
 

*Corresponding author e-mail: ksnisar1@gmail.com                                                                                                                © 2022 NSP                                                                   
Natural Sciences Publishing Cor. 

 
 Progr. Fract. Differ. Appl. 8, No. 1, 177-190 (2022)                                                                                                                         177 
   

 
             

          http://dx.doi.org/10.18576/pfda/080111 
 

 

Two Analytical Approaches for Space- and Time-
Fractional Coupled Burger’s Equations via Elzaki 
Transform  

 

Garima Agarwal1, Lokesh Kumar Yadav1, Wedad Albalawi2, Abdel-Haleem Abdel-Aty3,4, Kottakkaran Sooppy Nisar5,* and 
Thekkethil  Shefeeq6 
 
1Department of Mathematics and Statistics, Manipal University Jaipur, Rajasthan, India 
2Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi 
Arabia 
3Department of Physics, College of Sciences, University of Bisha, PO Box 344, Bisha 61922, Saudi Arabia 
4Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt 
5Department of Mathematics, College of Arts and Sciences, Wadi Aldawaser, Prince Sattam bin Abdulaziz University, 
Saudi Arabia 
6Department of Mathematics, Farook College (Autonomous), Kozhikode-673632, Kerala, India 
 
Received: 25 May 2021, Revised: 2 Aug. 2021, Accepted: 6 Aug. 2021. 
Published online: 1 Jan 2022. 
 

Abstract: In the present paper, we examine one- and two- dimensional fractional coupled Burger’s equations (FCBEs) by 
two different schemes, namely iterative Elzaki transform scheme (IETM) and homotopy analysis Elzaki transform method 
(HAETM). These schemes provide a numerical solution of one- and two- dimensional FCBEs in the terms of power series. 
Several sample problems have been solved to illustrate the accuracy and efficiency of proposed schemes. In numerical 
studies, we show that both proposed schemes HAETM and IETM give the same results in the case of the one-dimensional 
FCBE, while in the two-dimensional FCBE, the solution gains by HAETM converge rapidly than the approximate result by 
IETM. 
Keywords: Iterative Elzaki transform scheme (IETM), homotopy analysis Elzaki transform method (HAETM), Elzaki 
transform, fractional coupled Burger’s equations (FCBEs). 
 
 
1 Introduction  

FC is the generalization of classical calculus, which studies non-integer order of derivatives. The beauty of FC is that 
fractional order derivatives and integrals are non-local. The purpose of using fractional models in differential equations in 
physical models due to their non-local property. This is due to the fact that the fractional-order derivatives and integrals are 
capable to characterize the properties of memory effects as an essential aspect in many real-world phenomena [1-4]. 
Recently, numerous models such as Baleanu et al. [5] in nanotechnology, Arif et al. [6] in nanofluid, Jajarmi et al. [7] and 
Khan et al. [8] in biology and Oldham [9] in electrochemistry have been modelled with the help of fractional order 
derivatives. 

Motivated by this fact, several researchers have been established analytical methods by using fractional order differential 
operators to find the approximate solutions. Baleanu et al. [10] have been studied the wave equations and the non-linear 
fractional equations and Daftardar et al. [11] respectively by using fractional variational iteration method, decomposition 
method and iterative method. Recently, Baleanu et al. [12] have been analyzed two-dimensional partial differential 
equations. Analytical solutions of fractional physical models have been obtained by Khan et al. [13]. Furati et al. [14] 
studied on existence and uniqueness for fractional derivatives. Application of fractional derivatives in the behaviour of 
immune and tumour cells is given by Ghanbari et al. [15]. Time fractional coupled equation is solved by Gómez-Aguilar 
[16] by using homotopy analysis. Sontakke [17, 18] solved the Hirita-satsuma coupled Kdv, mKdv and Kawahara 
equations. Several papers studies the solution of differential nonlocal systems [19-24].  
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The Burger’s equation demonstrates coupling among diffusion and convection processes. This equation designates the 
structure of shock waves, acoustic transmission, and traffic flow. Abazari [25] gave the numerical solution of the Burger’s 
and coupled Burger’s equation. Also in last few years, numerous researches have been studied and analyzed one- and two-
dimensional FCBEs with many analytical schemes such as the Sumudu decomposition method (SDM) by Ahmed et al. 
[26], VIM by Biazar et al. [27], Adomain decomposition method (ADM) by Alharbi et al. [28], Dehghan et al. [29] and 
Gorguis [30], q-HATM by Singh et al. [31] and Elzaki homotopy perturbation method by Suleman et al. [32].   

The main objective of this work is to extend the application of the homotopy Elzaki transform method (HETM) and 
iteration Elzaki transform method (IETM) to derive explicit analytical approximate solutions of the FCBE with time- and 
space-Caputo fractional derivatives for the following two models: 
 

i. One-dimensional FCBE 
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ii. Two-dimensional FCBE  
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 The factors 𝜁? and 𝜉?, where 0 < 𝜁?, 𝜉? ≤ 1, 𝑗 = 1,2, …, stand for the order of the fractional time and space derivative, 
respectively. R represents the Reynolds number. 

In present study, we gain the analytical and numerical solutions of one- and two-dimensional FCBEs by using two different 
approaches, namely the iterative Elzaki transform method (IETM) and homotopy Elzaki transform method (HETM). The 
IETM is an elegant coupling of the NIM and Elzaki transform and the HAETM is an elegant combination of the HAM and 
Elzaki transform. Numerical comparisons with graphical representation of both suggested approaches with the exact 
solutions are given to illustrate the efficiency and the accuracy of the proposed approaches. The results prove that both 
proposed approaches are very effective and simple. 
The rest of this paper has been organized as follows: In Section 2, Some preliminary definitions and properties related to 
fractional order Caputo derivative and the Elzaki transform are given. In Section 3, we describe the procedures of HAETM 
and IETM. In Section 4, two numerical problems are provided to illustrate the feasibility of proposed methods. Finally, 
Section 5 concludes the output of the whole paper. 
 
2 Preliminaries 

Definition 2.1 The fractional derivative of 𝜇 ∈ 𝐶J9K  in Caputo [33] sense has been defined as: 

𝐷%
M𝜇(𝑥, 𝜏)=O

!PQ(=)
!%P

, 𝜁 = 𝑠 ∈ 𝑁,
9
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𝜇(K)(𝜐)𝑑𝜐,																																𝑠 − 1 < 𝜁 < 𝑠, 𝑠 ∈ 𝑁.

                            (3) 

where s is the smallest integer that exceeds 	𝜁. 
Some basic arithmetic properties of the Caputo’s fractional derivative are given as: 
                                       𝐷%

M𝐶 = 0,	 (C is a constant), 
                                       𝐷%
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where δ and β are constants, and 
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Definition 2.2 Fractional integral of a function 𝜇(𝜏) ∈ 𝐶f(𝜂 ≥ −1) with order 𝜁 > 0, preliminary introduced by Riemann-
Liouville and expressed [34, 35] as: 

`𝐽
M𝜇(𝜏) = 9

TM ∫ (𝜏 − 𝜐)
=
W

MJ9
𝜇(𝜁)𝑑𝜁,

𝐽W𝜇(𝜏) = 𝜇(𝜏).
                                                                                                        (4) 

Definition 2.3: The Elzaki transform (ET) or modified Sumudu transform definition for the function f(τ) is given as: 

𝐸[𝑓(𝜏)] = 𝑇(𝑝) = 𝑝 ∫ 𝑓(𝜏)	𝑒p
W

dq
r 𝑑𝜏,				𝜏 > 0.                     

The ET is a very efficient and strong scheme to solve the integral equation that the Sumudu transform method cannot 
match.                                   
The Elzaki transform of 𝐷M𝜇(𝑥, 𝜏) is given as follows [36, 37, 38]: 

 𝐸[𝐷M𝜇(𝑥, 𝜏)] = s(t)
t"

− ∑ 𝑝vJMbwKJ9
wxW 𝜇(w)(0, 𝜏),																𝑠 − 1 < 𝜁 ≤ 𝑠, 𝑠 ∈ 𝑁.                                    (5) 

3 Basic idea of HAETM and IETM 

We consider a general non-linear time fractional differential equation and Applying two analytical methods, namely the 
IETM and the HAETM, to obtain series solution. 

y 𝐷	
z

%
M𝜔(𝜌, 𝜏) = ℎ(𝜌, 𝜏) + 𝑅[𝜔(𝜌, 𝜏)] + 𝑁[𝜔(𝜌, 𝜏)],

𝜔(𝜌, 0) = 𝛹(𝜌).
                                                                               (6) 

where  0 < 𝜁 ≤ 1. 

3.1 Homotopy analysis Elzaki transform method (HAETM): 

Taking the Elzaki transform (ET) on both sides of (6), we get: 

𝐸[𝜔] = 𝜒(𝜌, 𝑝) + 𝑝M�𝐸[𝑅𝜔(𝜌, 𝜏)] + 𝐸[𝑁𝜔(𝜌, 𝜏)]�,                                                                              (7) 

where,  

                             𝜒(𝜌, 𝑝) = 𝑝v𝜔(𝜌, 0) + 𝑝M𝐸[ℎ(𝜌, 𝜏)].   

On simplifying, (7) reduces to: 

𝐸[𝜔] − 𝑝M ∑ 𝑝vJMb�𝜔(�)(𝜌, 0)�J9
�xW + 𝑝M�𝐸[𝑅𝜔(𝜌, 𝜏)] + 𝐸[𝑁𝜔(𝜌, 𝜏)] − 𝐸[ℎ(𝜌, 𝜏)]� = 0,                          (8) 

Next, a non-linear operator defines as: 

𝑁[𝜑(𝜌, 𝜏; 𝑞)] = 𝐸[𝜑(𝜌, 𝜏; 𝑞)] −  

                    𝑝M ∑ 𝑝vJMb��J9
�xW 𝛹�(𝜌) + 𝑝M�𝐸[𝑅𝜑(𝜌, 𝜏; 𝑞)] + 𝐸[𝑁𝜑(𝜌, 𝜏; 𝑞)] − 𝐸[ℎ(𝜌, 𝜏)]�,                            (9)                

here 𝑞 ∈ [0,1] and 𝜑(𝜌, 𝜏; 𝑞) represents a real function. 

We build a homotopy as: 

(1 − 𝑞)𝐸[𝜑(𝜌, 𝜏; 𝑞)] − 𝜔W(𝜌, 𝜏) = ℏ𝑞𝐻(𝜌, 𝜏)𝑁[𝜑(𝜌, 𝜏; 𝑞)],                                                              (10)  

where E represents the Elzaki transform, 𝑞 ∈ [0,1]
 
be embedding parameter, ℏ and 𝛨(𝜌, 𝜏) are nonzero auxiliary parameter 

and auxiliary function, respectively. 𝜔W(𝜌, 𝜏) is the initial guess of 𝜔(𝜌, 𝜏). Apparently, when 𝑞 = 0 and 𝑞 = 1; the result 
holds: 

𝜑(𝜌, 𝜏; 0) = 𝜔W(𝜌, 𝜏),       𝜑(𝜌, 𝜏; 1) = 𝜔(𝜌, 𝜏),                                                                            (11) 
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When 𝑞 upsurges from 0 to 1, 𝜑(𝜌, 𝜏) differs from initial guess 𝜔W(𝜌, 𝜏) to the solution 𝜔(𝜌, 𝜏). It is expanding about 𝑞 by 
Taylor’s theorem: 

𝜑(𝜌, 𝜏; 𝑞) = 𝑤W + ∑ 𝑞ℓp
ℓx9 𝑤ℓ(𝜌, 𝜏),                                                                                     (12) 

where 

𝜔ℓ(𝜌, 𝜏) =
9
ℓ!
!ℓ�(),%;�)

!�ℓ
�
�xW

,                                                                                                 (13) 

with properly choice of initial guess 𝜔W(𝜌, 𝜏), ℏ and 𝐻(𝜌, 𝜏) series (12) converges at 𝑞 = 1 and we get: 

𝜔(𝜌, 𝜏) = 𝜔W + ∑ 𝜔ℓ(𝜌, 𝜏)p
ℓx9 ,                                                                                           (14) 

equation (14) gives one of the solution of original equation. Next, we define vectors as: 

𝜔ℓ����⃗ = {𝜔W(𝜌, 𝜏), 𝜔9(𝜌, 𝜏), . . . . . . . . . . . . , 𝜔ℓ(𝜌, 𝜏)},                                                         (15) 

We construe ℓ=� order deformation equation by differentiating (10) ℓ -times w. r. t. 𝑞 and setting 𝑞 = 0, we get: 

𝐸[𝜔ℓ(𝜌, 𝜏) − 𝜅ℓ𝜔ℓJ9(𝜌, 𝜏)] = ℏ𝐻(𝜌, 𝜏)ℜℓ(𝜔ℓJ9���������⃗ ),                                                            (16) 

taking inverse Elzaki transform of (16), we have: 

𝜔ℓ(𝜌, 𝜏) = 𝜅ℓ𝜔ℓJ9(𝜌, 𝜏) + ℏ𝐸J9[𝐻(𝜌, 𝜏)ℜℓ(𝜔ℓJ9���������⃗ )],                                                           (17) 

where 

ℜℓ(𝜔ℓJ9���������⃗ ) = 9
(ℓJ9)!

!ℓd��[�(),%;�)]
!�ℓd�

�
�xW

,                                                                                     (18) 

and 

𝜅ℓ = �0, ℓ ≤ 1
1, ℓ > 1	.                                                                                                                      (19) 

3.2 IETM for TFPDEs 

Taking the Elzaki transform (ET) on both sides of (6) and on simplifying, we get: 

𝐸[𝜔] = 𝑝M ∑ 𝑝vJMb�𝜔(�)(𝜌, 0)�J9
�xW + 𝑝M�𝐸[𝑅𝜔(𝜌, 𝜏)] + 𝐸[𝑁𝜔(𝜌, 𝜏)] − 𝐸[ℎ(𝜌, 𝜏)]�,                     (20) 

On simplifying (20), we get: 

𝐸[𝜔] = 𝜒(𝜌, 𝑝) + 𝑝M�𝐸[𝑅𝜔(𝜌, 𝜏)] + 𝐸[𝑁𝜔(𝜌, 𝜏)]�,                                                                         (21) 

where 

  𝜒(𝜌, 𝑝) = 𝑝v𝜔(𝜌, 0) + 𝑝M𝐸[ℎ(𝜌, 𝜏)],                                                                                                   (22) 

applying the inverse of Elzaki transform of (21), we get: 

𝜔(𝜌, 𝜏) = 𝜒(𝜌, 𝜏) + 𝐸J9 ;𝑝M𝐸[𝑅𝜔(𝜌, 𝜏) + 𝑁𝜔(𝜌, 𝜏)]<.                                                                        (23) 

By iterative method, we consider the solution in form of infinite series as: 

𝜔(𝜌, 𝜏) = ∑ 𝜔ℓ(𝜌, 𝜏)p
ℓxW .                                                                                                                        (24) 

Define the linear operator R as: 
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𝑅(∑ 𝜔ℓ(𝜌, 𝜏)p
ℓxW ) = ∑ 𝑅[𝜔ℓ(𝜌, 𝜏)]p

ℓxW ,                                                                                  (25) 

and nonlinear operator N is immobilized as: 

𝑁(∑ 𝜔ℓ(𝜌, 𝜏)p
ℓxW ) = 𝑁[𝜔W(𝜌, 𝜏)] + ∑ �𝑁∑ [𝜔�(𝜌, 𝜏)] − 𝑁∑ [𝜔�(𝜌, 𝜏)]ℓJ9

�xW
ℓ
�xW �p

ℓxW .                          (26) 

Put the value in (24) from (25) and (26), we have: 

∑ 𝜔ℓ(𝜌, 𝜏)p
ℓxW = 𝜔W(𝜌, 𝜏) 

             +𝐸J9 ;𝑝M𝐸�𝑅∑ [𝜔ℓ(𝜌, 𝜏)] + 𝑁[𝜔W(𝜌, 𝜏)] + ∑ �𝑁∑ [𝜔�(𝜌, 𝜏)] − 𝑁∑ [𝜔�(𝜌, 𝜏)]ℓJ9
�xW

ℓ
�xW �p

ℓxW
p
ℓxW �<,               (27) 

Comparing the coefficients of 𝜔ℓ(𝜌, 𝜏), for ℓ = 0,1,2,3, . . . . . . .. to both sides of (27), we get: 

                                       𝜔W(𝜌, 𝜏) = 𝛹(𝜌),  

                                       𝜔9(𝜌, 𝜏) = 𝐸J9 ;𝑝M𝐸�𝑅[𝜔�(𝜌, 𝜏)] + 𝑁[𝜔�(𝜌, 𝜏)]�<,  

𝐸J9 ;𝑝M𝐸�𝑅[𝜔ℓ(𝜌, 𝜏)] + �𝑁∑ [𝜔�(𝜌, 𝜏)] − 𝑁∑ [𝜔�(𝜌, 𝜏)]ℓJ9
�xW

ℓ
�xW ��< , ℓ ≥ 1 .            (28) 

Thus the series solution of (6) is: 

𝜔(𝜌, 𝜏) = ∑ 𝜔ℓ(𝜌, 𝜏)p
ℓxW .                                                                                                            (29) 

4 Numerical problems 

In this section, two numerical problems are given to illustrate the efficiency and accuracy of HAETM and IETM, 
respectively.  

Example 4.1. Consider one-dimensional FCB equation as: 

!"$
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= !($
!)(

+ 2𝜔 !$
!)
− !($/)
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, 0 < 𝜁 ≤ 1,                                                             	

!2/
!%2

= !(/
!)(

+ 2𝜗 !/
!)
− !($/)

!)
, 0 < 𝜉 ≤ 1.                                                                         (30) 

with the initial conditions 

𝜔(𝜌, 0) = 𝜔W = 𝑠𝑖𝑛 𝜌 ,													𝜗(𝜌, 0) = 𝜗W = 𝑠𝑖𝑛 𝜌.                             (31) 

The exact solution of (30), when 𝜁 = 𝜉 = 1 is  

𝜔(𝜌, 𝜏) = 𝑒J% 𝑠𝑖𝑛 𝜌 ,																		𝜗(𝜌, 𝜏) = 𝑒J% 𝑠𝑖𝑛 𝜌. 

 4.1.1 Solution by using HAETM 

By using the proposed scheme and (31), (30) reduced into: 

𝜔ℓ(𝜌, 𝜏) = (𝜅ℓ + ℏ)𝜔ℓJ9(𝜌, 𝜏) − (1 − 𝜅ℓ)ℏ{𝑒J% 𝑠𝑖𝑛 𝜌} − ℏ𝐸J9  𝑝M𝐸 ;
!($
!)(

+ 2∑ 𝜔�
!$ℓd¡
!)

ℓJ9
�xW < − !

		!) Y∑ 𝜔�𝜗ℓJ9J�ℓJ9
�xW ^¢,						(32)                                                                                                                           

and 

𝜗ℓ(𝜌, 𝜏) = (𝜅ℓ + ℏ)𝜗ℓJ9(𝜌, 𝜏) − (1 − 𝜅ℓ){𝑒J% 𝑠𝑖𝑛 𝜌} − ℏ𝐸J9  𝑝£𝐸 ;
!(/
!)(

+ 2∑ 𝜗�
!/ℓd¡
!)

ℓJ9
�xW < −	 !

!)
Y∑ 𝜔�𝜗ℓJ9J�ℓJ9

�xW ^¢.		(33)                                                                                                                                  
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By solving (32) and (33), we get the iterative terms of 𝜔ℓ(𝜌, 𝜏) and 𝜗ℓ(𝜌, 𝜏) follows as: 

                          𝜔W(𝜌, 𝜏) = 𝑠𝑖𝑛 𝜌,            𝜗W(𝜌, 𝜏) = 𝑠𝑖𝑛 𝜌,                                

                          𝜔9(𝜌, 𝜏) = ℏ 𝑠𝑖𝑛 𝜌 %"

T(Mb9)
,   𝜗9(𝜌, 𝜏) = ℏ 𝑠𝑖𝑛 𝜌 %2

T(£b9)
,                                

                          𝜔v(𝜌, 𝜏) =
ℏ(ℏb9) K�¤ )%"

T(Mb9)
+ ℏv(1 − 2 𝑐𝑜𝑠 𝜌) 𝑠𝑖𝑛 𝜌 %("

T(vMb9)
+ ℏv(2 𝑠𝑖𝑛 𝜌 𝑐𝑜𝑠 𝜌) %"§2

T(Mb£b9)
, 

𝜗v(𝜌, 𝜏) =
ℏ(9bℏ) K�¤ )%2

T(£b9)
+ ℏv(1 − 2 𝑐𝑜𝑠 𝜌) 𝑠𝑖𝑛 𝜌 %(2

T(v£b9)
+ ℏv(2 𝑠𝑖𝑛 𝜌 𝑐𝑜𝑠 𝜌) %"§2

T(Mb£b9)
,                            (34) 

And so on. 

Hence, the solution of Eq. (30) is given as: 

𝜔(𝜌, 𝜏) = ∑ 𝜔ℓ(𝜌, 𝜏)p
ℓxW , 									𝜗(𝜌, 𝜏) = ∑ 𝜗ℓ(𝜌, 𝜏)p

ℓxW .
                                                                                      (35)

 

4.1.2 Solution by using IETM: 

Taking the Elzaki transform on (30), we get: 

                                     𝐸[𝜔(𝜌, 𝜏)] = 𝑝v𝜔(𝜌, 0) + 𝑝M𝐸 ;!
($
!)(

+ 2𝜔 !$
!)
− !($/)

!)
<,  

𝐸[𝜗(𝜌, 𝜏)] = 𝑝v𝜗(𝜌, 𝑜) + 𝑝£𝐸 ;!
(/
!)(

+ 2𝜗 !/
!)
− !($/)

!)
<.                                                                   (36) 

Taking the inverse Elzaki transform of (36), we have: 

                                     𝜔(𝜌, 𝜏) = 𝜔(𝜌, 𝑜) + 𝐸J9 ¨𝑝M𝐸 ;!
($
!)(

+ 2𝜔 !$
!)
− !($/)

!)
<©,  

𝜗(𝜌, 𝜏) = 𝜗(𝜌, 𝑜) + 𝐸J9 ¨𝑝£𝐸 ;!
(/
!)(

+ 2𝜗 !/
!)
− !($/)

!)
<©,                                                                   (37) 

In view of (27), we get:  

                             𝜔W(𝜌, 𝜏) = 𝑠𝑖𝑛 𝜌,                       𝜗W(𝜌, 𝜏) = 𝑠𝑖𝑛 𝜌,                                

                             𝜔9(𝜌, 𝜏) = −𝑠𝑖𝑛 𝜌 %"

T(Mb9)
,         𝜗9(𝜌, 𝜏) = −𝑠𝑖𝑛 𝜌 %2

T(£b9)
,                                

 

𝜗v(𝜌, 𝜏) = 𝑠𝑖𝑛 𝜌 (1 − 2 𝑐𝑜𝑠 𝜌)
𝜏v£

𝛤(2𝜉 + 1) + 2 𝑠𝑖𝑛 𝜌 𝑐𝑜𝑠 𝜌
𝜏Mb£

𝛤(𝜁 + 𝜉 + 1) − 2 𝑠𝑖𝑛 𝜌 𝑐𝑜𝑠 𝜌
𝛤(𝜁 + 𝜉 + 1)

𝛤(𝜁 + 1)𝛤(𝜉 + 1)
𝜏Mbv£

𝛤(𝜁 + 2𝜉 + 1)	

																	+2 𝑠𝑖𝑛 𝜌 𝑐𝑜𝑠 𝜌 T(v£b9)

YT(£b9)^
(

%«2

T(¬£b9)
,																																																																												                                              (38)                                                                            

 

And so on. 
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Finally, we have the series solution as: 

𝜔(𝜌, 𝜏) = ∑ 𝜔ℓ(𝜌, 𝜏)p
ℓxW ,            𝜗(𝜌, 𝜏) = ∑ 𝜗ℓ(𝜌, 𝜏)p

ℓxW .
                                                             

(39)  

 

                       (a)                                                                  (b) 
Fig. 1. Surface of absolute error for 𝜔(𝜌, 𝜏) by (a) HAETM, and (b) IETM for −5 ≤ 𝜌 ≤ 5, 0 ≤ 𝜏 ≤ 1	𝑎𝑛𝑑	𝜁 = 𝜉 = 1. 

 

                                                             (a)                                                                          (b) 
Fig. 2: Surface of absolute error for 𝜗(𝜌, 𝜏) by (a) HAETM, and (b) IETM for −5 ≤ 𝜌 ≤ 5, 0 ≤ 𝜏 ≤ 1	𝑎𝑛𝑑	𝜁 = 𝜉 = 1. 

Table 1: The fifth order absolute errors for 𝜔(𝜌, 𝜏), when −5 ≤ 𝜌 ≤ 5. 

             𝝉                HAETM               IETM 
        0.01      1.9098963𝐸 − 12       1.9098963𝐸 − 12 
        0.05       5.9294056𝐸 − 9        5.9294056𝐸 − 9 
        0.10       1.8818028𝐸 − 7        1.8818028𝐸 − 7 
        0.50       5.5141181𝐸 − 4        5.5141181𝐸 − 4 
        1.00       1.6348008𝐸 − 2        1.6348008𝐸 − 2 

 

Table 2: The fifth order absolute errors for 𝜗(𝜌, 𝜏), when −5 ≤ 𝜌 ≤ 5. 

             𝝉                HAETM               IETM 
        0.01      1.9098963𝐸 − 12       1.9098963𝐸 − 12 
        0.05       5.9294056𝐸 − 9        5.9294056𝐸 − 9 
        0.10       1.8818028𝐸 − 7        1.8818028𝐸 − 7 
        0.50       5.5141181𝐸 − 4        5.5141181𝐸 − 4 
        1.00       1.6348008𝐸 − 2        1.6348008𝐸 − 2 
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Numerical outcomes of example 4.1 are given in table 1 and 2 which represent the absolute errors for our proposed 
schemes  when −5 ≤ 𝜌 ≤ 5. Figure 1 and 2 represents the  Surface of absolute errors for 𝜔(𝜌, 𝜏)and 𝜗(𝜌, 𝜏) by  HAETM, 
and  IETM for −5 ≤ 𝜌 ≤ 5, 0 ≤ 𝜏 ≤ 1	𝑎𝑛𝑑	𝜁 = 𝜉 = 1. The numerical outcomes show that both schemes are very effective 
and the absolute errors are very small at different values of  τ for fifth order approximations.   

Example 4.2. Consider two-dimensional FCB equations as:  

!"$
!%"

+ 𝜔 !$
!)
+ 𝜗	 !$

!5
	 = 9

:
;!

($
!)(

+ !($
!5(

< 	,                                                                     	
!2/
!%2

+ 𝜔 !/
!)
+ 𝜗	 !/

!5
	 = 9

:
;!

(/
!)(

+ !(/
!5(
<.                                                                 (40) 

with the initial conditions: 

𝜔(𝜌, 𝜎, 0) = ¬
µ
− 9

µ¶9b·Y¸(d¹§º)^»
,																		𝜗(𝜌, 𝜎, 0) = ¬

µ
+ 9

µ¶9b·Y¸(d¹§º)^»
,                            (41) 

The exact solution of (40), when 𝜁 = 𝜉 = 1 is  

𝜔(𝜌, 𝜎, 𝜏) = ¬
µ
− 9

µ¼9b·
½¸(d¾¹§¾ºdq)«( ¿

À
,																			𝜗(𝜌, 𝜎, 𝜏) = ¬

µ
+ 9

µY9b·(¸(d¾¹§¾ºdq)/«()^
.                    (42) 

4.2.1 Solution by using HAETM 

Using the previous mentioned discussion, we have: 

𝜔W(𝜌, 𝜎, 𝜏) =
¬
µ
− 9

µ¶9b·Y¸(d¹§º)^»
,																																																																																								                           	

𝜗W(𝜌, 𝜎, 𝜏) =
¬
µ
+ 9

µ¶9b·Y¸(d¹§º)^»
,                                                                       (43) 

𝜔9(𝜌, 𝜎, 𝜏) =
ℏ·Y¸/Â(d¹§º)^:%"

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(Mb9)

+ ℏ·Y¸/¾(d¹§º)^:%"

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(Mb9)

− ℏ·
½ ¸
Â(d¹§º)¿:%"

9vÄ¼9b·
½ ¸
Â(d¹§º)¿À

(

T(Mb9)

,																																							 	

𝜗9(𝜌, 𝜎, 𝜏) = − ℏ·Y¸/Â(d¹§º)^:%2

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(£b9)

− ℏ·Y¸/¾(d¹§º)^:%2

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(£b9)

+ ℏ·Y¸/Â(d¹§º)^:%2

9vÄ¶9b·Y¸/Â(d¹§º)^»
(
T(£b9)

,                      (44) 

And so on. 

Hence, the solution of (40) is given as: 

                                                       𝜔(𝜌, 𝜎, 𝜏) = ∑ 𝜔ℓ(𝜌, 𝜎, 𝜏)p
ℓxW ,  

𝜗(𝜌, 𝜎, 𝜏) = ∑ 𝜗ℓ(𝜌, 𝜎, 𝜏).p
ℓxW                                                                                          (45)  

4.2.2 Solution by using IETM: 

Using the previous discussion, we have: 

𝜔W(𝜌, 𝜎, 𝜏) =
¬
µ
− 9

µ¶9b·Y¸(d¹§º)^»
,																																																																																							 	

𝜗W(𝜌, 𝜎, 𝜏) =
¬
µ
+ 9

µ¶9b·Y¸(d¹§º)^»
,                                                                      (46) 
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𝜔9(𝜌, 𝜎, 𝜏) = − ·Y¸/Â(d¹§º)^:%"

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(Mb9)

− ·Y¸/¾(d¹§º)^:%"

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(Mb9)

+ ·Y¸/Â(d¹§º)^:%"

9vÄ¶9b·Y¸/Â(d¹§º)^»
(
T(Mb9)

,		 																												

𝜗9(𝜌, 𝜎, 𝜏) =
·Y¸/Â(d¹§º)^:%2

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(£b9)

+ ·Y¸/¾(d¹§º)^:%2

Ãµ¶9b·Y¸/Â(d¹§º)^»
«
T(£b9)

− ·Y¸/Â(d¹§º)^:%2

9vÄ¶9b·Y¸/Â(d¹§º)^»
(
T(£b9)

,                        (47) 

And so on. 

Hence, the solution of (40) is given as: 

                                                         𝜔(𝜌, 𝜎, 𝜏) = ∑ 𝜔ℓ(𝜌, 𝜎, 𝜏)p
ℓxW , , 

𝜗(𝜌, 𝜎, 𝜏) = ∑ 𝜗ℓ(𝜌, 𝜎, 𝜏).p
ℓxW

                                                                                      
(48)  

 

(a)                                                                                  (b) 
Fig. 3: Third order distributions solutions of example 4.2 by HAETM for 𝜔(𝜌, 𝜎, 𝜏) at (a) 𝜏 = 0.01and (b) 𝜏 = 0.5  with 
R=100.  

 

            (a)                                                                                   (b) 
Fig. 4: Third order distributions solutions of example 4.2 by HAETM for 𝜗(𝜌, 𝜎, 𝜏) at (a) 𝜏 = 0.01	and (b) 𝜏 = 0.5  with 
R=100. 
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                                       (a)                                                                (b) 
Fig. 5: Third order distributions solutions of example 4.2 by IETM for 𝜔(𝜌, 𝜎, 𝜏) at (a) 𝜏 = 0.01and (b) 𝜏 = 0.5  with 
R=100.  

 

                                                              (a)                                                                          (b) 
Fig. 6: Third order distributions solutions of example 4.2 by IETM for 𝜗(𝜌, 𝜎, 𝜏) at (a) 𝜏 = 0.01	and (b) 𝜏 = 0.5  with 
R=100.  

 

        (a)                                                                        (b) 
Fig. 7: Surfaces of absolute errors of example 4.2 for 𝜔(𝜌, 𝜎, 𝜏) by (a) HAETM, and (b) IETM at 0 ≤ 𝜎 ≤ 1, 0 ≤ 𝜏 ≤
0.5, 𝜌 = 0.9	𝑎𝑛𝑑	𝜁 = 𝜉 = 1. 
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               (a)                                                                        (b) 
Fig. 8. Surfaces of absolute errors of example 4.2 for 𝜗(𝜌, 𝜎, 𝜏) by (a) HAETM, and (b) IETM at 0 ≤ 𝜎 ≤ 1, 0 ≤ 𝜏 ≤
0.5, 𝜌 = 0.9	𝑎𝑛𝑑	𝜁 = 𝜉 = 1. 

 

             (a)                                                                         (b) 
Fig. 9. Surface of absolute error for 𝜔(𝜌, 𝜎, 𝜏) by (a) HAETM, and (b) IETM for example 4.2   at 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜏 ≤ 0.5,
𝜎 = 0.9	𝑎𝑛𝑑	𝜁 = 𝜉 = 1. 

 

                      (a)                                                                       (b) 
Fig. 10. Surface of absolute error for 𝜗(𝜌, 𝜎, 𝜏)  by (a) HAETM, and (b) IETM for example 4.2   at 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜏 ≤
0.5, 𝜎 = 0.9	𝑎𝑛𝑑	𝜁 = 𝜉 = 1. 
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Table 3: The third order absolute errors of 4.2 for 𝜔(𝜌, 𝜎, 𝜏), when 0 ≤ 𝜌 ≤ 1,0 ≤ 𝜎 ≤ 1. 

             𝝉                HAETM               IETM 
0.05                   0.0 2.1316𝐸 − 14 
0.10 1.1102230𝐸 − 16 3.4173𝐸 − 13 
0.20 4.9960036𝐸 − 15 5.4738𝐸 − 12 
0.30 3.7747583𝐸 − 14 2.7736𝐸 − 11 
0.40 1.5898394𝐸 − 13 8.7738𝐸 − 11 
0.50 4.8505644𝐸 − 13 2.144𝐸 − 10 

 

Table 4: The third order absolute errors of 4.2 for 𝜗(𝜌, 𝜎, 𝜏), when 0 ≤ 𝜌 ≤ 1,0 ≤ 𝜎 ≤ 1. 

             𝝉                HAETM               IETM 
0.05                     0.0 2.1316𝐸 − 14 
0.10 1.1102230𝐸 − 16 3.4173𝐸 − 13 
0.20 4.9960036𝐸 − 15 5.4738𝐸 − 12 
0.30 3.7747583𝐸 − 14 2.7736𝐸 − 11 
0.40 1.5898394𝐸 − 13 8.7738𝐸 − 11 
0.50 4.8505644𝐸 − 13 2.144𝐸 − 10 

 

Numerical outcomes of example 4.2 for third order approximations are given in tables 3 and 4, which represents the 
absolute errors for our proposed schemes for 𝜔(𝜌, 𝜎, 𝜏)and 𝜗(𝜌, 𝜎, 𝜏), when 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝜎 ≤ 1, and R=1 respectively. 
One can say that the estimated solutions gained by proposed schemes converge faster than the approximate solutions 
obtained using schemes in [8, 11] to exact solution. Figures 3-6 represents the distributions of approximation solutions of 
our proposed schemes   for both 𝜔(𝜌, 𝜎, 𝜏) and 𝜗(𝜌, 𝜎, 𝜏) at 𝜏 = 0.01, 𝜏 = 0.5 respectively, with R=100. Surface of 
absolute error for 𝜔(𝜌, 𝜎, 𝜏) and 𝜗(𝜌, 𝜎, 𝜏) at 𝜁 = 𝜉 = 1, 0 ≤ 𝜏 ≤ 0.5, gained by IETM and HAETM when 0 ≤ 𝜎 ≤ 1, 𝜌 =
0.9, is exhibited in Figs. 7 and 8, respectively and for	0 ≤ 𝜌 ≤ 1, 𝜎 = 0.9, is exhibited in Fig. 9 and 10, respectively. It is 
well-known that in these two cases the same numerical results are obtained. 

 

5  Conclusion  

The main objective of this article was to construct efficient approximate analytical and numerical solutions to the one- and 
two-dimensional FCBEs. We successfully achieved this target by using two approaches: namely, HAETM and IETM. The 
gained solutions approved the reliability and accuracy of the proposed approaches. The numerical and graphical studies 
showed that both approaches HAETM and IETM offered the same results in the case of the one-dimensional FCBE, but in 
the case of two-dimensional FCBE, the solution gained by HAETM converge faster than the approximate solution by 
IETM.  
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