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Abstract: The aim of this paper is to introduce a new superior distribution for modeling of mortality rate for the COVID-19 pandemic

of France from 1 January to 20 February 2021. A new distribution is a combination of the inverse Weibull distribution and the

odd Lomax-G family to formulate the odd Lomax-G inverse Weibull (OLIW) distribution with four parameters. A simple linear

representation, hazard function, hazard rate function, rth-moment, moment generating function, and Rényi entropy have been obtained

of OLIW distribution. To estimate the unknown parameters of OLIW distribution, we use maximum Liklihhod, maximum product

spacing, and Bayesian estimation methods. For the Bayesian approximation, the Metropolis-Hasting algorithm and square error loss

function are used. To evaluate the use of estimation methods, a numerical result from the Monte Carlo simulation is obtained.

Keywords: Odd Lomax-G family; Inverse Weibull; Bayesian; COVID-19; maximum product spacing

1 Introduction

One of the most important tasks of statistics is to model
real-life events using probability distributions. Modeling
and analyzing lifetime data is critical in many applied
sciences, including medicine, engineering, and finance,
among others. To model various types of survival data,
several lifetime models have been used. The quality of
statistical analysis procedures is heavily reliant on the
generated family of distributions, and much effort has
gone into developing new statistical models. However,
there are still a number of significant issues concerning
actual data that do not fit into any of the commonly used
mathematical models. As a result, the statistical literature
acknowledges the technique of extending a family of
distributions by introducing new parameters.
Inverse (or inverted) distributions are significant in many
fields, including biological sciences, life test problems,
medical sciences, and so on, because of their
applicability. Inverted conformation distributions have a
different structure than non-inverted conformation
distributions in terms of density and hazard ratio. Several
researchers have addressed the applications of inverted
distributions, and the reader can refer to them Folks and
Chhikara [1], Rosaiah and Kantam [2], De Gusmao et al.
[3], Joshi and Kumar [5], Almetwally [6], Ibrahim and

Almetwally [7], Almongy et al. [4], Ramos et al. [8],
Almetwally [9], and Hassan et al. [10], and among others.
Let X be a random variable with the shape and scale
parameters λ ,θ > 0, and the distribution is inverse
Weibull (IW). The following are the functions for the
cumulative distribution (CDF) and probability density
(PDF):

G(x;Θ) = e−(
θ
x )

λ

; x > 0,λ ,θ > 0 (1)

and,

g(x;Θ) =
λ θ

x2

(

θ

x

)λ−1

e−(
θ
x )

λ

; x,λ ,θ > 0, (2)

where Θ = (λ ,θ ) is a vector of parameters of IW
distribution. In different statistical writings by various
authors, a generalization of a different distribution of IW
was discussed, mainly applied in reliability estimation.
For example, the beta IW distribution was implemented
by Hanook et al. [11]. Elbatal and Muhammed [12]
proposed the exponentiated generalized IW distribution.
Ibrahim and Almetwally [7] introduced a new extension
of IW distribution by using X-Gamma family with
applications of medical data. Okasha et al. [13]
introduced extended IW distribution with reliability
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application. Basheer [14] discussed alpha power IW
distribution with application. Muhammed and
Almetwally [21] introduced bayesian and classical
estimation for the Bivariate IW distribution under
progressive Type-II censored sample.
We are introducing a new model with four parameters,
called the distribution of odd Lomax inverse Weibull
(OLIW). Centered on the odd Lomax-G (OL-G) family

introduced by Cordeiro et al. [16]. Let g(x;Θ) = dG(x;θ)
dx

denote the survival function (S) and probability density
function (PDF) of a baseline model with parameter vector
θ respectively, so the CDF of the OL-G family is given
by:

F(x;Ω) = 1−β α

[

β +
G(x;Θ)

1−G(x;Θ)

]−α

,x > 0,α,β > 0,

(3)
where Ω = (α,β ,Θ) is a vector of parameters of OL-G
family. The corresponding PDF of (3) is defined by

f (x;Ω) =
αβ α g(x;Θ)

(1−G(x;Θ))2

[

β +
G(x;Θ)

1−G(x;Θ)

]−α−1

(4)

where α and β are positive shape parameters.
The random variable with PDF (4) is denoted by
X ∼OL-G(Ω ). A new extended four-parameter Weibull,
Lomax, log-logistic, and log-Lindley distributions, called
the OL-Weibull, OL-Lomax, OL-log-logistic, and
OL-log-Lindley distributions respectively, were
introduced by Cordeiro et al. [16]. Ogunsanya et al. [17]
introduced odd Lomax-exponential distribution. Yakura et
al. [18] introduced odd Lomax-Kumaraswamy
distribution. Marzouk et al. [19] obtained a generalized
odd Lomax generated family of distributions with
applications. Abubakari et al. [20] discussed extended
odd Lomax family of distribution.
The aim of this research is to look into the point
estimation of the unknown four-parameter of the OLIW
distribution using three estimation methods: maximum
likelihood, maximum product spacing, and bayesian.
Statistical analysis is carried out between these methods
through simulation to test their efficiency and to
investigate how these estimators work for various sample
sizes and parameter values. It is addressed how
COVID-19 data can be used. The remainder of this article
is structured as follows. We define the OLIW distribution
in Section 2. In Section 3, along with some of its
statistical properties for the OLIW distribution are
obtained. Section 4 studies three methods of point
estimation. To compare the performance of these
estimation methods, a simulation study is performed
in Section 5. The Application of COVID-19 data is
discussed in Section 6 to show the efficiency of the
distribution of OLIW with respect to other distributions.
Finally, in Section 7, conclusions are provided.

2 OLIW Distribution

A special model of the OL-G family with IW distribution
as a baseline function is the four-parameters OLIW
distribution. By substituting the IW model CDF and PDF
files (1) and (2) of the OL-G family (3) and (4), the OLIW
distribution CDF and PDF are obtained as;

F(x;Ω) = 1−β α



β +
e−(

θ
x )

λ

1− e−(
θ
x )

λ





−α

, (5)

where x > 0,α,β ,λ ,θ > 0.

f (x;Ω) = αλ β α
1
x

(

θ
x

)λ
e−(

θ
x )

λ

(

1− e−(
θ
x )

λ
)2



β +
e−(

θ
x )

λ

1− e−(
θ
x )

λ





−α−1

,

(6)
Therefore, a random variable with PDF (6) is denoted by
X ∼OLIW(α,β ,λ ,θ ), see Figure 1. The hazard rate
function (HR) of the OLIW distribution are given by

hr(x;Ω) = αλ
1
x

(

θ
x

)λ
e−(

θ
x )

λ

(

1− e−(
θ
x )

λ
)2



β +
e−(

θ
x )

λ

1− e−(
θ
x )

λ





−1

.

The hazard function of the OLIW distribution are given by

h(x;Ω) = α







ln(β )+ ln



β +
e−(

θ
x )

λ

1− e−(
θ
x )

λ











.

The odds ratio of failure (ORF) of the OLIW distribution
are given by

ORF(x;Ω) = β−α



β +
e−(

θ
x )

λ

1− e−(
θ
x )

λ





α

− 1.

Figures 1 2, and 3 are separate shapes of the OLIW
distribution’s PDF, HR, and hazard. The PDF of the
OLIW distribution can be right-skewed, symmetric, or
decreasing curves, as seen in these figures. The HR of the
OLIW distribution has some interesting forms, such as
constant, decreasing, and upside down curves, all of
which are appealing features for any lifetime model. The
OLIW distribution, as seen in the application section, has
a lot of versatility and can be used to model distorted
data, so it’s commonly used in fields like biomedical
studies, biology, reliability, physical engineering, and
survival analysis.

3 Statistical Properties of OLIW Distribution

In this section, we observe some statistical properties of
the OLIW distribution, namely, the linear representation,
which is useful in finding the moments, moment
generating function (MGF), and Rényi entropy. Also, we
obtain the mean residual life and mean inactivity time.
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Fig. 1: pdf of OLIW distribution
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Fig. 2: HR of OLIW distribution
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Fig. 3: Hazard of OLIW distribution

3.1 Linear Representation

According to Cordeiro et al. [16], which they discussed
the density linear representation for the OL-G family as
follows

f (x,Ω) =
∞

∑
k, j=0

∆k, j(k+ j+ 1)g(x,Θ)G(x,Θ)k+ j
, (7)

where ∆k, j =
(−1) jα

(k+ j+1)β k+1

(−α−1
k

)(−k−2
j

)

. The cumulative

linear representation for the OL-G family is as follows

F(x,Ω) =
∞

∑
k, j=0

∆k, jG(x,Θ)k+ j+1
, (8)

According to Equations (7) and (8), the Linear
representation of pdf for the OLIW density can be written
as

f (x,Ω)=
∞

∑
k, j=0

∆k, j(k+ j+1)
λ θ

x2

(

θ

x

)λ−1

e−(k+ j+1)( θ
x )

λ

,

(9)
Equation (9) denotes the IW density with parameters λ
and (k+ j+ 1)θ λ . By integrating Equation (9), we obtain
the Linear representation of cdf for the OLIW density can
be written as

F(x,Ω) =
∞

∑
k, j=0

∆k, j(k+ j+ 1) e−(k+ j+1)( θ
x )

λ

, (10)

3.2 Quantile for The OLIW Distribution

The quantile function of the OLIW distribution, say x =
Q(x) = F(x,Ω)−1(Q) is derived by inverting Equation (5)
as follows:

xq = θ



ln



1+
1

β
(

(1− q)
−1
α − 1

)









−1
λ

; 0 < q < 1

(11)
In particular, the first quartile, say Q1, the second quartile,
say Q2, and the third quartile, say Q3 are obtained by
setting Q = 0.25,0.5,0.75, respectively, in (11).

3.3 Moments for The OLIW Distribution

Let X be a random variable having OLIW distribution.
Then the rth moment of X follows simply from Equation
(9) as

µ́r = E(X r)

=
∞

∑
k, j=0

∆k, j θ r(k+ j+ 1)
r
λ Γ
(

1−
r

λ

)

, r < λ
(12)

The moment generating function of OLIW distribution is
given by

´MX(t) = E(ext)

=
∞

∑
k, j=0

∆k, j

∞

∑
q=0

tq

q!
θ q(k+ j+ 1)

q
λ Γ
(

1−
q

λ

)

, q < λ

(13)

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


50 E. M. Almetwally: Application of COVID-19 Pandemic by using odd...

3.4 Rényi Entropy

Rényi entropy of order δ is given by

Iδ (x) =
1

δ − 1
ln

(

∞

∑
k,q=0

Ψk,q

∫ ∞

0
g(x,Θ)δ G(x,Θ)k,qdx

)

,

(14)

where Ψk,q = (−1)kβ−q
(

α
β

)δ (−2δ−k
q

)(−θ(α+1)
k

)

. If X has

OLIW distribution with vector parameteres Ω , then the
Rényi entropy of a random variable X, is given by

Iδ (x) =

(

λ
θ

)δ−1

δ − 1
ln

(

∞

∑
k,q=0

Ψk,qΓ

[

δ (λ + 1)− 1

λ

]

)

Ξk,q,

(15)

where Ξk,q = (k+ q+ 1)
1−δ (λ+1)

λ .

4 Estimation Methods

The estimation problem of the OLIW distribution
parameters is studied in this Section using three different
estimation methods called: maximum likelihood
estimators (MLE), maximum product spacing estimator
(MPSE), and Bayesian estimation based on the function
of square error loss.

4.1 Maximum Likelihood Estimators

Let x1, ...,xn be a random sample with the parameters
α,β ,λ and θ from the OLIW distribution. The
log-likelihood feature for the distribution of OLIW is
provided by

l(Ω) =n [ln(α)+ ln(λ )+α ln(β )+λ ln(θ )]−

(λ + 1)
n

∑
i=1

ln(xi)− 2
n

∑
i=1

ln

[

1− e
−
(

θ
xi

)λ
]

−

n

∑
i=1

(

θ

xi

)λ

− (α + 1)
n

∑
i=1

ln






β +

e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ







(16)
The partial derivatives of l(Ω) with respect to the

model parameters α,β ,λ and θ are

∂ l(Ω)

∂α
=

n

α
+ n ln(β )−

n

∑
i=1

ln






β +

e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ







(17)

∂ l(Ω)

∂β
=

nα

β
− (α + 1)

n

∑
i=1

1

β + e
−( θ

xi
)

λ

1−e
−( θ

xi
)

λ

(18)

∂ l(Ω)

∂λ
=

n

λ
+ n ln(θ )− 2

n

∑
i=1

(

θ
xi

)λ
ln
(

θ
xi

)

e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ
−

n

∑
i=1

(

θ

xi

)λ

ln

(

θ

xi

)

−
n

∑
i=1

ln(xi)+

(α + 1)
n

∑
i=1

( θ
x )

λ
ln( θ

x )e
−( θ

x )
λ

[

1−e
−( θ

x )
λ
]2

β + e
−( θ

x )
λ

1−e
−( θ

x )
λ

(19)
and

∂ l(Ω)

∂θ
=

nλ

θ
− 2λ θ λ−1

n

∑
i=1

(

1
xi

)λ
e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ
−

λ θ λ−1
n

∑
i=1

(

1

xi

)λ

+

λ θ λ−1 (α + 1)
n

∑
i=1

(

1
xi

)λ
e
−( θ

xi
)

λ

[

1−e
−( θ

xi
)

λ
]2

β + e
−( θ

xi
)

λ

1−e
−( θ

xi
)

λ

(20)

It is possible to obtain the MLE of α,β ,λ and θ by
maximizing the last equation with respect to α,β ,λ and
θ , equal to zero. Using the Newton-Rapshon method, R
packages can be used to maximize the log-likelihood
function to obtain MLE parameters.

4.2 Maximum Product of Spacings Method

The MPS method is used as an alternative to the MLE
method adopted by Cheng and Amin [23] to estimate the
parameters of continuous univariate models. Many
authors used MPS to estimate model parameters based on
a complete and different censored sample by Almetwally
and Almongy [24], Basu et al. [25], Almetwally et al.
[24], El-Sherpieny et al. [26] and Alshenawy et al. [22].
Let x1 < x2 < ... < xn then xi is order of data.

Di(Ω) = F(x(i),Ω)−F(x(i−1),Ω)

= β α






β +

e
−
(

θ
xi−1

)λ

1− e
−
(

θ
xi

)λ







−α

−β α






β +

e
−
(

θ
xi−1

)λ

1− e
−
(

θ
xi

)λ







−α

; i = 1, ...,n+ 1
(21)

c© 2021 NSP

Natural Sciences Publishing Cor.



Math. Sci. Lett. 10, No. 2, 47-57 (2021) / www.naturalspublishing.com/Journals.asp 51

where Di(∆) denotes to the uniform spacings,

F(x(0),Ω) = 0, F(x(n+1),Ω) = 1 and ∑n+1
i=1 Di(Ω) = 1.

with respect to α,β ,λ and θ . Further, the MPSE of the
OLIW parameters can also be obtained by first derivatives
with parameter and equalize it to zero.

4.3 Bayesian Estimation

As random and parameter uncertainties are represented
by a previous joint distribution that is established prior to
the data collected on the failure, the Bayesian approach
deals with the parameters. The ability to incorporate prior
knowledge into research makes the Bayesian method very
useful in the analysis of reliability, as one of the main
problems associated with reliability analysis is the limited
availability of data. The α,β ,λ and θ parameters have
prior gamma distributions. The α,β ,λ and θ independent
joint prior density function can be written as follows:

Π(Ω) ∝ αa1−1β a2−1λ a3−1θ a4−1e−(b1α+b2β+b3λ+b4θ)

(22)
From the likelihood function and joint prior function, the
joint posterior density function of Ω is obtained. The joint
posterior of the distribution of OLIW distribution can then
be written as

Π(Ω |x) ∝αn+a1−1β nα+a2−1λ n+a3−1e−(b1α+b2β+b3λ+b4θ)

e
−∑n

i=1

(

θ
xi

)λ n

∏
i=1

1

xλ+1
i

[

1− e
−
(

θ
xi

)λ
]2

θ nλ+a4−1






β +

e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ







−α−1

,

(23)
Using the most common function for symmetric loss,
which is a function for squared error loss. Bayes

estimators of Ω̂ based on the squared error loss function
are defined by the squared error loss function.

S(Ω̃) =E
(

Ω̃ −Ω
)2

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(

Ω̃ −Ω
)2

Π(Ω |x)dΩ1dΩ2dΩ3dΩ4

(24)

It should be noted that the integrals given by (24) cannot
be obtained directly. As a consequence, we employ the
Markov chain Monte Carlo (MCMC) to estimate the
value of integrals. Gibbs sampling and more general
Metropolis-Hesting within Gibbs samplers are important
sub-classes of MCMC techniques. The Metropolis
Hasting (MH) algorithm and Gibbs sampling are the two
most popular applications of the MCMC method. The
MH algorithm, like acceptance-rejection sampling,
assumes that a candidate value from a proposal
distribution can be generated for each iteration of the
algorithm. The MH algorithm, like acceptance-rejection

sampling, claims that a candidate value from a proposal
distribution can be generated for each iteration of the
algorithm. To generate random samples of conditional
posterior densities from the OLIW distribution family, we
use the MH within the Gibbs sampling. We need the
conditional distribution of posterior as following:

Π(α|β ,λ ,θ ,x) ∝ αn+a1−1e−(b1α)
n

∏
i=1






β +

e
−
(

θ
xi

)λ

1−e
−
(

θ
xi

)λ







−α−1

,

(25)

Π(β |α,λ ,θ ,x) ∝ β nα+a2−1e−b2β

n

∏
i=1






β +

e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ







−α−1

,

(26)

Π(λ |α,β ,θ ,x) ∝ λ n+a3−1e−b3λ e
−∑n

i=1

(

θ
xi

)λ

n

∏
i=1

1

xλ+1
i

[

1− e
−
(

θ
xi

)λ
]2






β +

e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ







−α−1

,

(27)
and

Π (θ |α,β ,λ ,x) ∝ θ nλ+a4−1e−b4θ

e
−∑n

i=1

(

θ
xi

)λ n

∏
i=1

1

xλ+1
i

[

1− e
−
(

θ
xi

)λ
]2






β +

e
−
(

θ
xi

)λ

1− e
−
(

θ
xi

)λ







−α−1

.

(28)

5 Simulation

In this part, the Monte-Carlo simulation procedure is used
to compare the classical estimation methods: MLE, MPS,
and Bayesian estimation method based on the function of
square error loss for MCMC, for estimation of OLIW
lifetime distribution parameters by R language.
Monte-Carlo experiments are carried out using 10000
randomly generated OLIW distribution samples, where x

represents the OLIW lifetime for various parameter actual
values and sample sizes n: (35, 75, and 150). Different
actual parameters of the OLIW distribution have been
obtained as follows:
Case I=α = 0.5;β = 0.5;λ = 0.5;θ = 0.5.
Case II=α = 0.5;β = 1.5;λ = 0.5;θ = 1.5.
Case III=α = 1.5;β = 1.5;λ = 2.5;θ = 1.5.
Case IV=α = 1.5;β = 1.5;λ = 2.5;θ = 3.
Case V=α = 3;β = 0.5;λ = 0.5;θ = 0.5.
Case VI=α = 3;β = 3;λ = 2.5;θ = 3.
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Asymptotic confidence intervals for MLE and MPS have
been done. The Bayesian credible intervals have been
obtained.
The best estimator methods could be defined as
minimizing estimator relative bias (RB), mean squared
error (MSE), and confidence interval duration (L.CI).
Tables 1, 2 and 3 summarise the simulation results of the
methods discussed in this paper for point estimation. In
order to perform the necessary comparison between
various point estimation methods, we consider the RB,
MSE, and L.CI values. From these tables, the following
observations can be made:

1.The RB, MSE, and L.CI decrease as n increases for
actual parameters of the OLIW distribution.

2.Bayesian credible intervals is better than asymptotic
confidence intervals for MLE and MPS.

3.Bayesian estimation is the best estimation method.

4.MPS estimation is a better alternative method of MLE.

6 Analysis of COVID-19 Data of France

This section includes COVID-19 data from France to
assess the OLIW distribution’s accuracy. Other related
models such as generalized inverse Weibull (GIW) [De
Gusmao et al. [3]], generalized inverse generalized
Weibull (GIGW) [Jain et al. [27]], Exponentiated
generalized inverse Weibull (EGIW) [Elbatal and
Muhammed [12]], Kumaraswamy inverse Topp-Leone
(KITL) [Hassan et al. [28]] and Marshall-Olkin Alpha
Power IW (MOAPIW) [Basheer et al. [29]] are compared
with the OLIW model. Table 4 provide the Cramer-von
Mises (W*), Anderson-Darling (A*) and the Kolmogorov
Smirnov (KS) statistics, along with the P-value for all
models fitted on the basis of COVID-19 data of France.
We plot the total time on test (TTT) plot in Figure 5 to
classify the possible shapes behind these unknown hrf
results. As a result, the OLIW distribution, where
”probTV” is the cumulative probability distribution for
the time value and sorted time value is the vector
”sorted time value”, is sufficient to suit the data.
The considered COVID-19 data belong to France of 51
days that is recorded from 1 January to 20 February 2021.
This data formed of mortality rate. The data are as
follows: 0.0995, 0.0525, 0.0615, 0.0455, 0.1474, 0.3373,
0.1087, 0.1055, 0.2235, 0.0633, 0.0565, 0.2577, 0.1345,
0.0843, 0.1023, 0.2296, 0.0691, 0.0505, 0.1434, 0.2326,
0.1089, 0.1206, 0.2242, 0.0786, 0.0587, 0.1516, 0.2070,
0.1170, 0.1141, 0.2705, 0.0793, 0.0635, 0.1474, 0.2345,
0.1131, 0.1129, 0.2054, 0.0600, 0.0534, 0.1422, 0.2235,
0.0908, 0.1092, 0.1958, 0.0580, 0.0502, 0.1229, 0.1738,
0.0917, 0.0787, and 0.1654.
Table 4 shows that the OLIW distribution has minimum
values for all information parameters as compared to

other distributions. As a result, we assume that OLIW
best suits the two real data sets. Figure 4 shows the fitted
OLIW CDF, PP, and QQ-plots of the two data sets. The
Q-Q and P-P plots in Figure 4 indicate that our
distribution is a good fit for modeling the actual data
above. The Bayesian estimation method of the OLIW
distribution is the best estimation method, according to
Table 5. Figure 7 depicts history plots, estimated marginal
posterior density, and MCMC convergence of α,β ,λ and
θ .

7 Conclusion

This paper proposes the OLIW distribution, a modern
generalization of the inverse Weibull and odd Lomax
distribution. We looked into its statistical properties and
came up with the following: linear representation,
quantile function of moments, moment generation
functions, and Rényi entropy. Point estimation of the
OLIW unknown parameters α,β ,λ , and θ were
considered by MLE, MPS, and Bayesian estimation
methods. Interval estimation of the OLIW parameters
α,β ,λ , and θ were considered by MLE, MPS, and
Bayesian estimation methods. To distinguish the
performance of different estimation methods, a
comparison was carried out through Monte-Carlo
simulation analysis using the R package. For that reason,
the COVID-19 data sets were also considered, and OLIW
was shown to match these data better compared to other
competitive distributions. Bayesian estimation is the best
estimation method for estimate parameters of OLIW
distribution.
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Table 1: RB, MSE, and lenght of CI of OLIW distribution for MLE, MPS and Bayesian: Case I and II

MLE MPS Bayesian

case n RB MSE L.CI RB MSE L.CI RB MSE L.CCI

I

35

α -0.0425 0.3150 1.2331 0.0827 0.2862 1.1113 -0.0058 0.1027 0.3957

β 0.4008 0.5103 1.8413 0.0945 0.4005 1.5607 0.0094 0.1271 0.4947

λ 0.4327 0.3977 1.3096 0.0578 0.2381 0.9274 0.0338 0.0891 0.3459

θ -0.0245 0.4194 1.6452 0.4483 0.4967 1.7392 -0.0059 0.1450 0.5592

75

α -0.0148 0.2116 0.8300 0.0776 0.2046 0.7884 -0.0016 0.0610 0.2365

β 0.2284 0.3371 1.2445 0.0311 0.3057 1.1979 -0.0152 0.0760 0.2943

λ 0.2171 0.2511 0.8884 0.0122 0.1855 0.7273 0.0079 0.0517 0.2024

θ 0.0342 0.3398 1.3316 0.4868 0.4734 1.5932 -0.0058 0.0793 0.3099

150

α -0.0705 0.1369 0.5191 0.0224 0.1249 0.4882 0.0002 0.0180 0.0703

β 0.1937 0.2732 1.0023 -0.0154 0.2099 0.8229 0.0020 0.0188 0.0737

λ 0.1619 0.1820 0.6397 -0.0035 0.1238 0.4855 -0.0038 0.0169 0.0636

θ -0.0010 0.3308 1.2981 0.3695 0.3959 1.3739 -0.0016 0.0173 0.0646

II

35

α 0.0263 0.2875 1.1269 0.0710 0.2551 0.9912 0.0211 0.1062 0.4040

β 0.1215 0.9201 3.5386 0.0146 0.7469 2.9295 -0.0050 0.1680 0.6712

λ 0.2500 0.3028 1.0820 0.0393 0.2071 0.8088 0.0134 0.0870 0.3297

θ 0.0392 0.5134 2.0013 0.0096 0.3286 1.2883 0.0056 0.1849 0.7166

75

α -0.0090 0.1782 0.6992 0.0251 0.1643 0.6428 0.0072 0.0644 0.2509

β 0.0392 0.5662 2.2095 -0.0155 0.5060 1.9835 -0.0060 0.0943 0.3582

λ 0.1232 0.1682 0.6140 0.0157 0.1243 0.4869 0.0006 0.0534 0.2022

θ 0.0006 0.3220 1.2634 -0.0048 0.2318 0.9092 -0.0044 0.0896 0.3528

150

α -0.0019 0.1188 0.4660 0.0284 0.1181 0.4602 -0.0008 0.0171 0.0687

β 0.0332 0.3916 1.5243 0.0073 0.3761 1.4752 -0.0011 0.0185 0.0710

λ 0.0517 0.0830 0.3094 -0.0071 0.0701 0.2746 -0.0019 0.0178 0.0672

θ 0.0014 0.2201 0.8634 0.0063 0.1716 0.6723 -0.0005 0.0187 0.0694

Table 2: RB, MSE, and lenght of CI of OLIW distribution for MLE, MPS and Bayesian: Case III and IV

MLE MPS Bayesian

n RB MSE L.CI RB MSE L.CI RB MSE L.CCI

III

35

α 0.1842 1.1147 4.2376 0.0335 0.7507 2.9391 -0.0014 0.1719 0.6512

β 0.2037 1.3443 5.1367 -0.1089 0.8856 3.4154 -0.0011 0.1703 0.6925

λ 0.0831 0.6468 2.4033 -0.0504 0.4951 1.8789 -0.0093 0.1670 0.6333

θ 0.0458 0.3361 1.2909 0.0913 0.3588 1.3014 0.0045 0.1166 0.4515

75

α 0.1602 0.8387 3.1528 0.0876 0.6267 2.4046 -0.0013 0.0895 0.3484

β 0.1131 0.8871 3.4165 -0.0850 0.6730 2.5929 0.0010 0.0885 0.3429

λ 0.0250 0.5347 2.0836 -0.0576 0.4321 1.5986 -0.0026 0.0881 0.3528

θ 0.0582 0.3493 1.3270 0.0853 0.3312 1.1988 -0.0036 0.0587 0.2295

150

α 0.0990 0.6091 2.3178 0.0611 0.4803 1.8499 -0.0006 0.0182 0.0700

β 0.0590 0.6485 2.5210 -0.0618 0.5230 2.0195 0.0000 0.0182 0.0689

λ 0.0051 0.3860 1.5137 -0.0426 0.3227 1.1952 -0.0003 0.0183 0.0749

θ 0.0410 0.2504 0.9525 0.0535 0.2122 0.7709 0.0003 0.0174 0.0664

IV

35

α 0.4288 1.7544 6.4050 0.0911 0.7577 2.9245 -0.0130 0.1663 0.6223

β 0.7394 2.6397 9.3993 -0.0100 0.8559 3.3579 -0.0014 0.1807 0.7173

λ 0.1091 0.8387 3.1123 -0.0533 0.4684 1.7618 0.0002 0.1753 0.6617

θ 0.0201 0.6591 2.5756 0.0466 0.4056 1.4941 -0.0031 0.1459 0.5934

75

α 0.1667 1.1090 4.2395 0.0476 0.6055 2.3593 -0.0043 0.0832 0.3240

β 0.3297 1.3732 5.0268 -0.0448 0.6248 2.4374 -0.0011 0.0877 0.3439

λ 0.0901 0.6831 2.5306 -0.0274 0.3760 1.4508 -0.0004 0.0893 0.3557

θ 0.0115 0.6223 2.4379 0.0336 0.3497 1.3141 -0.0027 0.0868 0.3413

150

α 0.0995 0.7250 2.7838 0.0489 0.4456 1.7246 -0.0002 0.0176 0.0660

β 0.1574 0.9561 3.6355 -0.0534 0.5048 1.9557 -0.0005 0.0177 0.0684

λ 0.0319 0.5426 2.1059 -0.0336 0.2724 1.0171 0.0001 0.0187 0.0721

θ 0.0449 0.6460 2.4791 0.0370 0.2810 1.0131 -0.0001 0.0176 0.0678
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Table 3: RB, MSE, and lenght of CI of OLIW distribution for MLE, MPS and Bayesian: Case V and VI

MLE MPS Bayesian

n RB MSE L.CI RB MSE L.CI RB MSE L.CCI

V

35

α -0.0195 0.5722 2.2335 -0.0548 0.6080 2.2969 -0.0021 0.1809 0.7001

β 0.2621 0.3284 1.1814 -0.0537 0.2113 0.8224 0.0517 0.1297 0.4883

λ 0.1062 0.1060 0.3600 -0.0452 0.0726 0.2706 0.0216 0.0605 0.2283

θ -0.0987 0.2370 0.9097 0.2629 0.2715 0.9320 0.0133 0.1296 0.4853

75

α -0.0134 0.4980 1.9477 -0.0392 0.4442 1.6808 -0.0004 0.0893 0.3407

β 0.1657 0.2580 0.9587 -0.0836 0.1631 0.6185 0.0147 0.0727 0.2665

λ 0.0621 0.0805 0.2914 -0.0379 0.0607 0.2261 0.0071 0.0374 0.1394

θ -0.0278 0.2226 0.8716 0.2434 0.2383 0.8039 -0.0010 0.0762 0.2921

150

α -0.0026 0.3541 1.3892 -0.0225 0.3181 1.2196 -0.0001 0.0177 0.0702

β 0.1324 0.2037 0.7559 -0.0588 0.1350 0.5172 -0.0005 0.0179 0.0720

λ 0.0412 0.0515 0.1851 -0.0255 0.0435 0.1632 -0.0002 0.0151 0.0575

θ -0.0521 0.1646 0.6378 0.1652 0.1876 0.6609 0.0001 0.0175 0.0677

VI

35

α 0.0462 1.7628 6.8957 -0.1040 0.9547 3.5409 0.0037 0.1793 0.7235

β 0.2582 2.6650 10.0060 -0.1021 1.0249 3.8379 -0.0022 0.1786 0.7012

λ 0.1604 0.8232 2.8212 0.0014 0.3917 1.5368 -0.0022 0.1610 0.6168

θ -0.0123 0.5512 2.1580 -0.0089 0.2073 0.8068 0.0018 0.1501 0.5596

75

α 0.0730 1.5260 5.9259 -0.0520 0.7115 2.7241 0.0005 0.0914 0.3395

β 0.2034 2.0340 7.6137 -0.0651 0.7433 2.8143 -0.0003 0.0883 0.3386

λ 0.0834 0.5591 2.0359 -0.0046 0.2737 1.0730 -0.0028 0.0865 0.3290

θ 0.0022 0.5178 2.0315 -0.0039 0.1551 0.6067 -0.0008 0.0790 0.3103

150

α 0.0548 1.3748 5.3560 -0.0446 0.5374 2.0421 0.0002 0.0190 0.0729

β 0.1000 1.5390 5.9231 -0.0516 0.5279 1.9802 0.0004 0.0183 0.0677

λ 0.0417 0.4122 1.5647 -0.0035 0.1873 0.7340 -0.0006 0.0189 0.0730

θ 0.0114 0.4606 1.8024 -0.0028 0.1143 0.4472 -0.0002 0.0185 0.0715

Table 4: MLE estimates, SE, KS with P-Value, W*, and A* for COVID-19 data of France

α β λ θ KS P-Value W* A*

OLIW
estimate 14.9557 19.3057 1.5303 0.0949

0.1014 0.6713 0.0626 0.5007
SE 45.7564 58.1673 0.4803 0.0437

GIW
estimate 0.2717 0.0906 2.1119

0.1028 0.6539 0.1271 0.8535
SE 1.0731 0.7552 0.2291

GIGW
estimate 0.2194 1.3436 0.8670 7.3580

0.1020 0.6685 0.0698 0.5715
SE 2.5270 13.5052 0.5567 13.3671

EGIW
estimate 37.4564 96.3594 0.2214 8.8510

0.1013 0.6709 0.0716 0.5809
SE 408.6375 313.0758 0.3331 35.1811

MOAPIW
estimate 30.0093 3.9397 2.8427 0.0425

0.1033 0.6484 0.0812 0.6459
SE 5.9456 4.6320 0.4469 0.0185

KITL
estimate 4.0006 0.1380 552.7278

0.1310 0.3456 0.0662 0.5251
SE 1.2628 0.0200 0.0026

Table 5: MLE, MPS, and Bayesian estimates, SE of OLIW distribution for COVID-19 data of France

MLE Bayesian MPS

estimate SE estimate SE estimate SE

α 14.9557 45.7564 16.5751 11.5479 8.4539 87.4296

β 19.3057 58.1673 29.3807 22.6591 8.7650 74.4226

λ 1.5303 0.4803 1.6240 0.3795 1.4108 5.3033

θ 0.0949 0.0437 0.0932 0.0368 0.1016 0.5586
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