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Abstract: The hyper-Zagreb index of a connected graphG, denoted byHM(G), is defined asHM(G) = ∑
uv∈E(G)

[dG(u) + dG(v)]2

wheredG(z) is the degree of a vertexz in G. In this paper, we study the hyper-Zagreb index of four operations on graphs.
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1 Introduction

In this paper, we are concerned with simple connected
graphs. LetG be such a graph with vertex setV (G),
|V (G)| = n, and edge setE(G), |E(G)| = m. As usual,n
is order andm is size ofG. If u and v are two adjacent
vertices of G, then the edge connecting them will be
denoted byuv. The degree of a vertexw ∈ V (G) is the
number of vertices adjacent tow and is denoted bydG(w).
Line graph L = L(G); V (L) = E(G) and two vertices ofL
are adjacent if the corresponding edges ofG are incident
with a common vertex. We refer to [11] for unexplained
terminology and notation.

A graphical invariant is a number related to a graph,
in other words, it is a fixed number under graph
automorphisms. In chemical graph theory, these
invariants are also called the topological indices. The first
and second Zagreb indices are defined as

M1(G) = ∑
u∈V(G)

dG(u)2 andM2(G) = ∑
uv∈E(G)

dG(u)dG(v)

respectively. The first Zagreb index can also expressed as
[7]

M1(G) = ∑
uv∈E(G)

[dG(u)+ dG(v)].

The vertex-degree-based graph invariant

F(G) = ∑
v∈V (G)

dG(v)3 = ∑
uv∈E(G)

[dG(u)2+ dG(v)2]

was encountered in [10]. Recently there has been some
interest toF , called “forgotten topological index”[9].

Shirdel et al.[15] introduced a new Zagreb index of a
graphG named hyper-Zagreb index and is defined as:

HM(G) = ∑
uv∈E(G)

(dG(u)+ dG(v))2.

Let G be a graph with vertex setV (G) and edge set
E(G), there are four related graphs as follows:
• Subdivision graph S = S(G) [11]; V (S) = V (G)∪E(G)
and the vertex ofS corresponding to the edgeuv of G is
inserted in the edgeuv of G;
• Semitotal-point graph T2 = T2(G) [14]; V (T2) =V (G)∪
E(G) andE(T2) = E(S)∪E(G);
• Semitotal-line graph T1 = T1(G) [14]; V (T1) = V (G)∪
E(G) andE(T1) = E(S)∪E(L);
• Total graph T = T (G) [4]; V (T ) = V (G)∪ E(G) and
E(T ) = E(S)∪E(G)∪E(L).

Figure 1: GraphG and itsS(G), T2(G), T1(G) andT (G).

In Fig. 1. The vertices of transformation graphsS(G),
T2(G), T1(G), T (G) corresponding to the vertices of the
parent graphG, are indicated by circles. The vertices of
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these graphs corresponding to the edges of the parent
graphG are indicated by squares.
For a given graphGi, its vertex and edge sets will be
denoted byV (Gi) and E(Gi), respectively, and their
cardinalities byni andmi, respectively, wherei = 1,2.

The Cartesian productG1 ×G2 of graphsG1 andG2
has the vertex setV (G1 × G2) = V (G1) × V (G2) and
(u1,v1)(u2,v2) is an edge ofG1 × G2 if and only if
[u1 = u2 and v1v2 ∈ E(G2)] or [v1 = v2 and
u1u2 ∈ E(G1)]. In the recent paper [8], Eliasi and Taeri
introduced four new operations on graphs as follows:
Let F ∈ {S,T2,T1,T}. The F-sum ofG1 andG2, denoted
by G1 +F G2, is a graph with the set of vertices
V (G1 +F G2) = (V (G1) ∪ E(G1)) × V (G2) and two
vertices(u1,u2) and (v1,v2) of G1 +F G2 are adjacent if
and only if [u1 = v1 ∈ V (G1) and u2v2 ∈ E(G2)] or
[u2 = v2 ∈V (G2) andu1v1 ∈ E(F(G1))].
Thus, they obtained four new operations asG1 +S G2,
G1 +T2 G2, G1 +T1 G2 and G1 +T G2 and studied the
Wiener indices of these graphs. In [6], Deng et al. gave
the expressions for first and second Zagreb indices of
these new graphs.

Figure 2: GraphsG1 andG2 andG1+F G2.

In this paper, we study the hyper-Zagreb index of
G1 +S G2, G1 +T2 G2, G1 +T1 G2 andG1 +T G2. Readers
interested in more information on computing topological
indices of graph operations can be referred to [1,2,3,5,
12,13].

2 Main results

Theorem 2.1. Let G1 and G2 be the graphs. Then
HM(G1 +S G2) = 4(n2 + 2m2)M1(G1) + 10m1M1(G2) +
n1HM(G2)+ n2F(G1)+8n2m1+16m1m2.

Proof. By definition of hyper-Zagreb index, we have
HM(G1+S G2)

= ∑
(u1,v1)(u2,v2)∈E(G1+SG2)

[dG1+SG2(u1,v1)+dG1+SG2(u2,v2)]
2

= ∑
u∈V(G1)

∑
v1v2∈E(G2)

[dG1+SG2(u,v1)+dG1+SG2(u,v2)]
2

+ ∑
v∈V(G2)

∑
u1u2∈E(S(G1))

[dG1+SG2(u1,v)+dG1+SG2(u2,v)]
2

= A1+A2

whereA1,A2 are the sums of the above terms, in order.
A1 = ∑

u∈V (G1)
∑

v1v2∈E(G2)

[dG1(u)+dG2(v1)+dG1(u)+dG2(v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[4d2
G1
(u)+(dG2(v1)+dG2(v2))

2

+ 4dG1(u)(dG2(v1)+dG2(v2))]

= 4m2M1(G1)+n1HM(G2)+8m1M1(G2).

A2 = ∑
v∈V (G2)

∑
u1u2∈E(S(G1))

[dS(G1)(u1)+dS(G1)(u2)+dG2(v)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(S(G1))

[(dS(G1)(u1)+dS(G1)(u2))
2+d2

G2
(v)

+ 2dG2(v)(dS(G1)(u1)+dS(G1)(u2))]

= n2HM(S(G1))+2m1M1(G2)+4m2M1(S(G1)).

Note thatM1(S(G1)) = M1(G1)+4m1 andHM(S(G1)) =
4M1(G1)+F(G1)+8m1.
∴ A2 = (4n2+4m2)M1(G1)+2m1M1(G2)+ n2F(G1)

+ 8n2m1+16m1m2.

AddingA1 andA2, we get the desired result.�
Theorem 2.2. Let G1 andG2 be the graphs. Then
HM(G1+T2 G2) = 8(5m2+ n2)M1(G1)+22m1M1(G2)

+n1HM(G2) + 4n2HM(G2) + 4n2F(G1) + 8m1n2 +
16m1m2.

Proof. By definition of hyper-Zagreb index, we have
HM(G1+T2 G2)

= ∑
(u1,v1)(u2,v2)∈E(G1+T2G2)

[dG1+T2G2(u1,v1)+dG1+T2G2(u2,v2)]
2

= ∑
u∈V(G1)

∑
v1v2∈E(G2)

[dG1+T2 G2(u,v1)+dG1+T2 G2(u,v2)]
2

+ ∑
v∈V(G2)

∑
u1u2∈E(T2(G1))

[dG1+T2G2(u1,v)+dG1+T2G2(u2,v)]
2
.

Note thatE(T2(G1)) = E(G1)∪E(S(G1)).
HM(G1+T2 G2)

= ∑
u∈V(G1)

∑
v1v2∈E(G2)

[dG1+T2 G2(u,v1)+dG1+T2 G2(u,v2)]
2

+ ∑
v∈V(G2)

∑
u1u2∈E(T2(G1))

u1,u2∈V (G1)

[dG1+T2G2(u1,v)+dG1+T2G2(u2,v)]
2

+ ∑
v∈V(G2)

∑
u1u2∈E(T2(G1))

u1∈V (G1),u2∈V (T2(G1))\V(G1)

[dG1+T2G2(u1,v)

+ dG1+T2G2(u2,v)]
2

= B1+B2+B3
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whereB1,B2 andB3 are the sums of the above terms, in
order.

B1 = ∑
u∈V (G1)

∑
v1v2∈E(G2)

[2dT2(G1)(u)+ dG2(v1)+ dG2(v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[4dG1(u)+ dG2(v1)+ dG2(v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[16d2
G1
(u)+ (dG2(v1)+ dG2(v2))

2

+ 8dG1(u)(dG2(v1)+ dG2(v2))]

= 16m2M1(G1)+ n1HM(G2)+16m1M1(G2).

B2 = ∑
v∈V (G2)

∑
u1u2∈E(T2(G1))

u1,u2∈V (G1)

[2dG2(v)+ dT2(G1)(u1)

+ dT2(G1)(u2)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(G1)

[2dG2(v)+2dG1(u1)+2dG1(u2)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(G1)

[4d2
G2
(v)+4(dG1(u1)+ dG1(u2))

2

+ 8dG2(v)(dG1(u1)+ dG1(u2))]

= 4m1M1(G2)+4n2HM(G1)+16m2M1(G1).

B3 = ∑
v∈V(G2)

∑
u1u2∈E(T2(G1))

u1∈V (G1),u2∈V (T2(G1))\V(G1)

[dT2(G1)(u1)+dG2(v)

+ dT2(G1)(u2)]
2

= ∑
v∈V(G2)

∑
u1u2∈E(T2(G1))

u1∈V (G1),u2∈V (T2(G1))\V(G1)

[2dG1(u1)+dG2(v)+2]2.

The quantity 2dG1(u1)+dG2(v)+2 appearsdG1(u1) times.
Hence,

B3 = ∑
v∈V (G2)

∑
u∈V (G1)

dG1(u)[4d2
G1
(u)+ d2

G2
(v)+4

+ 4dG2(v)+4dG1(u)(dG2(v)+2)]

= 4n2F(G1)+2m1M1(G2)+8m1n2+16m1m2

+ 8m2M1(G1)+8n2M1(G1).

AddingB1, B2 andB3, we get the desired result.�

Theorem 2.3. Let G1 and G2 be the graphs. Then
HM(G1 +T1 G2) = 16m2M1(G1) + 10m1M1(G2) +
n1HM(G2) + 4n2HM(G1) + n2F(G1) +
n2[ ∑

wiw j∈E(G1),w jwk∈E(G1)
[dG1(wi)+2dG1(w j)+dG1(wk)]

2].

Proof. By definition of hyper-Zagreb index, we have

HM(G1+T1 G2)

= ∑
(u1,v1)(u2,v2)∈E(G1+T1 G2)

[dG1+T1G2(u1,v1)+dG1+T1G2(u2,v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[dG1+T1G2(u,v1)+dG1+T1G2(u,v2)]
2

+ ∑
v∈V(G2)

∑
u1u2∈E(T1(G1))

[dG1+T1G2(u1,v)+dG1+T1G2(u2,v)]
2
.

Partition the edge setE(T1(G1)) into E(S(G1)) and
E(L(G1)).

HM(G1+T1 G2)

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[dG1+T1G2(u,v1)+ dG1+T1G2(u,v2)]
2

+ ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1∈V (G1),u2∈V (T1(G1))\V(G1)

[dG1+T1G2(u1,v)

+ dG1+T1
G2(u2,v)]

2

+ ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1,u2∈V (T1(G1))\V (G1)

[dG1+T1G2(u1,v)

+ dG1+T1
G2(u2,v)]

2

= C1+C2+C3

whereC1, C2 andC3 are the sums of the above terms, in
order.

C1 = ∑
u∈V (G1)

∑
v1v2∈E(G2)

[2dT1(G1)(u)+ dG2(v1)+ dG2(v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[2dG1(u)+ dG2(v1)+ dG2(v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[4d2
G1
(u)+ (dG2(v1)+ dG2(v2))

2

+ 4dG1(u)(dG2(v1)+ dG2(v2))]

= 4m2M1(G1)+ n1HM(G2)+8m1M1(G2).

C2 = ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1∈V (G1),u2∈V (T1(G1))\V(G1)

[dT1(G1)(u1)+ dG2(v)

+ dT1(G1)(u2)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1∈V (G1),u2∈V (T1(G1))\V(G1)

[dG1(u1)+ dG2(v)

+ dT1(G1)(u2)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1∈V (G1),u2∈V (T1(G1))\V(G1)

[d2
G1
(u1)+ d2

G2
(v)

+ 2dG1(u1)dG2(v)+ d2
T1(G1)

(u2)

+ 2dT1(G1)(u2)(dG1(u1)+ dG2(v))]

= ∑
v∈V (G2)

∑
u∈V (G1)

dG1(u)[d
2
G1
(u)+ d2

G2
(v)+2dG1(u)dG2(v)]

+ ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1∈V (G1),u2∈V (T1(G1))\V(G1)

[d2
T1(G1)

(u2)

+ 2dT1(G1)(u2)(dG1(u1)+ dG2(v))].
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Note that for u2 ∈ V (T1(G1))\V (G1),
dT1(G1)(u2) = dG1(u)+ dG1(w) whereu2 = uw ∈ E(G1).

C2 = n2F(G1)+2m1M1(G2)+4m2M1(G1)

+ ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1∈V (G1),u2∈V(T1(G1))\V(G1)

[(dG1(u)

+ dG1(w))
2+2(dG1(u)+dG1(w))dG1(u1)

+ 2(dG1(u)+dG1(w))dG2(v)]

= n2F(G1)+2m1M1(G2)+4m2M1(G1)+2n2HM(G1)

+ 2n2[F(G1)+2M2(G1)]+8m2M1(G1)

= n2F(G1)+2m1M1(G2)+4n2HM(G1)+12m2M1(G1).

C3 = ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1,u2∈V (T1(G1))\V(G1)

[dG1+T1G2(u1,v)

+ dG1+T1 G2(u2,v)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1,u2∈V (T1(G1))\V(G1)

[dT1(G1)(u1)+dT1(G1)(u2)]
2

= n2[ ∑
wiw j∈E(G1),w jwk∈E(G1)

[dG1(wi)+dG1(w j)+dG1(w j)

+ dG1(wk)]
2].

AddingC1, C2 andC3, we get the desired result.�
Theorem 2.4. Let G1 and G2 be the graphs. Then
HM(G1 +T G2) = 48m2M1(G1) + 22m1M1(G2) +
10n2HM(G1) + n1HM(G2) + 4n2F(G1) +
n2[ ∑

wiw j∈E(G1),w jwk∈E(G1)
[dG1(wi)+2dG1(w j)+dG1(wk)]

2].

Proof. By definition of hyper-Zagreb index, we have
HM(G1+T G2)

= ∑
(u1,v1)(u2,v2)∈E(G1+T G2)

[dG1+T G2(u1,v1)+dG1+T G2(u2,v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[dG1+T G2(u,v1)+dG1+T G2(u,v2)]
2

+ ∑
v∈V(G2)

∑
u1u2∈E(T(G1))

[dG1+T G2(u1,v)+dG1+T G2(u2,v)]
2
.

Note thatE(T (G1)) = E(G1)∪E(S(G1))∪E(L(G1)).

HM(G1+T G2)

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[dG1+T G2(u,v1)+ dG1+T G2(u,v2)]
2

+ ∑
v∈V (G2)

∑
u1u2∈E(T(G1))

u1,u2∈V (G1)

[dG1+T G2(u1,v)+ dG1+T G2(u2,v)]
2

+ ∑
v∈V (G2)

∑
u1u2∈E(T (G1))

u1∈V (G1),u2∈V (T (G1))\V (G1)

[dG1+T G2(u1,v)

+ dG1+T G2(u2,v)]
2

+ ∑
v∈V (G2)

∑
u1u2∈E(T1(G1))

u1,u2∈V (T1(G1))\V (G1)

[dG1+T1G2(u1,v)

+ dG1+T1G2(u2,v)]
2

= D1+D2+D3+D4

whereD1,D2,D3 andD4 are the sums of the above terms,
in order.

D1 = ∑
u∈V (G1)

∑
v1v2∈E(G2)

[2dT(G1)(u)+ dG2(v1)+ dG2(v2)]
2

= ∑
u∈V (G1)

∑
v1v2∈E(G2)

[4dG1(u)+ dG2(v1)+ dG2(v2)]
2

= 16m2M1(G1)+ n1HM(G2)+16m1M1(G2).

D2 = ∑
v∈V(G2)

∑
u1u2∈E(T(G1))

u1,u2∈V(G1)

[2dG2(v)+dT (G1)(u1)+dT (G1)(u2)]
2

= ∑
v∈V(G2)

∑
u1u2∈E(G1)

[2dG2(v)+2dG1(u1)+2dG1(u2)]
2

= 4m1M1(G2)+4n2HM(G1)+16m2M1(G1).

D3 = ∑
v∈V (G2)

∑
u1u2∈E(T (G1))

u1∈V (G1),u2∈V (T(G1))\V(G1)

[dT (G1)(u1)+ dG2(v)

+ dT(G1)(u2)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(T (G1))

u1∈V (G1),u2∈V (T(G1))\V(G1)

[2dG1(u1)+ dG2(v)

+ dT(G1)(u2)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(T(G1))

u1∈V (G1),u2∈V (T (G1))\V (G1)

[4d2
G1
(u1)+ d2

G2
(v)

+ 4dG1(u1)dG2(v)+ d2
T(G1)

(u2)+2dT(G1)(u2)(2dG1(u1)

+ dG2(v))]

= ∑
v∈V (G2)

∑
u∈V (G1)

dG1(u)[4d2
G1
(u)+ d2

G2
(v)+4dG1(u)dG2(v)]

+ ∑
v∈V (G2)

∑
u1u2∈E(T (G1))

u1∈V (G1),u2∈V (T (G1))\V (G1)

[d2
T(G1)

(u2)

+ 2dT(G1)(u2)(2dG1(u1)+ dG2(v))].

Note that for u2 ∈ V (T (G1))\V (G1),
dT(G1)(u2) = dG1(u)+ dG1(w) whereu2 = uw ∈ E(G1).

D3 = 4n2F(G1)+2m1M1(G2)+8m2M1(G1)

+ ∑
v∈V(G2)

∑
u1u2∈E(T(G1))

u1∈V (G1),u2∈V (T(G1))\V(G1)

[(dG1(u)+dG1(w))
2

+ 4(dG1(u)+dG1(w))dG1(u1)+2(dG1(u)

+ dG1(w))dG2(v)]

= 4n2F(G1)+2m1M1(G2)+8m2M1(G1)+2n2HM(G1)

+ 4n2[F(G1)+2M2(G1)]+8m2M1(G1)

= 4n2F(G1)+2m1M1(G2)+16m2M1(G1)+6n2HM(G1).
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D4 = ∑
v∈V (G2)

∑
u1u2∈E(T (G1))

u1,u2∈V (T(G1))\V(G1)

[dG1+T G2(u1,v)

+ dG1+T G2(u2,v)]
2

= ∑
v∈V (G2)

∑
u1u2∈E(T (G1))

u1,u2∈V (T(G1))\V(G1)

[dT (G1)(u1)+ dT(G1)(u2)]
2

= n2[ ∑
wiw j∈E(G1),w jwk∈E(G1)

[dG1(wi)+ dG1(w j)

+ dG1(w j)+ dG1(wk)]
2].

AddingD1, D2, D3 andD4, we get the desired result.�
Applying the above four theorems to the graphsG1 =

Pr andG2 = Pq, we have

(i)HM(Pr +S Pq) = 136rq−138r−150q+124,q > 2;
(ii)HM(Pr +T2 Pq) = 416rq−338r−576q+388,r,q > 2;
(iii) HM(Pr +T1 Pq)

=

{

192rq−154r−234q+156i f r = 3, q > 2;
256rq−154r−428q+156i f r > 3, q > 2;

(iv)HM(Pr +T Pq)

=

{

488rq−354r−696q+420i f r = 3, q > 2;
552rq−354r−890q+420i f r > 3, q > 2.

3 Conclusion

In this paper, we have studied the hyper Zagreb index of
new four sums of graphs. Also we apply our results to
compute the hyper Zagreb index ofPr +S Pq, Pr +T2 Pq,
Pr +T1 Pq andPr +T Pq. For further research, one can study
the other topological indices of these new operations.
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[1] A. R. Ashrafi, T. Doˇsli ć, A. Hamzeh, The Zagreb coindices
of graph operations,Discrete Appl. Math. 158 (2010) 1571–
1578.

[2] B. Basavanagoud, S. Patil, A note on hyper-Zagreb index of
graph operations,Iranian J. Math. Chem. 7(1) (2016) 89–92.

[3] B. Basavanagoud, S. Patil, A note on hyper-Zagreb coindex
of graph operations,J. Appl. Math. Comput. (2016)
doi:10.1007/s12190-016-0986-y.

[4] M. Behzad, A criterion for the planarity of a total graph,Pro.
Cambridge Philos. Soc.63 (1967) 697–681.

[5] K. C. Das, A. Yurttas, M. Togan, A. S. Cevik, I. N. Cangul,
The multiplicative Zagreb indices of graph operations,J.
Inequal. Appl. 90 (2013) 1–14.

[6] H. Deng, D. Sarala, S. K. Ayyaswamy, S. Balachandran, The
Zagreb indices of four operations on graphs,Appl. Math.
Comput. 275 (2016) 422–431.
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