this, the ordinary ridge regression (RE) proposed by Hoerl and Kennard [10] is given as:

O g (k):(A“'kI)ilZ'y “
where k is the non-negative constant known as the biasing parameter.
The Liu estimator (LE) is defined as:

A -1 A
a,(d)=[A+11"[A+dl e, 5)

where d is the biasing parameter of Liu Estimator.

The Kibria-Lukman (KL) estimator is given as:

&KL(k):(A_'_kI)_I(A_kI)&OLS (6)
The two parameter estimator by Ozkale and Kaciranlar [25] is given as:
@k, d)=(A+K ) (A+kdl)G,, %)

where k and d is the biasing parameter of Liu Estimator
The Modified Ridge Type Two (MRT) Parameters proposed by Lukman ef a/.[26] is given as:

yr (ka d):(A +h(1+ d)l)_l Aay s =Reap s

®)
2.2 The Proposed Estimator

!

The proposed Two Parameter Estimator of ¢ is obtained by minimizing (a + 0}) (a + &) subject to
(y - ZOC), (y — Za) = ¢, where c is a constant.
(v-Za) (y—Za)+kd[(a+o})’(a+d)—c} ©

where k and d are the Langrangian multipliers
Following Kibria and Lukman (KL) [27] as defined in equation (6), the solution to (9) gives the solution to the proposed

estimator as follows:
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~ -1 A
a, (k,d)=(A+kdl)" (A-kdl)d ;s (10)
dp(k’d):ZOZIdOLS (11)

where Zo = (A + kd[)and Z = (A — kd]), k>0 and 0<d<I.

Some of the differences between the proposed estimator and Kibria-Lukman estimator are:

1. The KL estimator is a one-parameter estimator while the proposed estimator is a two parameter estimator.

This also makes their Mean Squared Error different from each other.

il. The KL estimator is a function of biasing parameter k& while the proposed estimator is a function of biasing

parameters k and d.

iil. The KL estimator is obtained based on the objective function

(y —Za )' (y -Za ) +k [(a +a )' (a +a ) - C:| while the objective function used in obtaining  the

proposed estimator is (y — Za)’ (y — Za)+ kd [(0{ + d)’ (Ol + d)—c}.

iv. The KL estimator is a special case of the proposed estimator when d=1. Hence, the proposed estimator is a

general estimator.

Properties of the Proposed Estimator

Elé,(k.d))=2,Z,a (12)
Bla, (k,d))= (2,2, ~ 1) (13)
pla, (k,d)|= 02,202, 7' (14)
MSEM[G,(k,d)|=0°Z,2,A" 2, 2", +(2,Z, ~ 1)aa/ (2,2, ~ 1) (15)

The following lemmas are used to make some theoretical comparisons among estimators and to prove the statistical
properties of the proposed estimator.

Lemma 1. Let n x n matrices M > 0 and N > 0 (or N>0 ), Then, M > N if and only if 4, (NM71)< 1 where ﬂ,l.(NMfl)

is the largest eigenvalue of matrix NM B [28].
Lemma 2. Let M be an n x n positive definite matrix, that is, M > 0 and o be some vector, then, M —aa' > 0 if and
onlyif a'M ™ —a <1[29].

Lemma 3. Let di = Ay, i=1 2 be two linear estimators of & . Suppose that D = COV(OAK1 )— Cov(&2 ) > (), where
Cov(@, ),i=1,2 denotes the covariance matrix of G, and b, = Bias(@, )= (4. X —I)a,i = 1,2. Consequently,

A@, -@a,)=MSEM(&,)—- MSEM(&, )= o> D+ b,b} —b,b} >0 (16)
ifand only if b} |02 D+ bbb, <1 where MSEM(&, )= Cov(é, )+ b, 130]
2.3 Comparison among the Estimators

In this section, theoretical comparison was carried out among the estimators to examine the performance of the proposed

modified two-parameter estimator, & » (k ,d )over other estimators; & ¢, Qprs s A yips Cppprs Cgy -

2.3.1 Comparison between a s and ¢, (k,d)

The MSEM of the estimator & =A"Z"y is as follows:
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MSEM |G, |=0* A" (17)
The difference between (15) and (17)
MESM (G5 )~ MSEM [é(k,d)|=0*N" - 6°Z,Z, A" Z', Z', +(Z,Z, — 1) (Z,Z, 1) (18)

Let £ > 0 and 0 <d < 1. Thus, the following theorem holds.
Theorem 1: The proposed estimator & » (k ,d ) is superior to ;¢ if and only if

o(2,2,-1) &A= z,zn' 2, 2 (2,2, - T <1 (19)
Proot: D(Gyy5 )~ D\@, (kd )= (A" - 2,Z,A" 7', Z',)
(1 (A -ka) |
= 2d PR i A 20
7 lag{/li ’Ii (/11‘ + kd)z }i—l ()

A - ZOZlA_IZ'0 Z', will be pdfif and only if (ﬂ,[ + kd)2 - (ﬂ,i - kd)2 > (). By lemma 3 the proof is completed.
2.3.2  Comparison between &, (k)and @, (k,d)

The bias vector, covariance matrix and MSEM of the estimator ¢, (k )= (A + kI )_1 Z' yare as follows:

Bld, (k)|=—k(A+kl )" & @1
Dléi, (k)= (A+ k)" A(A+kl)™ (22)
MSEM|@&,, (k)|=c*B,AB',+k*B,aa'B', (23)

where B, =(A + k])71 .

The difference between (15) and (23)

MESM (614, (k))~ MSEM |6, (k. d )|

=0’B,AB',~ 6°Z,Z,\"'Z', 2"\ +k*Byaat' B\~ (Z,Z, — ot (Z,Z, ~ 1) (24)
Let £ > 0 and 0 <d < 1. Thus, the following theorem holds.

Theorem 2: The proposed estimator & » (k ,d ) is superior to ¢ RE (k) if and only if

MSEM G, (k)]- MSEM |G, (k,d)|> Oif and only if

o(2,2,-1) o> (B,AB, - 2,282, 2" )+ K*Byac’ B, | (2,2, ~er <1
(25)
Proof: Considering the dispersion matrix difference between D[& RE (k)] and D|_d » (k ,d )J

D,=0’B,AB',- 6°Z,Z,N"'Z', 7',
= (A+k ) AN+ )" —0*(A—kdl)(A+kdl)" A (A — kdT \A + kdI )
= (A+ k) (A+kdl ) |A> (A + kdI = (A+ kD (A —kd A (A + &) (A + kal ) (26)

It is observed that Dy is positive definite. By lemma 3, the proof is completed.

2.3.3 Comparison between @, ,(d)and a, (k,d)

The bias vector, covariance matrix and MSEM of the estimator ¢ Lin = (A +1 )_1 (A +dl )OAl orsare as follows:

Bla, (d)]=d-1)A+1)"a 27)
Dlg, |=a*(A+1)" (A+dl) A (A+1)"(A+dl) (28)
MSEM [@,, |=6*D,D,A"'D', D', +(d -1)D,ac'(d -1) D', (29)

Where D, =(A —|—])71 and D, = (A+d]).
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The difference between (15) and (29) becomes:
MESM (6, (d))-MSEM |, (k,d)|

=¢’D,D,A' D', D'\~ ¢*Z,Z, A" 7', 2", +(d -1)Dyaa'(d - 1) D', — (2,2, I )aa'(Z,Z, — 1)

(30)
Letk > 0and 0 <d < 1. Thus, the theorem 3 holds.

Theorem 3: MSEM [, (d)]~MSEM & (k,d)|> 0 if and only if
?(2,2-1) [o*(D,DA'D, D, - 2,2X'2, 2, }+ (d- 1Dy (d -1) D, [ (2,2 - D <1 31
Proof: Considering the dispersion matrix difference between D|&, ,(d)] and D|é, (k,d )|

D,=c’D,DN"'D'\ D'\~ c’Z,Z,N"'Z', 7',

D,=c*(A+1) (A+dl) N'(A+I)" (A+dl) —o*(A—kdl)(A+kdl )" A (A —kdI ) (A + kdI )"

D, =c*(A+1)" (A+kd)"[(A+df (A+kd) —(A—kd P (A+1) A (A+1)" (A +kd)”

| AN kd + 8N kd + 2Akd + 2N d + kPdt +2AK*dY + N d?

D, =c*(A+1)" (A+kd) . sy s .
+OANKd® —2AKdY —K2d? 2N — A

A A+ (A+kd)

(32)
It is observed that Dy is positive definite. By lemma 3, the proof is completed.
2.3.4 Comparison between &, (k)and & ) (k,d)
The bias vector, covariance matrix and MSEM of the estimator ¢/, (k )= (A + kI )71 (A — kI )d are as follows:
Bla,, (k)]= W ()M ()~ I]ex (33)
Dla, (k)|=0* W (k)M (k)N M' ()W (k) (34)
MSEM |G, (k)|=aW (k)M (k)N M (kYW (k) +[W (k)M (k) — I ot [W (k)M (k) — 1] (35)
The difference between (15) and (35) becomes:
MESM (@, (k))- MSEM @, (k,d)|
= W (k)M ()N M (KW' (k) — 62 Z,Z, N 2"y Z',+[W (k)M (k) — I | [W (k)M (k) - 1]
- (ZOZI —I)aa'(ZOZl _I)'
(36)
Let £ > 0 and 0 <d < 1. Thus, the following theorem holds.
Theorem 4: The proposed estimator & , (k ,d ) is superior to &, (k) if and only if:
MSEM|é, (k)|-MSEM[é, (k,d)]> Oif and only if
(2,2, -1) o> (WM W ()M (k) - Z,2,A" 2, Z', )+ W (k)M (k)eced W' (k)M (k) |
(2,2, ~Ta <1
(37
Proof: Considering the dispersion matrix difference between D[& L (k)] and D I_& » (k ,d )J
D, = (A—K\A+K ' A (A~K\A+k )" —0*(A—kdl ) (A+kdI ' A (A~ kdI Y (A +kdI )"
(38)
=0’ (A+ k)" (A+kd) " [(A—kF (A+kd) —(A—kd F(A+K) A (A+k) " (A+kd) (39)
:02(A+k) (A+kd) " [ANKd +4AK d + 4Nk — ANk — 4NK>d — ANk d? ] o)
A (A+E) (A kd)"
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It is observed that Dy is positive definite. By lemma 3, the proof is completed.
2.3.5 Comparison between @, (k,d) and a, (k,d)

The bias vector, covariance matrix and MSEM of the estimator ¢ VRT (k, d ):(A +k(1+d)I )71 AdOL ¢=R KdOLSare

as follows:

B[dMRT(k’d)]: [Rk —I]a (41)
D[dMRT (k,d)]zaszA_lR'k (42)
MSEM @,y (k,d)|=0*R, AR +[R, — I|ac'[R, — 1] 43)

Where R, :A(A +k(1+ d)[)_l .Letk>0and 0 <d < 1. Thus, the following theorem holds.
Theorem 5: The proposed estimator &p (k, d ) is superior to &, - (k, d ) if and only if
MSEM|[@,; (k,d) ]~ MSEM |é, (k,d)|> 0 if and only if

o(2,2,-1) o> (RA'R, - 2,282, 2, )+ Roac' R, | (2,2, - T)er <1

(44)

Proof: Considering the dispersion matrix difference between D[& wer (k. d )] and Dl_d » (k ,d )J

D,=c’RAN'R,-0’Z,ZN'Z',Z',
D, =c*(A+k(+d)) AA+k(1+d)I)" —o*(A—kdl)(A+kdl)" A (A—kdl ) (A +kdI)"
2, A—kd) |
D, =0 diag {(/1,. k(1 +d)) _;5(:11. +k3)2} )
will be pdf if and only if  2,*(4, +kd )’ —(2, —kd }' (4, + k(1+d))’ >0.For 0 <d < 1 and k > 0, it was observed
that A,°(A4, +kd )’ (A, —kd )’ (4, +k(1+d))’ >0.By lemma 3, the proof is completed.
2.3.6. Comparison between &, (k,d)and & » (k,d)

The bias vector, covariance matrix and MSEM of the estimator ¢, (k, d ):(A + Kkl )71 (A + kdlI )d o1.53T€ as

follows:
[d ( )] [RORI -1 ]0{ (40)
D|a ., (k,d)]=c*R,RA"'R', R, (47)
MSEM [61,, (k,d)|=0*R,R A R'y R\, +[R,R, —I]acc'[R,R, — 1] (48)
Where R, ( )7 and R, = (A + kdI ) Letk>0and 0 <d < 1. Thus the following theorem holds.

Theorem 6: The proposed estimator &, (k,d) is superior to &, (k,d) if and only if
MSEM G, (k,d)]- MSEM &, (k,d )|> 0 . That is, if and only if,

o(2,2,-1) |0 (RRA'R, R\~ Z,Z,N'Z', Z', }+ (R )R, — e (R R, -n1'(z,2,-Na <1
(49)
Proof: Considering the dispersion matrix difference between D[d vip(k,d )] and D[d , (k ,d )J
D,=c¢’R,RAN'R R - 0c’Z,ZN"'Z', 7",
D, = (A+kdl\A+K ) AN (A+kdI A+ k)" —c>(A—kdl )(A+kdl )" A (A —kdI ) (A +kdl )"
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P

(/11‘ +kd)2 _ (ﬁ’i _kd)2
A +kY A4 +kd)

D, =c’ diag{ (50)

i=1

2
will be pdf if and only it 4,* (4, +kd)' — 4, (4, —kd)" (4, +k))' >0.For 0 <d< 1 and k > 0, it was observed that

Ziz (ﬂi + kd )4 —A (ﬂi —kd )22 (/11‘ + k))2 >().By lemma 3, the proof is completed.

2.4 Determination of Biasing Parameters k and d

There is a need to find an appropriate parameter for practical purpose. Following different authors such as Dorugade [31],
Saleh et al. [32], Lukman et al. [7], Aslam and Ahmad [24] among others, the optimal values of &k and d is determined for
the new estimator. In determining the optimal value of k, d is fixed. The optimal value of the £ can be considered to be
those k& that minimize

MSEM[G,(k,d\|=0°Z,2,N" 2, 2, +(2,2,~1)ac (2,2, ~1)
s(k,d) = MSEM|a(k,d )| = trl MSEM(a(k,d )]

2 (- ka?)2 d a’

k,d)=o"’ (—+4k2d2 —_— 51
sthd)=o Z,-:/%(/iﬂcd)z Z,-:(mkd)2 b
Differentiating s(k d ) with respect to k gives
osthod) _ 2d2 )2 Zdz —8kd Z —+ 8kd Z

ok UA+kd) ) (A+ kd
Loy lkd) _ 0:

ok
2
k= o (52)

2 62
d(2a + AJ

For practical purpose, ¢ * and al.z are replaced with &% and 0?1.2, respectively. Consequently, (52) becomes

)
~ O
k= ; (53)
~AD O—
d(2ai " Aj
Following Hoerl et al., the harmonic-mean version of (53) is defined as
A2
~ (o
ke = £ )
d (2&[2 +0 / j
> A
(54)
According to Ozkale and Kagiranlar [25], the minimum version of (54) is defined as
)
~ . o
k_. = min| (55)

A2 0-2
d(Zai + ﬂ“i)

Likewise, the optimal value for d can be derived by differentiating s(k, d )With respect to d for a fixed .
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askd) ) ) 2
o’k o’k
~ Z Z
od

—————%d 8k2d
kd )’ Zzwd+ Zzwd

d= i (56)

2 2
k(20{ + UAJ

For practical purpose, o? and aiz are replaced with 67 and d?, respectively. Consequently, (56) becomes

o &2
= (57

dp
A2 02
k(2a[ + A,)

The selection of the estimators of the parameters d and k in ¢¢ MKL (k, d ) is obtained iteratively as follows:

A2
s .| O
Step 1: Obtain an initial estimate of d using d = mln(,\—zl
Step 2: Obtain k___from (53) using d in step 1.
Step 3: Estimate d in (55) by using k_. in step 2.

~

Step 4: Incase dp is not between 0 and 1 use d = c;' .
3 Results and Discussion

3.1 Simulation Technique

The simulation procedure used by McDonald and Galarneau [16], Wichern and Churchill [33], Gibbons [34], Kibria [21],
Lukman and Ayinde [6], Lukman ef al. [1, 2, 3] was used to generate the explanatory variables in this study: This is given

5 =(1-01),

where z,; is an independent standard normal distribution with mean zero and unit variance, O is the correlation between

z. + pz, i=L2,...n, j=12,..,p. (58)

i,p+1°

any two explanatory variables and p is the number of explanatory variables. For this study, we considered the values of p to

be 0.8, 0.9, 0.95 and 0.99. Also, explanatory variables (p) were taken to be three (3) and seven (7) for the simulation study.
The error terms, #, , were generated following Firinguetti [20] such that u, ~ N0, o). The values of S'B=1

s o
(Newhouse and Oman [35]). The standard deviations in this simulation study were ¢ =3, 5 and 10.

Table 1: Estimated MSE when n=50 and 100, p=3.

N o P OLS RIDGE LIU K-L MRT TP Prop

50 3 0.8 1.0528 0.7644 1.0470 0.5537 0.6162 1.0317 0.4029
0.9 1.8795 1.2325 1.8610 0.7772 0.9289 1.8312 0.5470
0.95 3.5664 2.1649 3.5124 1.2412 1.5600 3.4730 0.6962
0.99 17.1271 9.5370 16.7288 5.0822 6.5795 16.8416 1.9589

5 0.8 2.9244 2.2014 2.9098 1.6517 1.8033 2.8692 1.0682

0.9 5.2210 3.7336 5.1809 2.6324 2.9531 5.1253 1.4745
0.95 9.9066 6.8429 9.8003 4.6473 5.2952 9.7490 2.0049
0.99 47.5752 31.7442 46.8546 20.9350 24.0636 47.1657 13.4065
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10 0.8 11.6976 9.6859 11.6598 8.0159 8.3859 11.5845 4.1898
0.9 20.8839 16.9539 20.7858 13.7504 14.4754 20.7057 6.2594
0.95 39.6264 31.7708 39.3798 25.4601 26.8886 39.3576 11.0181
0.99 190.3009 | 150.7865 | 188.7337 | 119.6239 | 126.5438 | 189.6824 | 86.3245
100 3 0.8 0.5704 0.4470 0.5693 0.3450 0.3702 0.5652 0.2301
0.9 1.0379 0.7391 1.0339 0.5053 0.5742 1.0233 0.3530
0.95 1.9852 1.2962 1.9718 0.7980 0.9600 1.9509 0.5631
0.99 9.5857 5.5742 9.4573 3.1060 3.9285 9.4638 0.3726
5 0.8 1.5843 1.2481 1.5812 0.9737 1.0419 1.5674 0.6721
0.9 2.8830 2.1481 2.8734 1.5710 1.7290 2.8476 1.0048
0.95 5.5145 3.9414 5.4857 2.7615 3.0998 5.4465 1.3080
0.99 26.6269 18.1832 26.3776 12.3070 13.9893 26.4281 2.8950
10 0.8 6.3374 5.3203 6.3280 4.4602 4.6409 6.2908 2.5367
0.9 11.5321 9.4841 11.5067 7.7854 8.1578 11.4544 3.7661
0.95 22.0581 17.8991 21.9880 14.5129 15.2666 21.9325 5.6125
0.99 106.5074 | 85.3099 105.9113 | 68.4960 72.1983 106.1641 | 35.0003
NOTE: Minimum MSE value is bolded in each row.
Table 2: Estimated MSE when n=50 and 100, p=7.
n o P OLS RIDGE LIU K-L MRT TP Prop
50 3 0.8 2.2424 1.4519 2.2295 0.8785 1.0703 2.1930 0.3147
0.9 4.1854 2.5279 4.1491 1.3895 1.7866 4.0960 0.4942
0.95 8.1092 4.6698 8.0153 2.4199 3.2154 7.9659 0.7282
0.99 39.5775 | 21.8209 | 38.9229 10.8728 14.7011 39.1638 4.2039
5 0.8 6.2289 4.4384 6.2017 3.0570 3.4578 6.1384 1.0425
0.9 11.6262 8.0473 11.5570 5.3516 6.1471 11.4860 1.5664
0.95 22.5255 15.3191 | 22.3528 9.9867 11.5669 | 22.3191 2.3369
0.99 109.9375 | 73.6814 | 108.7922 | 47.3930 | 55.1157 | 109.3904 | 29.2026
10 0.8 249156 | 20.3003 | 24.8520 16.3816 | 17.2232 | 24.7688 5.4781
0.9 46.5048 | 37.5459 | 46.3502 | 30.0007 | 31.6241 | 46.2968 9.4971
0.95 90.1019 | 72.3905 | 89.7209 | 57.5421 60.7254 | 89.8081 21.0711
0.99 439.7499 | 351.9615 | 437.4033 | 278.7677 | 294.2755 | 439.0564 | 209.8385
100 3 0.8 1.2201 0.8559 1.2172 0.5689 0.6532 1.2040 0.1643
0.9 2.2888 1.4785 2.2792 0.8808 1.0751 2.2531 0.2681
0.95 4.4426 2.6944 4.4126 1.4861 1.8983 4.3726 0.4809
0.99 21.7118 12.2811 | 21.4355 6.3423 8.3875 21.4765 0.6029
5 0.8 3.3891 2.5067 3.3818 1.7967 1.9882 3.3516 0.5826
0.9 6.3577 4.5312 6.3364 3.1115 3.5138 6.2902 0.9727
0.95 12.3405 8.5848 12.2803 5.7481 6.5684 12.2275 1.3925
0.99 60.3107 | 40.9795 | 59.7948 | 26.8679 | 30.9547 | 59.9790 5.8783
10 0.8 13.5563 11.1643 13.5374 9.1104 9.5369 13.4848 2.8074
0.9 25.4307 | 20.7223 | 25.3797 16.7266 | 17.5697 | 25.3191 4.3164
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0.95 49.3619 | 399786 | 49.2247 | 32.0813 | 33.7531 49.1911 6.7165
0.99 241.2427 | 194.3242 | 240.1605 | 155.1759 | 163.3945 | 240.8127 | 79.1807

NOTE: Minimum MSE value is bolded in each row.

From Table 1 and 2, the simulation results show that the proposed estimator outperforms other estimators used in this
study. The proposed estimator performs best at the two different sample sizes (n = 50 and 100), three sigma levels (o = 3,
5 and 10) and four different levels of multicollinearity levels ( © = 0.8. 0.9, 0.95 and 0.99). It provides smaller MSE when

compared with other estimators in the study when the number of parameters is three and seven. The OLS estimator is the
least performed estimator as expected. The following observations were also deduced from the result:

L. An increase in the numbers of level of correlation results in an increase in the MSE for all the estimators.
1. The MSE increases for each estimator as the level of error variances increases.
iil. Increase in the sample size, n, leads to decrease in the MSE for all the estimators.
300
250 ’ e O S
200
% 150 e RIDGE
= , LIU
100 /
50 em— -
0 _J s VIR
0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 TP
p=3 p=7 = PROP

Number of Regressors and Multicollinearity Level
Fig. 1: The Estimators and their Estimated MSE when n=100 and o —1(.

50.0000
40.0000 c— OLS
. 30.0000 e RIDGE
(7]
= 20.0000 , LU
10.0000 g e—-L
0.0000 === MRT
3 5 10 3 5 10 P
p=3 p=7 = Prop

Number of Regressors and Standard Deviation

Fig.2: The Estimators and their Estimated MSE when n=50 and 0 —( g

From Figure 1 where n=100, o -1 and p = 3 and 7, it appears that MSE increases as 0 increases. For the proposed
estimator, it has the least MSE among all other existing estimators. Figure 2 shows the graph of n=50, 0 =10.9 and p =3

and 7. It reveals that MSE increases as o increases. The proposed estimator in figure 2 also has the least MSE among all
the existing estimators. Figure 3 depicts the graph of n=100, o = 0.8 and p = 3 and 7, which shows that MSE increases as

the level of o increases. Also looking at Figure 3, the proposed estimator has the least MSE among all the other six
estimators it is being compared with. It appears from Figure 4 where o =5, 0 =0.95 and p =3 and 7 that MSE decreases

as sample size increases. For the proposed estimator, it has the least MSE among all the existing estimators. Just as in
Figure 4, Figure 5 also shows that MSE decreases as sample size increases. For o =3, ©=0.99 and p = 3 and 7, the

proposed estimator has the least MSE among all estimators.

© 2022 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 2, 499- 512 (2022) / http://www.naturalspublishing.com/Journals.asp = e 509

16.0000
14.0000
12.0000
10.0000 oL
w
v 8.0000 =—RIDGE
=
6.0000 e | |U
4.0000 ——
2.0000 / URT
0.0000 o
3 5 10 3 5 10
e P10
p=3 p=7 °

Number of Regressors and Standard Deviation

Fig. 3: The Estimators and their Estimated MSE when n=50 and p —¢ g

25.0000
20.0000 oLs
oy 15.0000 —RIDGE
wn
= 100000 \ \ E—TY
— -
5.0000 §
0.0000
50 100 50 100 ™
p=3 0=7 e Prop

Number of Regressors and Sample Sizes
Fig. 4: The Estimators and their Estimated MSE when o —_gand 0 —( 95

45.0000
40.0000
35.0000
30.0000
25.0000
20.0000
15.0000
10.0000

5.0000

0.0000

— LS
e RIDGE

MSE

e | |

— -

/2

I/

e [\/|RT

v
o

1

o

0

Ul
o

1

o

0

—

p=3 p=7

e Prop

Number of Regressors and Sample Sizes

Fig. 5: The Estimators and their Estimated MSE when o —3 and 0 —( 99

© 2022 NSP
Natural Sciences Publishing Cor.




510 %@ A. Owolabi et al.: A new two parameter...

3.2 Numerical Example

In this section, Portland cement data was used to demonstrate the performance of the proposed estimator. The Portland
cement data originally adopted by Woods et al. [36] and was later adopted by Li and Yang [37], Ayinde ef al. [38]. The
data set is widely known as the Portland cement dataset. The regression model for these data is defined as:

Y, =BX +BX, + B X+ f X, +é,
where ), = heat evolved after 180 days of curing measured in calories per gram of cement, X | = tricalcium aluminate,

X , = tricalcium silicate, X ; = tetracalcium aluminoferrite, and X 4 = 3 -dicalcium silicate. The variance inflation

factors are VIF1 = 38.50, VIF2 = 254.42, VIF3 = 46.87, and VIF4 = 282.51. Eigenvalues of XX matrix are Al =

44676.206, .2 = 5965.422, A3 = 809.952, and 4 = 105.419, and the condition number of XX is approximately 424. The
VIFs, the eigenvalues, and the condition number all indicate that severe multicollinearity exists. The estimated parameters
and the MSE values of the estimators are presented in Table 3. The proposed estimator performs best among other
estimators as it gives the smallest MSE value.

Table 3: The results of regression coefficients and the corresponding MSE values.

OLS RIDGE | LIU KL MRT TP PROP
do 62.40537 | 8.587048 27.649 | -45.2313 | 32.37233 | 6.229118 | 27.60677
a, 1.551103 | 2.104613 | 1.900972 | 2.658123 | 1.859986 | 2.128821 | 1.909055
0}2 0.510168 | 1.06485 | 0.870142 | 1.619532 | 0.819705 | 1.089162 | 0.868809
d3 0.101909 | 0.668088 | 0.462094 | 1.234267 | 0.417863 | 0.692863 | 0.468037
0}4 -0.14406 | 0.399594 | 0.208183 | 0.943248 | 0.159323 | 0.423419 | 0.207454
K - 0.008 - 0.008 0.008 0.008 0.306
d 0.44 - 0.44 0.44 0.0015
MSE 4912.09 | 2989.829 | 2170.963 | 14180.4 | 2237.804 | 2222.368 | 2170.96

4 Conclusions

In this paper, a new two-parameter estimator was proposed to solve the problem of multicollinearity for the linear
regression models. The proposed estimator was theoretically compared with six other existing estimators. A simulation
study was then conducted to compare the performance of the proposed estimator and the six existing estimators [OLS, Liu
estimator [23], Ridge estimator [10], KL estimator [27], Modified Ridge Type estimator [26], Two-parameter estimator by
Ozkale and Kaciranlar [25]. It is obvious from the theoretical comparison that the proposed estimator performs best among
the existing estimators considered in this research work.

Simulation study also supports the theoretical study as the proposed estimator performs best among all the existing
estimators. Finally, application of real-life data further established the superiority of proposed estimator as it gives the best
result among the existing estimators using the Mean Square Error criterion. The proposed estimator is hereby
recommended for use of researchers in different fields.
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