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Abstract: In this paper we develop approximate Bayes estimators of¢hke parameter of the logistic distribution, based on a new
life test plan called a progressive first-failure censorkh pntroduced by 22]. We consider the maximum likelihood and Bayesian
inference of the unknown parameter of the model, as wellasdiiability and hazard rate functions. Lindley’s approation [L2] and
Markov Chain Monte Carlo (MCMC) methods such as importarama@ing procedure are applied. The Bayes estimators hame be
obtained relative to both symmetric (squared error) andnasstric (linex and general entropy) loss functions. Fipath assess the
performance of the proposed estimators, some numeriadtsesing Monte Carlo simulation study were reported.

Keywords: Logistic distribution, progressive first-failure censiregeneral uniform distribution, loss functions, Lindiey’
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1 Introduction

The logistic function is one of the most popular and widelgdifor growth models in demographic studies. The logistic
distribution arises frequently in statistical modellinghas been used in the analysis of survival data, graduation
mortality statistics and is used in some applications adpatiute for the normal distributior8]. The logistic distribution

has been applied in studies of population growth, physientgbal phenomena, bio-assay and a life test data,13€d §]
compared the logistic distribution and weibull distriloutifor modeling wind speed data. Many researchers have used
asymmetric loss function applied to several statisticatiel® (6] and [20]). Life testing experiments are usually time
consuming and costly. We therefore, use various types afarery schemes to cut short the experiment. The censoring
scheme in an experiment may also arise naturally withoutdinérol of the experimenter. For example, in medical stsidie
a patient may drop out of a study before its completion.afiitj the popular censoring schemes were conventional type
| and type Il. They had a drawback that an item could not bedwéttvn before the completion of the experiment. See
[15] and [19]. [7] thought over this point and introduced progressive typaelisoring scheme which allows removal of
items from the experiment before the final termination pdjtcompiled the work done on progressive censoring up-to
year 1999. Progressive censoring has also been studiedmyauthors like 16], [9], [10] and references cited therein.
There are situations in real life where lifetimes of items ®ery high and test facilities are limited. If the test mater

is comparatively cheaper, one can puikn items on test instead of onlyunits. In this case sets or groups each
consisting ofk items are put on test separately. In each set only firstriail observed and the progressive censoring
is applied ton groups. B] studied this type of grouping of units and observing onlgtfiiailure. Some other studies on
first-failure are by p], [21] and [23]. The combination of first-failure and progressive censpis known as progressive
first-failure censoring scheme. This concept was given2dy; [They described estimation methods in case of a Weibull
distribution using this new censoring plan. More recenemefices can be found id3], [11] and [14]. We shall now
describe the progressive first-failure censoring schemasude that kx n items are put on test mindependent groups
with k items in each group. We prefix the progressive censoringnselie= (R, Ry, ...,Rm). Upon the first-failure of
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a unit, we remove that group in which first-failure occurred &; additional groups randomly from the remaining
(n—1) groups in the experiment. As soon as second failure takeg pl@ remove that group and additioRalgroups
randomly from remainingn — R; — 2) groups and so on. This procedure continues till " failure occurs when

m
the remainingRm groups and the group in which last failure took place are rdoObviously,y R +m=n. Also,

i=1
if Ri =Ry, =...=Ryn=0, the progressive first-failure censoring scheme reducessisfdilure censoring scheme and
if Ri=Ry=...=Ry.1=0 andRy = n—m, it reduces to first-failure type Il censoring scheme, a pesgive type I
censored scheme wh&n= 1. Also, it should be noted that the progressive first-faillersored scheme with distribution
function F(x), can be viewed as a progressive type Il censored sample froopalgiion with distribution function
1-(1- F(x))k. For this reason, results for the progressive type Il cemsscbeme can be extended to progressive first-
failure censored scheme easily. Therefore, progressstefdilure censoring is a generalization of progressivesoeng.
Obviously, although more items are used (amlgf k x nitems are failures) in the progressive first-failure ceimgpplan
than in others, it has advantages in terms of reducing testeoml test time. Let i n-k, Xo:mncks -+ Xmmn:k D€ @ progressive
first-failure censored sample from a population with pdf) and distribution functiorf (.) with progressive censoring
schemeR. Let us denoté Xq.mn:k, X2:mncks -+ Xmmn:k ) BY X = (X1,X2, ..., Xm) . On the basis of a progressive first-failure
censored sampbethe likelihood function is given by [se@]and [22]]

L(x) = Akmﬁf (xi) [1— F(x)) <RD=D) (1.2)

where A=n(n—1-Ry)...(n—R;—...—Ryn_1—m+1). The main aim of this paper is to approximate Bayes
estimators of the scale parameter of the logistic distidioutProgressive first-failure censoring schemes usindp bot
MLEs and Bayesian approaches are obtained. The orgamizztihe paper is as follows: Sect. 2 deals with maximum
likelihood estimation of the unknown parameter, as wellhasreliability and hazard rate functions. For the compatati

of Bayes estimates we use Lindley’s approximation and iti@mae sampling procedure in Sect. 3. In Sect. 4, a Monte
Carlo simulation study is performed for comparisons of masi estimates developed in this paper. Concluding remarks
are givenin Sect. 5.

2 Maximum Likelihood Estimators (MLES)

In this section, we derive the MLEs of the unknown paramgiebased on progressive first-failure censored samples.
Assuming that the location parameteis known. Assume the failure time distribution to be the &tigi distribution with
probability density function (pdf)
_ =)
FGH,B) = —E— g~ <X <,
_(xw
5 (1+e z ) (21)

—0 < U <o, f3>0,

and the corresponding cumulative distribution functicdf) s given by

FOu,B)= R (22)
l+e F

From (1.1), (2.1) and (2.2), the likelihood function is giMay

ki -\ K(R+1)-1)
) (Iﬁ u>< i )
m —(—H)
1 B

L (X!uaﬁ) = AkmiIJ B (]J-re (XiBll)>2
+e

The logarithm of the likelihood function may then be writtes

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 1, 49-63 (2017) www.naturalspublishing.com/Journals.asp NS = 51

~(§-1) —o—w y (K(R+1)-1)
(%)

—(—H)

1+e B

log[L] = ¢ = log[A] + mlog[K] + log _iﬁl

—04—m) \ 2
E<1+e B >
i)
m
(= loglAl+moglk+ 5 kRAD =D o[ +e%} - . (2.4)
=

—(5-h)
Iog[B]—ZIog[1+e B }

Calculating the first partial derivative of (2.4) with resp# 3 and equating to zero, we obtain the likelihood equation

_(izh)
1, (iow) 2e P (4w

B R (@)
1te B B2

(§-1)
i— B (x—
(K(1+R)~1) (%z‘” — ‘”)

=0. (2.5)

igmi

(1ve B )p2

The solution of the non-linear equation (Z.SﬁsThe MLEs of the reliability function and the hazard ratedtion
are given as

1

i - N (cl]
1+ef B<1+e P )

3 Bayesian estimation

In this section, the Bayesian estimator of the unknown patanf8 of the logistic distribution is obtained. Also the
reliability function and hazard rate function, based ongpessive first-failure censored samples, under symmetric
(squared error) and asymmetric (linex and general entrlggg) functions, using Lindley?s approximation and Markov
Chain Monte Carlo (MCMC) methods such as importance sampliocedure, are obtained.

3.1 Bayes Estimates Using Non-informative Prior Distribution

Assuming thatu is known (fixed) and the scale paramefelis a random variable, with a non-informative "general
uniform” prior distribution in the form

_ A-1
n(Bia,y,)) = B(AA(VAl)l(f‘g“); O<a<B<y<o A>0,A#£L (3.1)

By using equations (2.3) and (3.1) we get the posterioritdigion of 8 as follow

(Blx ) = =P BIL(GHIB)
Ofﬂ(B)L(x:uIB)dp
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—(4—H) —04i=H) ((R+1)-1)
)

—(§—H)
= 1 H 1+e Iﬁ 5
B i=1 —04—m) \ 2
B<1+e B )
(e oo\ KR+D)-1) -1 (3.2)
(=) . B
© m e F —(—H)
f BA’\ |—| lte dB
0 i=

Y —04-H) \ 2
Bl1+e A

Integration in equation (3.2) cannot be obtained in a clésed, so we solve it numerically. In the following subseato
we derive Bayesian estimators for scale parameter, trabilitly function and the hazard rate function under diffédess

functions.

3.1.1 Bayesian Estimators Under Square Error Loss Function

1. Bayesian estimator of the scale paramgter

*(Xi*U) —(—H) (k(RiJrl)’l)
e B e B
1A ( <Xiﬁm)
Bl ar =R :
i=1 .
. E<1+e B >
Ba=EB)= | oy [ g (4D |9 33
0 e B e B
. L m *(beﬂ)
I ETETIY dp
0 i=1 !
E<1+e k >

Provided thatE () exists and is finite. This integration cannot be solved ditall}y, so we use Lindley’s Bayes
approximation 12]. Let u(f) be a function of3, and we want to find Bayes estimator for it, basedrfi) as a prior
distribution. The log-likelihood function for the logistdistribution based on progressive first-filure censoredpes is
given by (2.4), Bayes estimate off3) using Lindley approximation is obtained as follows:

E(U(B)Ix;u)z/ i(ﬁ)"(B)L(ZJMB) a.
0 é"(ﬁ)'—(lﬁlﬂﬁ)dﬁ

LetQ(B) = log[rt(B)] , then

1 1
E(u(B)|x) ~ <U (B) +UQuTaa+ St Tus + §L111U1T112 > , (3.4)
(BIm
where ) , 5
7] Ju ou(u, o4 o/ _
Ql: 3(3B)7u1: a(BB)7ull: %’Lll:a—ﬁz’l_lll: a—B:‘;"[ll:_(Lll) l'

Substitution in equation (3.4),= 3, the Bayesian estimator of the scale paramgtisrgiven as

A A 1
Bsg =~ (B - ETM+ §L111T112 > .

2. Bayesian estimator of the reliability functi®ft)
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Substitution in equation (3.4),= R(t), the Bayesian estimator of the reliability functi®(t) is given by

. 1 A 1 1 5
R~ | V7~ — zWl1+ 5UniTia+ 5L11aUa T1g
( <tﬂ>> B 2 2
1+e

3. Bayesian estimator of the hazard rate funckin)

Substitution in equation (3.4),= H (t), the Bayesian estimator of the hazard rate fundtidt) is given by

e ~ 1 A 1 1L 2
= —Ou)> - EU1T11+ ST+ Slhith

B<1+e B 2

3.1.2 Bayesian Estimators Under Linear-Exponential LasxEon (LINEX)

1. Bayesian estimator of the scale paramgter

Bunex = —Llog[E (e7%)].
Provided thaE (e*CB) exists and is finite. Substituting in equation (34)= e 8, the Bayesian estimator of the scale
parametep is given as

cA Tllefcﬁ I cze*Cﬁ T11— CL111T11287CB

B 2

- 1 B
Puinex = —log [e b4
2. Bayesian estimator of the reliability functi&t)

Substitution in equation (3.4),= e R the Bayesian estimator of the reliability functiBt) is given by

1
(t=p)

- 1 (”e ) AUiTin | UnaTag+ LagalnTag?
RuNExﬁ—E'Og e - +

B
B 2

—C

3. Bayesian estimator of the hazard rate funcki(h)
substitution in equation (3.4),= e () the Bayesian estimator of the hazard rate funchdt) is given by

1
- W
) ATy i Un1T11 + Laaatn Taa®

B 2

B

R 1 B(l+e
Huinex ~ —E|09 e

3.1.3 Bayesian Estimators Under General Entropy Loss amct

1. Bayesian estimator of the scale paramgter

ol

BGentropy - [E (Biq)]i .

Provided thak (8~9) exists and is finite. Substitution in equation (34} 39, the Bayesian estimator of the scale
parametep is given by

BGentropy = (Bq +

1
AgB 197y, CI(1+CI)B2qT11—CIB1q|-111T112> a
B + > .
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2. Bayesian estimator of the reliability functi&it)

Substitution in equation (3.4),= (R(t)) "9, the Bayesian estimator of the reliability functiBXt) is given by

-q
5 N 1 AUrTig | UnaTag+ LinaUs Tag®
Reentropy >~ | | — 7 T + 5

ol

u
l+e F

3. Bayesian estimator of the hazard rate funchifh)

Substitution in equation (3.4),= (H (t)) "9, the Bayesian estimator of the hazard rate funckigt) is given by

Ql-

—q —

1 CAwTig | Unfin+ Lot Tag®
—(t—p) 2
B (1+ e P ) P

It is worth noting that when the valup= —1, the general entropy loss function is the same as the stjearer loss
function.

HGentropy =~

3.2 Bayes Estimates Using Informative Prior Distribution

Assuming that the informative prior distribution for theateparameteg is a inverse gamma distribution, given by

e B(Y¥
n(B;n,v):B,_L(ﬁ;)), B>0, (n,v>0). (3.5)

By using equations (2.3) and (3.5) we get the posterioridigion of 3 as follows

—(x—1) —o4—) \ K(R+1)-1)
(%)

—(X—H)
1+e B

i —0-1) \ 2
=1 B<1+e 8 )

*(Xi*u> —(Xi—H) (k(Ri+l>7l>
v e F ( : (iu))
-V m B

I—I 1+e

l —(§—1)\ 2
=t B<1+e B )

Integration in equation (3.6) cannot be obtained in a cld®edh, so we solve it numerically. In the following
subsections we derive Bayesian estimators for the scatarderf, the reliability function and the hazard rate function
under different loss functions.

a (3.6)

dB

O—3g
o
E]
+'m
AR

3.2.1 Bayesian Estimators Under Square Error Loss Function

1. Bayesian estimator of the scale paramgter
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o ~x—w \ KR+)-1)
e B (e P
B X ef% m <1+9(Xiﬁu) ) X
Bt iDl —05-m)\ 2
" B <1+e B )
BSq = E(B) = / (an) x40 (k(Ri+1)-1) -1 dB (37)
0 eIT e B
}° 97% H 1+87(Xil;u) dB
(AR —04—1) \ 2
o| = B <1+e B )

Provided thate (B) exists and is finite. This integration cannot be solved aically, so we use Lindley's Bayes
approximation (3.4). Substitution in equation (343} 3, the Bayesian estimator of the scale paramgtisrgiven as

Bsq ~ <B + <V_(:;%)B> T11+ %Lnﬂnz) :

2. Bayesian estimator of the reliability functi®t)

Substitution in equation (3.4),= R(t), the Bayesian estimator of the reliability functi®(t) is given by

5 1 v—(1+ Up1T11 + L11Us 142
Req = — < ([32 ’7)5) Uy Ty 4 LT 2111 1T11
<1+eﬂ>

3. Bayesian estimator of the hazard rate funckitn)

Substitution in equation (3.4),= H (t), the Bayesian estimator of the hazard rate functidt) is given by

1

Fe ~ v—(1+n)B > Up1T11 + L111Up 1142
sq — UiT1a

(tu)> + < BZ 2

B(1+e B

3.2.2 Bayesian Estimators Under Linear-Exponential LasxcEon (LINEX)
1. Bayesian estimator of the scale paramgter
Bunex = —Llog[E (e F)].

Provided thaE (e‘cﬁ) exists and is finite. Substitution in equation (34) e 8, the Bayesian estimator of the scale
parametep is given as

A 1 —cf v—-(1+n)B B c?e 1y — clinmy®e
Puinex = —log [e < 52 (CTlle ) + 5

2. Bayesian estimator of the reliability functi&t)

Substitution in equation (3.4),= e R the Bayesian estimator of the reliability functiBt) is given by

1
S emy

MT) v—(1+ U11T11 + L111U1T112
+< ( n)B)(u1r11)+ 11711+ L11aU1 T1g

R
RuNEx ~ —E|09 e B2 >
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3. Bayesian estimator of the hazard rate functitih)
Substitution in equation (3.4),= e (1), the Bayesian estimator of the hazard rate funckigt) is given by

—C

B B 2
) n (V (][-B‘ZF ’7)3) (UrTaa) + U11T11+|£111U1T11

N 1 E(He
Hiinex =~ “c log |e

3.2.3 Bayesian Estimators Under General Entropy Loss amct

1. Bayesian estimator of the scale paramgter

ol

BGentropy =[E(B9)] 9.

Provided thaE (8~9) exists and is finite. Substitution in equation (3143 B9, the Bayesian estimator of the scale
parametefs is given as

Qi

oo o [P0 (552 (a7 o) +
Gentropy = Q(1+q)B’qufllg(m*l*q'-nﬂnz

2. Bayesian estimator of the reliability functi@ft)

Substitution in equation (3.4),= (R(t)) ™9, the Bayesian estimator of the reliability functiBXt) is given by

—-q

3 1 v—(1+ Up1T11 + L119U1 7142

Reentropy ~ ((ﬁ) + (%) (UrTy1) + 11011 2111 1711 )
1+e B

ol

3. Bayesian estimator of the hazard rate functitih)
Substitution in equation (3.4),= (H (t)) 9, the Bayesian estimator of the hazard rate funckdt) is given by
1
—q -1

] 1 v—(1+ Up1T11 + L111U1 142
HGentropy’l A= + <%) (UgT1a) + 11011 2111 1711
B <1+e B )

It is worth noting that when the valwp= —1, the general entropy loss function is the same as the sdjear@r loss
function.

3.3 Importance Sampling Technique

Importance sampling is the general technique of samplinghfone distribution to estimate an expectation under a
different distribution. In Bayesian analyses, given allk@od L (6) for a parameter vectd, based on datg and a prior
¢(0), the posterior is given byp*(8) = C 1L(8)¢(8), where the normalizing constai® = [L(8)m(8)d8 is
determined by the constraint that the density integrate tbhis normalizing constant often does not have an analytic
expression. General problems of interest in Bayesian aaalpre computing means and variances of the posterior
distribution, and also finding quantities of marginal postedistributions. In general leg(8) be a parametric function

for which

6(6) = [ 9(6)9"(61x)db. (35)
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needs to be evaluated. In many applications,(3.5) cannetddaated explicitly, and it is difficult to sample directhpm
the posterior distribution, so importance sampling cangp@ied. Samples can be drawn from a distribution with densit
q(0). In this case, if61, 6, ..., Oy is a random sample frogy 6) then (3.5) can be estimated with

6(6) = ——— (3.6)

wherew; = % and the sampling density(6) need not be normalized. This technique is described in ldefai

[17. We generate a samples from inverse gamma distribution h withyper-parameters
(n=3,v=2(table3)and n =2, v =3 (table4)). We use the following procedure:

Step 1 Generat@ from inverse gammgB;n,v).

Step 2 Repeat this procedure 1000 times to obtain importsaroele(S1, B2, - - -, Biooo) -

The approximate value of (3.5) can be obtained by (3.6).

4 Simulation studies

In this section, we conduct a Monte Carlo simulation studgaimpare the performance of various estimates developed in
the previous sections. A large numt§@000) of progressive first-failure censored samples of varyirgipgrsizek = 4,5,
number of groups in a sampie= 40,60 and effective sample sizes= 20,30 out ofn and different combinations of
progressive censoring scheni®are generated from model (2.3). We choose true valy@earfual to 09 (tables 1,3) and

2.0 (tables 2,4). The study includes the following steps:

1.Generate a progressive first-failure censored sampig akjorithm proposed byi] from model (2.3) for given values
of (k,n,mR).
2.Calculate the maximum likelihood estimateg3o0R(t) andH (t) according to SecP.
3.According to Sect. 3, obtain the Bayes estimate8,d®(t) andH (t).
4 Repeat stepdl) — (3), (1000) times, for different values gk,n,m,R) .
. - %%00?}I :%%oo (é—e)z | N |
Estimation average ‘g5, mean square errer I=—-—_ where,f is the parameter anllis the estimator.
Extensive computations were performed using Mathematica 9
Since the non-linear equations (2.5) are not solvable &nally, numerical methods can be used, as Newton Raphson
method with initial values closed to real values of the paatan

Throughout this section we will use the following abbre\ias:

1.MSEs: The mean square errors,

2 ML : The estimate by using the (MLE),

3.Bg; : The estimate under squared error loss function,

4 Bixc—2: The estimate under linex loss functioncat 2,

5Bixc=4: The estimate under linex loss functioncat 4,

6.Bgeg—2: The estimate under general entropy loss functiap-at2,
7 Bgeg—4: The estimate under general entropy loss functicp-at4.
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Table 1. Average values of the estimates and the corresponding MfBEES) in parentheses of the paramgiethe relaibility function

and the hazard rate function whgn= 0.5, 8 = 0.9 andA = 2, in case non-informative prior.

Brrc—d4 | Brec—2 | Bgeg—4 | Bgeg—2 | Bsg | ML | Scheme | (k,n,m)
The average. M5Es of the estimators of porameter g
0.87332 088262 | 0.BG5406 0LBTIG0T | 0.8D657 0.01553 (10,18%0,10) | (4.40,20)
(0.,00072) | (0.00031) | (0.00122) | (0.0007T2) [ (0.00004) | (0.01122)
(1.88455 0ETT06 | O.ETGEA LETO2G (0.80973T 0.80020 (20, 19*0)
(0.00051) | (0.00053) | (0.00054) | (0.00089) [ (D.00001) | (0.01346)
0.8G034 088643 D.EG067 (LETOO L8020 (1.89386 (19*0,20)
(0.00007) | (0.00019) | (0.00163) | (0.00046) [ (0.00005) | (0.000958)
(LEATHED 020465 0.REZIR (LEE020 (L.A00E1 0.90072 {15,28*0.15) | (5,60,30)
(0.00151) | (0.00003) | (D.00028) | (0.00012) | (0.00003) | (0.00658)
0.59417 (0.EERAT | (_SEARG (LE846T (.00334 0.90533 (30, 1)
(0.00034) | (0.00013) | (0.00013) | (0.00023) | (0.00001) | ((.00829)
0.580648 0.809361 (.8R023 1.ED014 (1. 80x00 0.80E54 (20%0,30)
(0.00019) | (0.00004) [ (0.00038) | (0.00009) | (0.00003) | (0.00519)
The average, MSEs of the estimators of relaibility function R{t=2)=0.15887
0.15382 0153949 | 0.14603 (.14760 0.15520 0.15648 (10,18%0,10) | (4,40,20)
(0.00002) | (0.00002} | (0.00016) | (0LOODT3) | (0.00001) | (0.00068)
0.15455 015447 | 0.14806 014767 015488 0.15740 (20, 19+0)
(0.00001) | (0.00002) | (0.00010) | (0LODD12) | (0.00001) | (0.00007)
0.15311 015507 | 0.14454 (1.15033 (L15568 015635 (107%(),20)
(0.00003) | (0.00001) | (0.00028) | (0.00007) | (0.00011) | (0.00058)
0. 15670 015716 | 0.15106 (L1531% .15751 0.15828 (15,28%0.15) | (5,60,30]
(0.00004) | (0.00001) | (0.00004) | (0.00003) | (0.00001) | (0.00039)
015710 0.15671 0.15392 015277 0. 15768 0.15922 (30,29%0)
(0.00003) | (0.00001) | (0.00002) | (0.00003) | (0.00001) | (0.00049)
0156064 0.15703 | 0.15090 0.15443 0.15736 0.15790 (207%0,30)
(0.00001) | (0.00001) | (0.00006) | (0.00001) [ (0.00001) | (0.00031)
The average, MSEs of the estimators of hozard rate function H(t=2)=0.93450
(1.03406 085785 | 0.02107 (1.4 155 N.97715 i O5E00 (10,18*0,10) | (4,40,20)
(0.00014) | (0.00055) | (0.00038) | (0.00000) [ (D.00182) | (0.02205)
0.05568 0093615 | 004265 002550 (LEOE354 0.05578 (20,19%0)
(0.00049) | (0.00016) | (0.00017) | (0.00028) [ (D.00242) | (0.02530)
0.93122 0.95373 0.91470 0.094322 0.97136 1.95840 ( 19%0,20)
(0.00086) | (0.00044) | (0.00052) | (0.00023) | (0.00137) | (0.01902)
1.a31a0 0094220 | 092404 (03241 25472 0.94424 (15,28*0,15) | (5,60,30)
(0.00030} | (0.00001) | (0.00014) | (0.00001) [ (0.00040) | (0.01211}
0.94333 003437 | 0.93614 (.O02834 1.95695 0.94062 {30, 29%0)
(0.00008) | (0.0000L) | (0.00001) | (0.00005) | (0.00050) | (0.01448)
092705 0.04360 | 091703 (.93806 0.85204 0.94492 (| 207%0,30)
((LOD0OT) | (0.00008) | (0.00033) | (0.00002) | (0.00033) | (0.00956)
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Table 2. Average values of the estimates and the corresponding Mf8Ees) in parentheses of the paramgiethe relaibility function
and the hazard rate function whan= 0.5, f = 2.0 and andA = 2, in case non-informative prior.

BL::"C=4

| BL;m:‘.: 2

| BGE.Q:-’-I

| BG’E,q:Q

| BSq

[ ML

| Scheme

| (k.n,m)

The average, MSEs of the estimators of parameter (3

1.90862
(0.00869)
1.95024
(0.00257)
1.87793
(0.01540)

1.92266
(0.00620)
1.91345
(0.00765)
1.94077
(0.00254)

1.93826
(0.00397)
1.96369
(0.00135)
1.90912
(0.00857)

1.93780
(0.00401)
1.93926
(0.00374)
1.96068
(0.00155)

2.00736
(0.00012)
1.99037
(0.00012)
1.99655
(0.00011)

2.00577
(0.05947)
1.99697
(0.07077)
1.99189
(0.04557)

(10.18%0.10)
(20,19%0)

(19*0,20)

(4,40,20)

1.93300
(0.00455)
1.95026
(0.00167)
1.92834
(0.00528)

1.96009
(0.00164)
1.94862
(0.00267)
1.97067
(0.00086)

1.95180
(0.00234)
1.96672
(0.00111)
1.95124
(0.00245)

1.96979
(0.00094)
1.96466
(0.00125)
1.97680
(0.00053)

1.99085
(0.00009)
2.00110
(0.00001)
1.99621
(0.00002)

1.99077
(0.03077
2.00547
(0.04251)
1.99544
(0.02612)

(15,28%0,15)
(30,20%0)

(29%0,30)

(5.60,30)

The average, MSEs

of the

estimators

of relaibility function

R(t=2)=0.32082

0.31647
(0.00001)
0.31685
(0.00001)
0.31397
(0.00004)

0.31442
(0.00004)
0.31653
(0.00001)
0.31685
(0.00001)

0.31446
(0.00004)
0.31550
(0.00002)
0.31164
(0.00008)

0.31283
(0.00006)
0.31481
(0.00003)
0.31571
(0.00002)

0.31724
(0.00001)
0.31488
(0.00003)
0.31717
(0.00001)

0.31021
(0.00040)
0.31804
(0.00050)
0.31852
(0.00032)

(10,18%0,10)
(20,19%0)

(19%0,20)

(4,40,20)

0.31737
(0.00001)
0.31758
(0.00001)
0.31735
(0.00001)

0.31762
(0.00001)
0.31830
(0.00001)
0.31847
(0.00001)

0.31618
(0.00002)
0.31680
(0.00001)
0.31589
(0.00002)

0.31666
(0.00001)
0.31734
(0.00001)
0.31785
(0.00001)

0.31780
(0.00001)
0.31790
(0.00001)
0.31864
(0.00001)

0.31896
(0.00021)
0.31977
(0.00028)
0.31951
(0.00018)

(15,28%0,15)
(30,29%0)

(29%0,30)

(5,60,30)

The average, MSEs

of the estimators o

f hazard rate function

H(t=2)=0.33959

0.34739
(0.00006)
0.35009
(0.00011)
0.35335
(0.00019)

0.35665
(0.00029)
0.34777
(0.00007)
0.34999
(0.00010)

0.33208
(0.00006)
0.34068
(0.00002)
0.33532
(0.00003)

0.34501
(0.00003)
0.33615
(0.00002)
0.34238
(0.00001)

0.35267
(0.00017)
0.35976
(0.00041)
0.35215
(0.00015)

0.34569
(0.00279)
0.34925
(0.00364)
0.34707
(0.00226)

(10,18%0,10)
(20,19*0)

(19%0,20)

(4,40,20)

0.31656
(0.00004)
0.34804
(0.00007)
0.34613
(0.00004)

0.34802
(0.00007)
0.34458
(0.00002)
0.34576
(0.00003)

0.33865
(0.00001)
0.34295
(0.00001)
0.33576
(0.00001)

0.34139
(0.00001)
0.33828
(0.00001)
0.34171
(0.00001)

0.34950
(0.00008)
0.34985
(0.00010)
0.34601
(0.00005)

0.34544
(0.00151)
0.34367
(0.00197)
0.34383
(0.00125)

(15,28%0,15)
(30,20%0)

(29%0,30)

(5,60,30)
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Table 3. Average values of the estimates and the corresponding MfBEES) in parentheses of the paramgiethe relaibility function

and the hazard rate function whgn=3, v =2, u =05, B = 0.9, in case informative prior.

Brret | Broe—s | Boegt | Boeg—2 | Beg [ Technique | ML [ Scheme | (k,n,m)
The average, MSEs of the estimators of parameter 5

0.87555 | 0.88037 | 0.86642 | 0.88004 | 0.90440 | Lindley 0.90336 | (20,19%0) [ (4,40,20)
(0.00066) | (0.00019) | (0.00119) | (0.00046) | (0.00012) (0.01494)

0.88557 | 0.88628 | 0.88499 | 0.88579 | 0.88699 | Importance

(0.00078) | (0.00078) | (0.00078) | (0.00078) | (0.00078) | Sampling

0.88034 | 0.88976 | 0.87348 | 0.88332 | 0.80955 | Lindley 0.89487 | (19%0,20)
(0.00038) | (0.00011) | (0.00071) | (0.00028) | (0.00003) (0.00867)

0.89268 | 0.80332 | 0.80217 | 0.89280 | 0.89396 | Importance

(0.00083) | (0.00083) | (0.00083) | (0.00083) | (0.00083) | Sampling

0.88134 | 0.88048 | 0.87540 | 0.88305 | 0.80805 | Lindley 0.89784 | (30,29%0) | (5,60,30)
(0.00035) | (0.00011) | (0.00061) | (0.00026) | (0.00001) (0.00796)

0.89727 | 0.89799 | 0.89670 | 0.89751 | 0.89873 | Importance

(0.00084) | (0.00084) | (0.00084) | (0.00084) | (0.00084) | Sampling

0.89139 | 0.89657 | 0.88755 | 0.89309 | 0.90188 | Lindley

(0.00007) | (0.00001) | (0.00015) | (0.00004) | (0.00001) 090022 | (20%0.30)

0.91802 | 0.91965 | 0.91684 | 0.91861 | 0.92128 | Importance| (0.00544)

(0.00081) | (0.00081) | (0.00081) | (0.00081) | (0.00081) | Sampling

The average, MSEs of the estimators of relaibility function R{t=2)=0.15887

0.15463 | 0.15553 | 0.14569 ] 0.14892 | 0.15644 | Lindley 0.15800 | (20,19%0) [ (4,40,20)
(0.00002) | (0.00001) | (0.00017) | (0.00010) | (0.00001) (0.00086)

0.15545 | 0.15550 | 0.15483 | 0.15511 | 0.15554 | Importance

(0.00004) | (0.00004) | (0.00004) | (0.00004) | (0.00004) | Sampling

55 | L5580 | lasity | laBaR, | BgSg, | Linde

@, )| )| @ )| \ud0gy) (0 ) 0.15660 | (19*0.20)

0.15721 | 0.15725 | 0.15666 | 0.15691 | 0.15729 | Importance| (0.00053)

(0.00005) | (0.00005) | (0.00005) | (0.00005) | (0.00005) | Sampling

0.15539 | 0.15591 | 0.14946 | 0.15183 | 0.15643 | Lindley 0.15741__| (30,20%0) [ (5,60.30)
(0.00001) | (0.00001) | (0.00008) | (0.00005) | (0.00001) (0.00047)

0.15837 | 0.15842 | 0.15776 | 0.15804 | 0.15846 | Importance

(0.00005) | (0.00005) | (0.00005) | (0.00005) | (0.00005) | Sampling

5550 | 5880 | ot | BB | agS, | L

0 )| ) | (@-00002) 1 (0. Y| 0 ) 0.15828 | (29*0,30)

0.16369 | 0.16379 | 0.16241 | 0.16300 | 0.16388 | Importance| (0.00033)

(0.00004) | (0.00004) | (0.00004) | (0.00004) | (0.00004) | Sampling

The average, MSEs of the estimators of hazard rate function H(t=2)=0.93459

0.02408 | 0.95051 [ 000773 ] 0.03412 | 0.97646 | Lindley 0.95375 | (20,1970) | (4,40,20)
(0.00032) | (0.00038) | (0.00097) | (0.00017) | (0.00184) (0.02745)

0.95051 | 0.95182 | 0.94968 | 0.95106 | 0.95312 | Importance

(0.00135) | (0.00135) | (0.00135) | (0.00135) | (0.00135) | Sampling

0.93069 | 0.94785 | 0.92042 | 0.93751 | 0.96532 | Lindley .

(0.00014) | (0.00023) | (0.00036) | (0.00011) | (0.00095) i ?093?5635) (19%0,20)

0.94135 | 0.94248 | 0.94061 | 0.94181 | 0.94361 | Importance| =

(0.00143) | (0.00143) | (0.00143) | (0.00143) | (0.00143) | Sampling

0.93331 | 0.94858 | 0.92371 | 0.93935 | 0.96367 | Lindley 0.95011 | (30,29%0) | (5,60,30)
(0.00002) | (0.00019) | (0.00015) | (0.00003) | (0.00084) (0.01432)

0.93488 | 0.93616 | 0.93400 | 0.93538 | 0.93743 | Importance

(0.00145) | (0.00145) | (0.00145) | (0.00145) | (0.00145) | Sampling

0.93093 | 0.94016 | 0.92493 | 0.93454 | 0.94938 | Lindley

(0.00002) | (0.00003) | (0.00011) | (0.00001) | (0.00021) 4 {(}{396103836) (2970,30)

0.90469 | 0.90721 | 0.90282 | 0.90556 | 0.90977 | Importance| =

(0.00140) | (0.00140) | (0.00140) | (0.00140) | (0.00140) | Sampling
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Table 4. Average values of the estimates and the corresponding MfBEes) in parentheses of the paramgiethe relaibility function
and the hazard rate function whan=2, v =3, u=0.5, B = 2.0, in case informative prior.

Brzo | Bz | Boeg—t | Boew | Beg [ Technique | ML [ Scheme | (k,n,m)
The average, MSEs of the estimators of parameter 3

1.89923 1.94854 1.93415 1.96492 | 2.01873 | Lindley 2.00715 (20.19%0) | (4,40.20)
(0.01055) | (0.00276) | (0.00453) | (0.00128) | (0.00044) (0.06774)

1.97021 1.97623 1.97463 1.97776 1.98258 | Importance

(0.00815) | (0.00815) | (0.00815) | (0.00815) | (0.00815) | Sampling

1.93314 1.97208 1.96124 1.98372 | 2.02017 | Lindley 2.00335 | (19*0,20)

(0.00458) | (0.00079) | (0.00152) | (0.00028) | (0.00060) (0.04377)

1.96972 1.97502 1.97360 1.97635 1.98057 | Importance

(0.00847) | (0.00847) | (0.00847) | (0.00847) | (0.00847) | Sampling

1.93635 1.97024 1.96090 1.98038 | 2.01240 | Lindley 2.00586 (30,29%0) | (5,60,30)
(0.00416) | (0.00091) | (0.00157) | (0.00039) | (0.00017) (0.04346)

1.97753 1.98042 1.97966 1.98116 1.98348 | Importance

(0.00815) | (0.00815) | (0.00815) | (0.00815) | (0.00815) | Sampling

1.95817 1.98106 | 1.97493 | 1.98737 | 2.00694 | Lindley

(0.00177) | (0.00035) | (0.00063) | (0.00015) | (0.00006) 1.99966 (29%0.30)

1.94792 1.95158 | 1.95057 1.95253 | 1.95568 | Importance| (0.02543)

(0.00814) | (0.00814) | (0.00814) | (0.00814) | (0.00814) | Sampling

The average, MSEs of the estimators of relaibility function R(t=2)=0.32082

0.31645 | 0.31692 | 0.31401 0.31527 | 0.31739 | Lindley 0.31904 | (20,19%0) | (4.,40.20)
(0.00001) | (0.00001) | (0.00004) | (0.00003) | (0.00001) (0.00045)

0.31906 | 0.31911 | 0.31881 0.31895 | 0.31915 Importance

(0.00005) | (0.00005) | (0.00005) | (0.00005) | (0.00005) | Sampling

| R | AT | AR | Ry | e

0. k| W, )| @ )| 0 1] ) 0.31953 (19*0,20)

0.318904 | 0.31807 | 0.31871 0.31883 | 0.31901 Importance| (0.00030)

(0.00005) | (0.00005) | (0.00005) | (0.00005) | (0.00005) | Sampling

0.31821 0.31849 | 0.31669 | 0.31749 | 0.31877 | Lindley 0.31977 | (30,29%0) | (5,60,30)
(0.00001) | (0.00001) | (0.00001) | (0.00001) | (0.00001) 0.00029)

0.31930 | 0.31932 | 0.31918 | 0.31925 | 0.31935 Importance

(0.00005) | (0.00005) | (0.00005) | (0.00005) | (0.00005) | Sampling

O | 2SR | AR | 00 | ity |t

o )| )| )| ) | ) 0.31989 (29%*0,30)

0.31691 0.31694 | 0.31675 | 0.31683 | 0.31697 | Importance| (0.00017)

(0.00005) | (0.00005) | (0.00005) | (0.00005) | (0.00005) | Sampling

The average, MSFEs of the estimators of hazard rate function H{t=2)=0.33958

0.34652 [ 0.34980 [ 0.329042 [ 0.33840 [ 0.35296 [ Lindley 0.34640 (20,1970) | (4,40,20)
(0.00005) | (0.00011) | (0.00012) | (0.00001) | (0.00018) (0.00321)

0.34352 | 0.34381 | 0.34191 0.34280 | 0.34410 | Importance

(0.00034) | (0.00034) | (0.00034) | (0.00034) | (0.00034) | Sampling

0.34251 0.34470 | 0.33133 | 0.33723 | 0.34686 | Lindley .

(0.00001) | (0.00002) | (0.00008) | (0.00001) | (0.00005) ; {(}035133%;3) (19%0,20)

0.34392 | 0.34418 | 0.34251 0.34329 | 0.34444 | Importance| =

(0.00036) | (0.00036) | (0.00036) | (0.00036) | (0.00036) | Sampling

0.34385 | 0.34578 | 0.33360 | 0.33910 | 0.34766 | Lindley 0.34373 (30,29%0) | (5,60,30)
(0.00001) | (0.00003) | (0.00004) | (0.00001) | (0.00006) (0.00204)

0.34321 0.34335 | 0.34242 | 0.34286 | 0.34349 | Importance

(0.00035) | (0.00035) | (0.00035) | (0.00035) | (0.00035) | Sampling

0.34218 | 0.34336 | 0.33599 | 0.33934 | 0.34452 Lindl i .

(0.00001) | (0.00001) | (0.00001) | (0.00001) | (0.00002) B {(]0361(%18139) (29*0,30)

0.34932 | 0.34952 | 0.34818 | 0.34883 | 0.34972 Importance|

(0.00034) | (0.00034) | (0.00034) | (0.00034) | (0.00034) | Sampling
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From tables 1, 2, 3 and 4, we observe thatMieE and Bayes estimates of the paramgdethe reliability and the
hazard rate functions are very good in term#MS8Es. As the number of groups and effective sample siza increase,
MSEs of all estimates decrease as expected. Also, as the valhe gfoup siz& increasesMSEs decrease. In general,
the Bayesian estimators haMSEs less than that of th#IE. Bayes estimates using inverse gamma informative prior
are better as they include prior information and using mdorimative prior are worst as they do not include any prior
information thanMLE in terms ofMSEs. Also, Bayes estimates obtained using the importance sagnptocedure is
more accurate than Lindley’s Bayes approximation.

5 Concluding Remarks

In this paper, assuming a good lifetime model we considepthblem of estimating the unknown paramegieras well

as the reliability and hazard rate functions, using pragjvesfirst-failure censored samples. This censoring schease
advantages in terms of reducing test time, in which more steme used but onlyn of (k x n) item are failures. We
derivedMLE and Bayes estimators of the paramgiethe reliability and the hazard rate functions using nomiinfative
and inverse gamma informative priors, under both symmgtgoared error) and asymmetric (linex and general entropy)
loss functions. These estimates cannot be obtained inctlimsen, but can be computed numerically. It is clear that
the proposed Bayes estimators perform very well for difiereand m. As expected, the Bayes estimators based on
informative prior perform are much better than the Bayesnegors based on non-informative prior in terms\d®Es.
Also the Bayes estimators based on non-informative pridrinformative prior perform much better than theLE in
terms ofMSEs. Also the importance sampling technique shows more aceugatllts than Lindley’s Bayes approximation.
The simulation also stresses the importance of linex anémgéentropy loss functions as asymmetricloss functiams, i
the case studied.

Acknowledgement

The authors are grateful to the anonymous referee for awdarieécking of the details and for helpful comments that
improved this paper.

References

[1] Balakrishnan N. (1992). Handbook of the Logistic Diktriion, Marcel Dekker, Inc., New York, Basel. Hong. Kong.

[2] Balakrishnan, N. and Aggarwala, R. (2000). Progres€igasoring: Theory, Methods and Applications, BirkhauBeston.

[3] Balakrishnan, N. and Cohen, A.C. (1991). Order Statistind Inference: Estimation Methods, Academic PresspBost

[4] Balakrishnan, N. and Sandhu, RA. (1995). A simple sirfialaalgorithm for generating progressively type-Il geated samples,
Am Stat, 49, 229-230.

[5] Balasooriya, U. (1995). Failure-censored reliabifgmpling plans for the exponential distribution, J Stat @onSimul, 52, 337-
349.

[6] Bekker, A., Roux, J. J. J. and Mostert, P. J. (2000). A galimation of the compound Rayleigh distribution: usingésian methods
on cancer survival times, Communications of Statisticeerit and Methods, 29: 7, 1419-1433.

[7] Cohen, AC. (1963). Progressively censored samplesdndsting, Technometrics 5, 327-329.

[8] Johnson, LG. (1964). Theory and technique of variatesearch, Elsevier, Amsterdam.

[9] Krishna, H. and Kumar, K. (2011). Reliability estimatiin Lindley distribution with progressively type Il righeasored sample,
Math Comput Simul, 82:2, 281-294.

[10] Krishna, H. and Kumar, K. (2013). Reliability estimatiin generalized inverted exponential distribution witbgressively type
Il censored sample, J Stat Comput Simul, 83:6, 1007-1019.

[11] Kumar, K. Krishna, H. and Garg, R. (2015). EstimationRfY < X) in Lindley distribution using progressively first failure
censoring, Int J Syst Assur Eng Manag 6:3, 330-341.

[12] Lindley, D. V. (1980). Approximate Bayesian Methodsaliajos de Estadistica Y de Investigacion Operativa, 223;245.

[13] Lio, Y. and Tsai, TR. (2012). Estimation &f= P (X < Y) for Burr XlI distribution based on the progressively firstdiae-censored
samples, J Appl Stat, 39, 309-322.

[14] Madhulika Dube. Renu Garg. and Hare Krishna. (2016)p@gressively first failure censored Lindley distributi@@omput Stat,
31, 139-163.

[15] Mann, NR. Schafer, RE. and Singpurwala, ND. (1974).iMes for statistical analysis of reliability and life datliley, New
York.

[16] Pradhan, B. and Kundu, D. (2009). On progressively aextsgeneralized exponential distribution, Test 18, 493-5

[17] Rubinstein, R. Y. (1981). Simulation and the Monte Gavlethod, Wiley, New York.

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 1, 49-63 (2017) www.naturalspublishing.com/Journals.asp %ws p) 63

[18] Scerri, E. and Farrugia, R. (1996). Wind data evaluaiiothe Maltese Islands, Renewable Energy, 7:1, 109-114.

[19] Sinha, SK. (1986). Reliability and life testing, Wil&stern Limited, New Delhi.

[20] Wen, D. and Levy, M. S. (2001). Admissibility of bayedissates under blinex loss for the normal mean problem, Conications
in Statistics-Theory and Methods, 30:1, 155-163.

[21] Wu, JW. Hung, WL. and Tsai, CH. (2003). Estimation of herameters of the Gompertz distribution under the firstifai
censored sampling plan, Statistics 37, 517-525.

[22] Wu, SJ. and Kus, C. (2009). On estimation based on pssgre first failure censored sampling, Comput Stat Data A5
3659-3670.

[23] Wu, JW. and Yu, HY. (2005). Statistical inference abthe shape parameter of the Burr type XlI distribution under failure-
censored sampling plan, Appl Math Comput, 163, 443-482.

A. Rashad is Professor of Mathematical Statistics at Helwan Unitgrsi
Egypt. He is referee of several international journals i thhame of mathematical
statistics. He has published research articles in reputetérnational journals
of mathematical and engineering sciences. His main researderests are:
Bayesian analysis, information theory, reliability thgand statistical inference.

M. Mahmoud is Professor of Mathematical Statistics at Ain Shams Usiwgr
Egypt. He is referee of several international journals ie tihame of mathematical
statistics. He has published research articles in reputetérnational journals
of mathematical and engineering sciences. His main researderests are:
Bayesian analysis, statistical inference and distrilouti@ory.

M. Yusuf is PhD student of Mathematical Statistics at Helwan Unitgr&gypt. He
is referee of several international journals in the framenathematical statistics. His main
research interests are: Bayesian analysis, order statéstid statistical inference.

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Maximum Likelihood Estimators (MLEs)
	Bayesian estimation
	Simulation studies
	Concluding Remarks 

