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Abstract: In this paper, we propose a mathematical model of a prey-diseased predator model with refuge in prey system. In other

words, a prey-predator model with an infectious disease in the prey population is formulated. This model is constituted by a system

of three nonlinear ordinary differential equations of first order, which describe the interaction between the infected prey, non-infected

prey and predator. The equilibria of the system are derived and the stability analyses of the disease-free and the endemic equilibria are

conducted.
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1 Introduction

The interactions of prey and predator species have been
studied by many scientists, engineers and researchers
since Lotka-Volterra model [1]. Similarly, the interactions
among infected, susceptible and recovered population are
becoming an interesting and important research work
since Kermack-Kendrick work [2]. Nowadays, the
dynamic systems involving diseased species in the
eco-epidemiology research is playing an important role.
Anderson and May were first introduced in [3] the
combination of these two systems, and the term
“eco-epidemiology” is used for the first time by
Chattopadhyay and Arino in [4] for such type of models.
In [5], the authors proposed and analyzed a mathematical
model dealing with two species of prey-predator system,
in which the prey population was divided as immature
and mature prey population. It has a refuge capability as a
defensive property against the predation. Many
researchers and engineers have been studying various
dynamics systems involving the prey and predator with
different effects of biological factors, see, for
example [6–10], and various mathematical models have
been created in epidemiology using different types of
incidence rates and diseases.

The aim of this paper is to propose a mathematical
model of a prey-diseased predator model with refuge in

prey system. In detail, in the proposed prey-predator
model, an infectious disease is considered in the
population of the prey and it is assumed that there is
harvesting from the predator. In this model, there are
three first-order nonlinear ordinary differential equations,
these equations describe the interaction between the
species infected prey, non-infected prey and predator. The
disease-free and the endemic equilibria of the system are
derived and the stability analyses of the two equilibria are
conducted. Numerical simulations are presented to justify
analytical results. The rest of the paper is arranged as
follows. In Section 2, we present the formulation of
mathematical model, Section 3 computes the disease-free
equilibrium and endemic equilibrium points of the
proposed model, Section 4 discusses the stability analyses
of disease-free equilibrium and endemic equilibrium of
the model, and finally Section 5 gives the conclusion.

2 Mathematical Model Formulation

The proposed model studies a prey-predator system
involving infected disease in prey. We assumed that there
is harvesting from the predator and a defensive property
against predation. In this model, we make some
hypotheses.
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2.1 Assumptions

•The population density of prey is divided into two
parts namely, the susceptible population density at
time t given by X(t) and the infected population
density at time t denoted by I(t), and the population
density of predator at time t is given by Y (t).
•The predator population consumes both prey
populations according to modified Holling type-II
functional response for the predation [11] with half
saturation constant b > 0 and maximum attack rates
a1 > 0 and a2 > 0 for susceptible prey and infected
prey respectively. Since there is a vulnerability of
infected prey relative to susceptible prey the
vulnerability constant rate θ > 0 is used in the
functional response. Moreover the constants
e1 ∈ (0,1) and e2 ∈ (0,1) are the conversion rates
from susceptible and infected preys to predator
respectively.
•The disease causes a death in the infected population
that is represented by diseased death rate d > 0.
•The prey and predator populations growth rates are
α1 > 0 and α2 > 0 respectively.
•There is a type of protection of prey population from
the predation by predator, which is represented by a
constant prey’s refuge rate p ∈ (0,1) that leaves (1−
p)X of prey available to be hunted by the predator.

•Let β > 0 be the rate of infection.

Under the above assumptions, the dynamics of the prey-
predator model can be described as follows.

dX

dt
= α1X −

(

e1a1(1− p)Y + e2a2(1− p)I

b+(1− p)Y +θ (1− p)I

)

X , (1)

dY

dt
= α2Y +

a1(1− p)XY

b+(1− p)Y +θ (1− p)I
−βYI, (2)

dI

dt
= βYI +

a2(1− p)XI

b+(1− p)Y +θ (1− p)I
− dI, (3)

with the non-negative initial conditions X(0) ≥ 0,Y (0) ≥
0, I(0)≥ 0.

3 Equilibrium Points of the Model

In this section, we find the disease-free equilibrium and
endemic equilibrium points of the proposed model.

3.1 Disease-free Equilibrium

The Disease-free equilibrium point can be calculated by
substituting I = 0 in the system of (1)-(3). Now, from (1),
we have

α1X −

(

e1a1(1− p)Y

b+(1− p)Y

)

X = 0.

Solving above equation, we get X = 0 or

Y = α1b
(1−p)(e1a1−α1)

. Now from (2), we have

α2Y +
a1(1− p)XY

b+(1− p)Y
= 0.

Solving this equation, we get Y = 0 or X = α2e1b
(1−p)(α1−e1a1)

.

Hence, the disease vanishes in the population at the point

D0 = (X0,Y0, I0)

=

(

α2e1b

(1− p)(α1 − e1a1)
,

α1b

(1− p)(e1a1 −α1)
,0

)

.

(4)

3.2 Endemic Equilibrium

Expand (3) and notice that each variable is non-negative,
we have

I∗(βY ∗(b+(1− p)Y∗+θ (1− p)I∗)+ a2(1− p)X∗

− d(b+(1− p)Y∗+θ (1− p)I∗)) = 0,
(5)

from this equation, we get I∗ = 0 which corresponds to
disease-free equilibrium or

I∗ =
db+d(1− p)Y ∗−a2(1− p)X∗−βY ∗b−β (1− p)Y ∗2

βY ∗θ (1− p)−dθ (1− p)
.

(6)

Notice that (5) is true for two values of I∗, i.e., I∗ = 0
which corresponds to the disease-free equilibrium and (6)
that gives the population of the infective when the
infection invaded the ecosystem.

Substituting I∗ = 0 into (1) and (2), we have

α1X∗b+α1(1− p)X∗Y ∗− e1a1(1− p)X∗Y ∗ = 0 (7)

α2Y ∗b+α2Y
∗2(1− p)+ a1(1− p)X∗Y ∗ = 0. (8)

Given that X∗ and Y ∗ are non-negative then from (7), we
have

Y ∗ =
α1b

N
, (9)

where N = (1− p)(α1− e1a1). Putting (9) into (8), we get

X∗ =
α2b(a1e1 − 2α2)

a1N
. (10)

Now putting (9) and (10) into (6), we get

I∗ =
I∗n
I∗
d

, (11)

where

I∗n =b(N2a2
1d −Na1α1bβ +Na1α1d(1− p)

−α2
1 bβ (1− p)−Na1a2α2(1− p)(a1e1 −2α1))

I∗d =Na1θ (1− p)(α1bβ −Na1d).
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Hence, the endemic equilibrium point D∗ = (X∗,Y ∗, I∗) is
given by (9),(10) and (11), i.e.,

D∗ = (D∗
1,D

∗
2,D

∗
3) ,

where

D∗
1 =

α2b(a1e1 − 2α2)

a1N

D∗
2 =

α1b

N
,

D∗
3 =

D∗
3n

D∗
3d

,

N =(1− p)(α1 − e1a1),

where

D∗
3n =b(N2a2

1d−Na1α1bβ +Na1α1d(1− p)

−α2
1 bβ (1− p)−Na1a2α2(1− p)(a1e1 − 2α1))

D∗
3d =Na1θ (1− p)(α1bβ −Na1d).

4 Stability Analysis

In this section, we discuss the local stability analysis of
disease-free equilibrium and endemic equilibrium of the
model.

4.1 Stability Analysis of Disease-free

Equilibrium

To perform the local stability of the system around
disease-free equilibrium, the Jacobian matrix of the
model is derived and evaluated at disease-free
equilibrium. The result is obtained as

JDFE =





0 J12 J13

J21 J22 J23

0 0 J33



 , (12)

where

J12 =−
e1a1(1− p)X0

b+(1− p)Y0

+
e1a1(1− p)2X0Y0

(b+(1− p)Y0)2
,

J13 =−
e2a2(1− p)X0

b+(1− p)Y0
+

e1a1θ (1− p)2X0Y0

(b+(1− p)Y0)2
,

J21 =
a1(1− p)Y0

b+(1− p)Y0

,

J22 = α2 +
a1(1− p)X0

b+(1− p)Y0

−
a1(1− p)2X0Y0

(b+(1− p)Y0)2
,

J23 =−
a1θ (1− p)2X0Y0

(b+(1− p)Y0)2
−βY0,

J33 = βY0 +
a2(1− p)X0

b+(1− p)Y0

− d.

The disease-free equilibrium is locally asymptotically
stable if all the eigenvalues of Eq. (12) are less than zero.
If row reduced matrix operation is applied to Eq. (12)
then

JDFE =





J21 J22 J23

0 J12 J13

0 0 J33



 . (13)

The eigenvalues of Eq. (13) are λ1 = J12, λ2 = J21, λ3 =
J33. Hence, the disease-free equilibrium of the model is
locally asymptotically stable if λ1 < 0,λ2 < 0 and λ3 < 0.

4.2 Stability Analysis of Endemic Equilibrium

The Jacobian matrix of the system (1)-(3) evaluated at the
endemic equilibrium is obtained as

JEE =





X∗
1 Y ∗

1 I∗1
X∗

2 Y ∗
2 I∗2

X∗
3 Y ∗

3 I∗3



 , (14)

where

X∗
1 = α1 −

e1a1(1− p)Y∗+ e2a2(1− p)I∗

b+(1− p)Y∗+θ (1− p)I∗
,

Y ∗
1 =−

e1a1(1− p)X∗

b+(1− p)Y∗+θ (1− p)I∗

+
(e1a1(1− p)Y∗+ e2a2(1− p)I∗)X∗(1− p)

(b+(1− p)Y∗+θ (1− p)I∗)2
,

I∗1 =−
e2a2(1− p)X∗

b+(1− p)Y∗+θ (1− p)I∗

+
(e1a1(1− p)Y∗+ e2a2(1− p)I∗)X∗θ (1− p)

(b+(1− p)Y∗+θ (1− p)I∗)2
,

X∗
2 =

a1(1− p)Y∗

b+(1− p)Y∗+θ (1− p)I∗
,

Y ∗
2 = α2 +

a1(1− p)X∗

b+(1− p)Y∗+θ (1− p)I∗
,

−
a1(1− p)2X∗Y ∗

(b+(1− p)Y∗+θ (1− p)I∗)2
−β I∗,

I∗2 =−
a1(1− p)2X∗Y ∗θ

(b+(1− p)Y∗+θ (1− p)I∗)2
−βY∗

,

X∗
3 =

a2(1− p)I∗

b+(1− p)Y∗+θ (1− p)I∗
,

Y ∗
3 = β I∗−

a2(1− p)2X∗I∗

(b+(1− p)Y∗+θ (1− p)I∗)2
,

I∗3 =
a2(1− p)X∗

b+(1− p)Y∗+θ (1− p)I∗

−
a2(1− p)2X∗I∗θ

(b+(1− p)Y∗+θ (1− p)I∗)2
− d.

The local asymptotic stability of the endemic equilibrium
can be verified in two ways. The endemic equilibrium of
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the model is locally asymptotically stable if it is shown
that det(JEE) > 0 whenever trace(JEE) < 0. Also, the
endemic equilibrium of the model is locally
asymptotically stable if all the eigenvalues of Eq. (14)
have negative real parts. Assuming the second method is
used to investigate the local asymptotic stability of the
endemic equilibrium of the model and suppose that the
matrix in Eq. (14) is reduced via row reduce matrix
operation then we have

JEE =







X∗
1 Y ∗

1 I∗1

0
X∗

1 Y ∗
2

X∗
2

−Y∗
1

X∗
1 I∗2
X∗

2
− I∗1

0 0
Y ∗

1 [X
∗
1 I∗3−X∗

3 I∗1 ]
X∗

1 Y ∗
3 −X∗

3 Y ∗
1

− I∗1






. (15)

Note that X∗,Y ∗ and I∗ are the values of X ,Y and I

at the endemic equilibrium. If the characteristic equation
|JEE − λ I| = 0 of Eq. (15) is solved then the eigenvalues
are obtained as

λ1 = X∗
1 , λ2 =

X∗
1 Y ∗

2

X∗
2

−Y∗
1 , λ3 =

Y ∗
1 [X

∗
1 I∗3 −X∗

3 I∗1 ]

X∗
1 Y ∗

3 −X∗
3Y ∗

1

− I∗1 .

The endemic equilibrium of the model is locally
asymptotically stable if each of the eigenvalues are less
than zero, i.e., λ1 < 0,λ2 < 0 and λ3 < 0.

5 Conclusion

This paper presents a mathematical model of a
prey-diseased predator model with refuge in prey system.
This model is constituted by a system of three nonlinear
ordinary differential equations of first order, which
describe the interaction between the infected prey,
non-infected prey and predator. The equilibria of the
system are derived and the stability analyses of the
disease-free and the endemic equilibria are performed. At
the disease-free equilibrium point, the model is locally

asymptotically stable if
e1a1(1−p)2X0Y0

(b+(1−p)Y0)2 − e1a1(1−p)X0

b+(1−p)Y0
< 0,

a1(1−p)Y0

b+(1−p)Y0
< 0 and βY0 +

a2(1−p)X0

b+(1−p)Y0
− d < 0; and at the

endemic equilibrium, the model is locally asymptotically

stable if X∗
1 < 0,

X∗
1 Y ∗

2
X∗

2
− Y ∗

1 < 0 and

Y ∗
1 [X

∗
1 I∗3−X∗

3 I∗1 ]
X∗

1 Y ∗
3 −X∗

3 Y ∗
1

− I∗1 < 0, where X∗
i ,Y

∗
j are as in (14).
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