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Abstract: In this paper we develop approximate Bayes estimators of thescale parameter of the logistic distribution, based on a new
life test plan called a progressive first-failure censored plan introduced by [22]. We consider the maximum likelihood and Bayesian
inference of the unknown parameter of the model, as well as the reliability and hazard rate functions. Lindley’s approximation [12] and
Markov Chain Monte Carlo (MCMC) methods such as importance sampling procedure are applied. The Bayes estimators have been
obtained relative to both symmetric (squared error) and asymmetric (linex and general entropy) loss functions. Finally, to assess the
performance of the proposed estimators, some numerical results using Monte Carlo simulation study were reported.

Keywords: Logistic distribution, progressive first-failure censored, general uniform distribution, loss functions, Lindley’s
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1 Introduction

The logistic function is one of the most popular and widely used for growth models in demographic studies. The logistic
distribution arises frequently in statistical modelling.It has been used in the analysis of survival data, graduationof
mortality statistics and is used in some applications as a substitute for the normal distribution [3]. The logistic distribution
has been applied in studies of population growth, physicochemical phenomena, bio-assay and a life test data, see [1]. [18]
compared the logistic distribution and weibull distribution for modeling wind speed data. Many researchers have used
asymmetric loss function applied to several statistical models ([6] and [20]). Life testing experiments are usually time
consuming and costly. We therefore, use various types of censoring schemes to cut short the experiment. The censoring
scheme in an experiment may also arise naturally without thecontrol of the experimenter. For example, in medical studies
a patient may drop out of a study before its completion. Initially, the popular censoring schemes were conventional type
I and type II. They had a drawback that an item could not be withdrawn before the completion of the experiment. See
[15] and [19]. [7] thought over this point and introduced progressive type IIcensoring scheme which allows removal of
items from the experiment before the final termination point. [2] compiled the work done on progressive censoring up-to
year 1999. Progressive censoring has also been studied by many authors like [16], [9], [10] and references cited therein.
There are situations in real life where lifetimes of items are very high and test facilities are limited. If the test material
is comparatively cheaper, one can put k× n items on test instead of onlyn units. In this casen sets or groups each
consisting ofk items are put on test separately. In each set only first-failure is observed and the progressive censoring
is applied ton groups. [8] studied this type of grouping of units and observing only first-failure. Some other studies on
first-failure are by [5], [21] and [23]. The combination of first-failure and progressive censoring is known as progressive
first-failure censoring scheme. This concept was given by [22]. They described estimation methods in case of a Weibull
distribution using this new censoring plan. More recent references can be found in [13], [11] and [14]. We shall now
describe the progressive first-failure censoring scheme. Assume that k× n items are put on test inn independent groups
with k items in each group. We prefix the progressive censoring scheme R = (R1,R2, ...,Rm) . Upon the first-failure of
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a unit, we remove that group in which first-failure occurred and R1 additional groups randomly from the remaining
(n−1) groups in the experiment. As soon as second failure takes place we remove that group and additionalR2 groups
randomly from remaining(n−R1 − 2) groups and so on. This procedure continues till them−th failure occurs when

the remainingRm groups and the group in which last failure took place are removed. Obviously,
m
∑

i=1
Ri +m = n. Also,

if R1 = R2 = ...= Rm = 0, the progressive first-failure censoring scheme reduces to first-failure censoring scheme and
if R1 = R2 = ... = Rm - 1 = 0 andRm = n−m, it reduces to first-failure type II censoring scheme, a progressive type II
censored scheme whenk = 1. Also, it should be noted that the progressive first-failure censored scheme with distribution
function F(x), can be viewed as a progressive type II censored sample from a population with distribution function
1− (1−F(x))k

. For this reason, results for the progressive type II censored scheme can be extended to progressive first-
failure censored scheme easily. Therefore, progressive first-failure censoring is a generalization of progressive censoring.
Obviously, although more items are used (onlym of k × n items are failures) in the progressive first-failure censoring plan
than in others, it has advantages in terms of reducing test cost and test time. Letx1:m:n:k,x2:m:n:k, ...,xm:m:n:k be a progressive
first-failure censored sample from a population with pdff (.) and distribution functionF (.) with progressive censoring
schemeR. Let us denote( x1:m:n:k,x2:m:n:k, ...,xm:m:n:k ) by x = (x1,x2, ...,xm) . On the basis of a progressive first-failure
censored samplex the likelihood function is given by [see [2] and [22]]

L (x) = Akm
m

∏
i=1

f (xi) [1−F(xi)]
(k(Ri+1)−1)

, (1.1)

where A = n(n−1−R1) ...(n−R1− ...−Rm−1−m+1) . The main aim of this paper is to approximate Bayes
estimators of the scale parameter of the logistic distribution. Progressive first-failure censoring schemes using both
MLEs and Bayesian approaches are obtained. The organization of the paper is as follows: Sect. 2 deals with maximum
likelihood estimation of the unknown parameter, as well as the reliability and hazard rate functions. For the computation
of Bayes estimates we use Lindley’s approximation and importance sampling procedure in Sect. 3. In Sect. 4, a Monte
Carlo simulation study is performed for comparisons of various estimates developed in this paper. Concluding remarks
are given in Sect. 5.

2 Maximum Likelihood Estimators (MLEs)

In this section, we derive the MLEs of the unknown parameterβ based on progressive first-failure censored samples.
Assuming that the location parameterµ is known. Assume the failure time distribution to be the logistic distribution with
probability density function (pdf)

f (x;µ ,β ) = e
−
(x−µ)

β

β

(
1+e

−
(x−µ)

β

)2 ;−∞ < x < ∞,

−∞ < µ < ∞,β > 0,

(2.1)

and the corresponding cumulative distribution function (cdf) is given by

F (x;µ ,β ) =
1

1+ e
−

(x−µ)
β

. (2.2)

From (1.1), (2.1) and (2.2), the likelihood function is given by

L (x;µ ,β ) = Akm
m

∏
i=1




e
−(xi−µ)

β

(
e
−(xi−µ)

β

1+e
−(xi−µ)

β

)(k(Ri+1)−1)

β
(

1+e
−(xi−µ)

β

)2



. (2.3)

The logarithm of the likelihood function may then be writtenas
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log[L] = ℓ= log[A]+mlog[k]+ log




m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2





 .

ℓ= log[A]+mlog[k]+
m

∑
i=1




− (xi−µ)
β +

(k (Ri +1)−1)




− (xi−µ)
β −

log

[
1+e

−(xi−µ)
β

]

−

log[β ]−2log

[
1+e

−(xi−µ)
β

]




. (2.4)

Calculating the first partial derivative of (2.4) with respect to β and equating to zero, we obtain the likelihood equation

m

∑
i=1




− 1
β̂
+ (xi−µ)

β̂ 2 − 2e
−
(xi−µ)

β̂ (xi−µ)
1+e

−
(xi−µ)

β̂


β̂ 2

+

(k (1+Ri)−1)


 (xi−µ)

β̂ 2 − e
−
(xi−µ)

β̂ (xi−µ)

(1+e
−
(xi−µ)

β̂ )β̂ 2







= 0. (2.5)

The solution of the non-linear equation (2.5) isβ̂ . The MLEs of the reliability function and the hazard rate function
are given as

R̂(t) =
1

1+ e
t−µ

β̂

, Ĥ (t) =
1

β̂
(

1+ e
−

(t−µ)
β̂

) ; t > 0.

3 Bayesian estimation

In this section, the Bayesian estimator of the unknown parameter β of the logistic distribution is obtained. Also the
reliability function and hazard rate function, based on progressive first-failure censored samples, under symmetric
(squared error) and asymmetric (linex and general entropy)loss functions, using Lindley?s approximation and Markov
Chain Monte Carlo (MCMC) methods such as importance sampling procedure, are obtained.

3.1 Bayes Estimates Using Non-informative Prior Distribution

Assuming thatµ is known (fixed) and the scale parameterβ is a random variable, with a non-informative ”general
uniform” prior distribution in the form

π (β ;α,γ,λ ) =
(λ −1)(αγ)λ−1

β λ
(
γλ−1−αλ−1

) ; 0< α ≤ β ≤ γ < ∞, λ ≥ 0, λ 6= 1. (3.1)

By using equations (2.3) and (3.1) we get the posterior distribution ofβ as follow

π (β |x;µ) =
π (β )L (x;µ |β )

∞∫
0

π (β )L (x;µ |β )dβ
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=




1
β λ

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2






×




∞∫
0




1
β λ

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2







dβ




−1

.

(3.2)

Integration in equation (3.2) cannot be obtained in a closedform, so we solve it numerically. In the following subsections
we derive Bayesian estimators for scale parameter, the reliability function and the hazard rate function under different loss
functions.

3.1.1 Bayesian Estimators Under Square Error Loss Function

1. Bayesian estimator of the scale parameterβ

β̂sq= E(β ) =
∞∫

0




β ×




1
β λ

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2






×




∞∫
0




1
β λ

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2







dβ




−1




dβ . (3.3)

Provided thatE (β ) exists and is finite. This integration cannot be solved analytically, so we use Lindley’s Bayes
approximation [12]. Let u(β ) be a function ofβ , and we want to find Bayes estimator for it, based onπ(β ) as a prior
distribution. The log-likelihood function for the logistic distribution based on progressive first-filure censored samples is
given by (2.4), Bayes estimate ofu(β ) using Lindley approximation is obtained as follows:

E (u(β )|x;µ) =
∞∫

0




u(β )π (β )L (x;µ |β )
∞∫
0

π (β )L (x;µ |β )dβ


dβ .

Let Q(β ) = log[π (β )] , then

E (u(β )|x)≈
(

u(β )+ u1Q1τ11+
1
2

u11τ11+
1
2

L111u1τ11
2
)

(β )ML

, (3.4)

where

Q1 =
∂Q(β )

∂β
,u1 =

∂u(β )
∂β

,u11 =
∂ 2u(µ ,β )

∂β 2 ,L11 =
∂ 2ℓ

∂β 2 ,L111=
∂ 3ℓ

∂β 3 ,τ11 =−(L11)
−1
.

Substitution in equation (3.4),u = β , the Bayesian estimator of the scale parameterβ is given as

β̂sq ≃

(
β −

λ
β

τ11+
1
2

L111τ11
2
)
.

2. Bayesian estimator of the reliability functionR(t)
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Substitution in equation (3.4),u = R(t) , the Bayesian estimator of the reliability functionR(t) is given by

R̂sq ≃




1(
1+e

(t−µ)
β

) −
λ
β

u1τ11+
1
2

u11τ11+
1
2

L111u1τ11
2


 .

3. Bayesian estimator of the hazard rate functionH(t)

Substitution in equation (3.4),u = H (t) , the Bayesian estimator of the hazard rate functionH(t) is given by

Ĥsq ≃




1

β
(

1+e
−(t−µ)

β

) −
λ
β

u1τ11+
1
2

u11τ11+
1
2

L111u1τ11
2


 .

3.1.2 Bayesian Estimators Under Linear-Exponential Loss Function (LINEX)

1. Bayesian estimator of the scale parameterβ

β̂LINEX =− 1
c log

[
E
(
e−cβ)] .

Provided thatE
(
e−cβ ) exists and is finite. Substituting in equation (3.4),u = e−cβ , the Bayesian estimator of the scale

parameterβ is given as

β̂LINEX ≃−
1
c

log

[
e−cβ +

cλ τ11e−cβ

β
+

c2e−cβ τ11− cL111τ11
2e−cβ

2

]
.

2. Bayesian estimator of the reliability functionR(t)

Substitution in equation (3.4),u = e−cR(t), the Bayesian estimator of the reliability functionR(t) is given by

R̂LINEX ≃−
1
c

log


e

−c 1
1+e

(t−µ)
β




−
λ u1τ11

β
+

u11τ11+L111u1τ11
2

2


 .

3. Bayesian estimator of the hazard rate functionH(t)
substitution in equation (3.4),u = e−cH(t), the Bayesian estimator of the hazard rate functionH(t) is given by

ĤLINEX ≃−
1
c

log


e

−c 1

β


1+e

−(t−µ)
β




−
λ u1τ11

β
+

u11τ11+L111u1τ11
2

2


 .

3.1.3 Bayesian Estimators Under General Entropy Loss Function

1. Bayesian estimator of the scale parameterβ

β̂Gentropy = [E (β−q)]
− 1

q .

Provided thatE (β−q) exists and is finite. Substitution in equation (3.4),u = β−q, the Bayesian estimator of the scale
parameterβ is given by

β̂Gentropy ≃

(
β−q +

λ qβ−1−qτ11

β
+

q(1+ q)β−2−qτ11− qβ−1−qL111τ11
2

2

)− 1
q

.
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2. Bayesian estimator of the reliability functionR(t)

Substitution in equation (3.4),u = (R(t))−q
, the Bayesian estimator of the reliability functionR(t) is given by

R̂Gentropy ≃

((
1

1+e
(t−µ)

β

)−q

−
λ u1τ11

β
+

u11τ11+L111u1τ11
2

2

)− 1
q

.

3. Bayesian estimator of the hazard rate functionH(t)

Substitution in equation (3.4),u = (H (t))−q
, the Bayesian estimator of the hazard rate functionH(t) is given by

ĤGentropy ≃







1

β
(

1+e
−(t−µ)

β

)




−q

−
λ u1τ11

β
+

u11τ11+L111u1τ11
2

2




− 1
q

.

It is worth noting that when the valueq = −1, the general entropy loss function is the same as the squared error loss
function.

3.2 Bayes Estimates Using Informative Prior Distribution

Assuming that the informative prior distribution for the scale parameterβ is a inverse gamma distribution, given by

π(β ;η ,ν) =
e−

ν
β
(

ν
β

)η

βΓ (η)
, β > 0, (η , ν > 0). (3.5)

By using equations (2.3) and (3.5) we get the posterior distribution ofβ as follows

π (β |x,µ) =




e
− ν

β

(β )η+1

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2






×




∞∫
0




e
− ν

β

(β )η+1

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2







dβ




−1

.

(3.6)

Integration in equation (3.6) cannot be obtained in a closedform, so we solve it numerically. In the following
subsections we derive Bayesian estimators for the scale parameterβ , the reliability function and the hazard rate function
under different loss functions.

3.2.1 Bayesian Estimators Under Square Error Loss Function

1. Bayesian estimator of the scale parameterβ
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β̂sq= E(β ) =
∞∫

0




β ×




e
− ν

β

(β )η+1

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2






×




∞∫
0




e
− ν

β

(β )η+1

m
∏
i=1




e
−(xi−µ)

β


 e

−(xi−µ)
β

1+e

−(xi−µ)
β



(k(Ri+1)−1)

β

(
1+e

−(xi−µ)
β

)2







dβ




−1




dβ . (3.7)

Provided thatE (β ) exists and is finite. This integration cannot be solved analytically, so we use Lindley’s Bayes
approximation (3.4). Substitution in equation (3.4),u = β , the Bayesian estimator of the scale parameterβ is given as

β̂sq ≃

(
β +

(
ν − (1+η)β

β 2

)
τ11+

1
2

L111τ11
2
)
.

2. Bayesian estimator of the reliability functionR(t)

Substitution in equation (3.4),u = R(t) , the Bayesian estimator of the reliability functionR(t) is given by

R̂sq ≃




1(
1+e

(t−µ)
β

) +

(
ν − (1+η)β

β 2

)
u1τ11+

u11τ11+L111u1τ11
2

2


 .

3. Bayesian estimator of the hazard rate functionH(t)

Substitution in equation (3.4),u = H (t) , the Bayesian estimator of the hazard rate functionH(t) is given by

Ĥsq ≃




1

β
(

1+e
−(t−µ)

β

) +

(
ν − (1+η)β

β 2

)
u1τ11+

u11τ11+L111u1τ11
2

2


 .

3.2.2 Bayesian Estimators Under Linear-Exponential Loss Function (LINEX)

1. Bayesian estimator of the scale parameterβ

β̂LINEX =− 1
c log

[
E
(
e−cβ)] .

Provided thatE
(
e−cβ ) exists and is finite. Substitution in equation (3.4),u = e−cβ , the Bayesian estimator of the scale

parameterβ is given as

β̂LINEX ≃−
1
c

log

[
e−cβ −

(
ν − (1+η)β

β 2

)(
cτ11e

−cβ
)
+

c2e−cβ τ11− cL111τ11
2e−cβ

2

]
.

2. Bayesian estimator of the reliability functionR(t)

Substitution in equation (3.4),u = e−cR(t), the Bayesian estimator of the reliability functionR(t) is given by

R̂LINEX ≃−
1
c

log


e

−c 1
1+e

(t−µ)
β




+

(
ν − (1+η)β

β 2

)
(u1τ11)+

u11τ11+L111u1τ11
2

2


 .
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3. Bayesian estimator of the hazard rate functionH(t)
Substitution in equation (3.4),u = e−cH(t), the Bayesian estimator of the hazard rate functionH(t) is given by

ĤLINEX ≃−
1
c

log


e

−c 1

β


1+e

−(t−µ)
β




+

(
ν − (1+η)β

β 2

)
(u1τ11)+

u11τ11+L111u1τ11
2

2


 .

3.2.3 Bayesian Estimators Under General Entropy Loss Function

1. Bayesian estimator of the scale parameterβ

β̂Gentropy = [E (β−q)]
− 1

q .

Provided thatE (β−q) exists and is finite. Substitution in equation (3.4),u = β−q, the Bayesian estimator of the scale
parameterβ is given as

β̂Gentropy ≃

(
β−q −

(
ν−(1+η)β

β 2

)(
qβ−1−qτ11

)
+

q(1+q)β−2−qτ11−qβ−1−qL111τ11
2

2

)− 1
q

.

2. Bayesian estimator of the reliability functionR(t)

Substitution in equation (3.4),u = (R(t))−q
, the Bayesian estimator of the reliability functionR(t) is given by

R̂Gentropy ≃

((
1

1+e
(t−µ)

β

)−q

+

(
ν − (1+η)β

β 2

)
(u1τ11)+

u11τ11+L111u1τ11
2

2

)− 1
q

.

3. Bayesian estimator of the hazard rate functionH(t)

Substitution in equation (3.4),u = (H (t))−q
, the Bayesian estimator of the hazard rate functionH(t) is given by

ĤGentropy ≃







1

β
(

1+e
−(t−µ)

β

)




−q

+

(
ν − (1+η)β

β 2

)
(u1τ11)+

u11τ11+L111u1τ11
2

2




− 1
q

.

It is worth noting that when the valueq = −1, the general entropy loss function is the same as the squared error loss
function.

3.3 Importance Sampling Technique

Importance sampling is the general technique of sampling from one distribution to estimate an expectation under a
different distribution. In Bayesian analyses, given a likelihoodL(θ ) for a parameter vectorθ , based on dataX and a prior
ϕ(θ ), the posterior is given byϕ∗(θ ) = C−1L(θ )ϕ(θ ), where the normalizing constantC =

∫
L(θ )π(θ )dθ is

determined by the constraint that the density integrate to 1. This normalizing constant often does not have an analytic
expression. General problems of interest in Bayesian analyses are computing means and variances of the posterior
distribution, and also finding quantities of marginal posterior distributions. In general letg(θ ) be a parametric function
for which

g̃(θ ) =
∫

g(θ )ϕ∗(θ |X )dθ , (3.5)
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needs to be evaluated. In many applications,(3.5) cannot beevaluated explicitly, and it is difficult to sample directlyfrom
the posterior distribution, so importance sampling can be applied. Samples can be drawn from a distribution with density
q(θ ). In this case, ifθ1,θ2, ...,θN is a random sample fromq(θ ) then (3.5) can be estimated with

g̃(θ ) =

N
∑

i=1
g(θi)wi

N
∑

i=1
wi

, (3.6)

wherewi =
L(θi)ϕ(θi)

q(θi)
and the sampling densityq(θ ) need not be normalized. This technique is described in detail by

[17]. We generate a samples from inverse gamma distribution with hyper-parameters
(η = 3, ν = 2 (table 3) and η = 2, ν = 3 (table 4)) . We use the following procedure:
Step 1 Generateβ from inverse gamma(β ;η ,ν) .
Step 2 Repeat this procedure 1000 times to obtain importancesample(β1, β2, . . . ,β1000) .
The approximate value of (3.5) can be obtained by (3.6).

4 Simulation studies

In this section, we conduct a Monte Carlo simulation study tocompare the performance of various estimates developed in
the previous sections. A large number(1000) of progressive first-failure censored samples of varying group sizesk = 4,5,
number of groups in a samplen = 40,60 and effective sample sizesm = 20,30 out ofn and different combinations of
progressive censoring schemesR are generated from model (2.3). We choose true value ofβ equal to 0.9 (tables 1,3) and
2.0 (tables 2,4). The study includes the following steps:

1.Generate a progressive first-failure censored sample using algorithm proposed by [4] from model (2.3) for given values
of (k,n,m,R) .

2.Calculate the maximum likelihood estimates ofβ , R(t) andH (t) according to Sect. 2.
3.According to Sect. 3, obtain the Bayes estimates ofβ , R(t) andH (t) .
4.Repeat steps(1)− (3), (1000) times, for different values of(k,n,m,R) .

Estimation average=

1000
∑

i=1
θ̂i

1000 , mean square error=

1000
∑

i=1
(θ̂i−θ)

2

1000 , where,θ is the parameter and̂θ is the estimator.
Extensive computations were performed using Mathematica 9.
Since the non-linear equations (2.5) are not solvable analytically, numerical methods can be used, as Newton Raphson
method with initial values closed to real values of the parameter.

Throughout this section we will use the following abbreviations:

1.MSEs : The mean square errors,
2.ML : The estimate by using the (MLE),
3.BSq : The estimate under squared error loss function,
4.BLx,c=2: The estimate under linex loss function atc = 2,
5.BLx,c=4: The estimate under linex loss function atc = 4,
6.BGe,q=2: The estimate under general entropy loss function atq = 2,
7.BGe,q=4: The estimate under general entropy loss function atq = 4.
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Table 1. Average values of the estimates and the corresponding MSEs,given in parentheses of the parameterβ , the relaibility function
and the hazard rate function whenµ = 0.5, β = 0.9 andλ = 2, in case non-informative prior.
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Table 2. Average values of the estimates and the corresponding MSEs,given in parentheses of the parameterβ , the relaibility function
and the hazard rate function whenµ = 0.5, β = 2.0 and andλ = 2, in case non-informative prior.
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Table 3. Average values of the estimates and the corresponding MSEs,given in parentheses of the parameterβ , the relaibility function
and the hazard rate function whenη = 3, ν = 2, µ = 0.5, β = 0.9, in case informative prior.
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Table 4. Average values of the estimates and the corresponding MSEs,given in parentheses of the parameterβ , the relaibility function
and the hazard rate function whenη = 2, ν = 3, µ = 0.5, β = 2.0, in case informative prior.
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From tables 1, 2, 3 and 4, we observe that theMLE and Bayes estimates of the parameterβ , the reliability and the
hazard rate functions are very good in terms ofMSEs. As the number of groupsn and effective sample sizem increase,
MSEs of all estimates decrease as expected. Also, as the value of the group sizek increases,MSEs decrease. In general,
the Bayesian estimators haveMSEs less than that of theMlE. Bayes estimates using inverse gamma informative prior
are better as they include prior information and using non-informative prior are worst as they do not include any prior
information thanMLE in terms ofMSEs. Also, Bayes estimates obtained using the importance sampling procedure is
more accurate than Lindley’s Bayes approximation.

5 Concluding Remarks

In this paper, assuming a good lifetime model we consider theproblem of estimating the unknown parameterβ , as well
as the reliability and hazard rate functions, using progressive first-failure censored samples. This censoring schemehas
advantages in terms of reducing test time, in which more items are used but onlym of (k×n) item are failures. We
derivedMLE and Bayes estimators of the parameterβ , the reliability and the hazard rate functions using non-informative
and inverse gamma informative priors, under both symmetric(squared error) and asymmetric (linex and general entropy)
loss functions. These estimates cannot be obtained in closed form, but can be computed numerically. It is clear that
the proposed Bayes estimators perform very well for different n and m. As expected, the Bayes estimators based on
informative prior perform are much better than the Bayes estimators based on non-informative prior in terms ofMSEs.
Also the Bayes estimators based on non-informative prior and informative prior perform much better than theMLE in
terms ofMSEs. Also the importance sampling technique shows more accurate results than Lindley’s Bayes approximation.
The simulation also stresses the importance of linex and general entropy loss functions as asymmetricloss functions, in
the case studied.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that
improved this paper.

References

[1] Balakrishnan N. (1992). Handbook of the Logistic Distribution, Marcel Dekker, Inc., New York, Basel. Hong. Kong.
[2] Balakrishnan, N. and Aggarwala, R. (2000). ProgressiveCensoring: Theory, Methods and Applications, Birkhauser,Boston.
[3] Balakrishnan, N. and Cohen, A.C. (1991). Order Statistics and Inference: Estimation Methods, Academic Press, Boston.
[4] Balakrishnan, N. and Sandhu, RA. (1995). A simple simulation algorithm for generating progressively type-II generated samples,

Am Stat, 49, 229-230.
[5] Balasooriya, U. (1995). Failure-censored reliabilitysampling plans for the exponential distribution, J Stat Comput Simul, 52, 337-

349.
[6] Bekker, A. , Roux, J. J. J. and Mostert, P. J. (2000). A generalization of the compound Rayleigh distribution: using bayesian methods

on cancer survival times, Communications of Statistics-Theory and Methods, 29: 7, 1419-1433.
[7] Cohen, AC. (1963). Progressively censored samples in life testing, Technometrics 5, 327-329.
[8] Johnson, LG. (1964). Theory and technique of variation research, Elsevier, Amsterdam.
[9] Krishna, H. and Kumar, K. (2011). Reliability estimation in Lindley distribution with progressively type II right censored sample,

Math Comput Simul, 82:2, 281-294.
[10] Krishna, H. and Kumar, K. (2013). Reliability estimation in generalized inverted exponential distribution with progressively type

II censored sample, J Stat Comput Simul, 83:6, 1007-1019.
[11] Kumar, K. Krishna, H. and Garg, R. (2015). Estimation ofP(Y < X) in Lindley distribution using progressively first failure

censoring, Int J Syst Assur Eng Manag 6:3, 330-341.
[12] Lindley, D. V. (1980). Approximate Bayesian Methods, Trabajos de Estadistica Y de Investigacion Operativa, 31:1,223-245.
[13] Lio, Y. and Tsai, TR. (2012). Estimation ofδ = P(X < Y ) for Burr XII distribution based on the progressively first failure-censored

samples, J Appl Stat, 39, 309-322.
[14] Madhulika Dube. Renu Garg. and Hare Krishna. (2016). Onprogressively first failure censored Lindley distribution, Comput Stat,

31, 139-163.
[15] Mann, NR. Schafer, RE. and Singpurwala, ND. (1974). Methods for statistical analysis of reliability and life data,Wiley, New

York.
[16] Pradhan, B. and Kundu, D. (2009). On progressively censored generalized exponential distribution, Test 18, 497-515.
[17] Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method, Wiley, New York.

c© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.6, No. 1, 49-63 (2017) /www.naturalspublishing.com/Journals.asp 63

[18] Scerri, E. and Farrugia, R. (1996). Wind data evaluation in the Maltese Islands, Renewable Energy, 7:1, 109-114.
[19] Sinha, SK. (1986). Reliability and life testing, WileyEstern Limited, New Delhi.
[20] Wen, D. and Levy, M. S. (2001). Admissibility of bayes estimates under blinex loss for the normal mean problem, Communications

in Statistics-Theory and Methods, 30:1, 155-163.
[21] Wu, JW. Hung, WL. and Tsai, CH. (2003). Estimation of theparameters of the Gompertz distribution under the first failure-

censored sampling plan, Statistics 37, 517-525.
[22] Wu, SJ. and Kus, C. (2009). On estimation based on progressive first failure censored sampling, Comput Stat Data Anal, 53,

3659-3670.
[23] Wu, JW. and Yu, HY. (2005). Statistical inference aboutthe shape parameter of the Burr type XII distribution under the failure-

censored sampling plan, Appl Math Comput, 163, 443-482.

A. Rashad is Professor of Mathematical Statistics at Helwan University,
Egypt. He is referee of several international journals in the frame of mathematical
statistics. He has published research articles in reputed international journals
of mathematical and engineering sciences. His main research interests are:
Bayesian analysis, information theory, reliability theory and statistical inference.

M. Mahmoud is Professor of Mathematical Statistics at Ain Shams University,
Egypt. He is referee of several international journals in the frame of mathematical
statistics. He has published research articles in reputed international journals
of mathematical and engineering sciences. His main research interests are:
Bayesian analysis, statistical inference and distribution theory.

M. Yusuf is PhD student of Mathematical Statistics at Helwan University, Egypt. He
is referee of several international journals in the frame ofmathematical statistics. His main
research interests are: Bayesian analysis, order statistics and statistical inference.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Maximum Likelihood Estimators (MLEs)
	Bayesian estimation
	Simulation studies
	Concluding Remarks 

