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Abstract: During the current investigation, we examine the impact of a contagious disease on the growth of the ecological system.

We study a non-integer-order predator-prey system by applying the Atanagana-Baleanu-Caputo (ABC) derivative. Indeed, an effective

numerical technique is exercised to discover the system’s dynamic behavior using different values of the fractional-order parameter.

Moreover, the existence of the results is given utilizing the fixed-point theorem. Also, diagrams via numerical simulations of the

approximate solutions are explained in different dimensions. Finally, the analysis carried out in this manuscript helps us understand the

several interactions among different species and protozoa that commonly occur in bio- and ecological systems.
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1 Introduction

The evolution of the qualitative investigation of ODEs is arising to analyze various enigmas in mathematical biology and
related areas. Designing the model to the community dynamics of a prey-predator problem is an example of the
significant and impressive aim in mathematical biology, that has undergone comprehensive reflection by many scholars
[1,2,3,4,5,6]. During real universe, several classes of prey and predator classes possess a living past which is formed of
at least couple steps: immature and mature, and every step possesses various behavioral characteristics. Therefore, some
activities of step-building prey-predator systems are presented in many articles in the literature [7,8,9,10,11,12].
Contagious diseases occur if infected external bodies penetrate into the individual body.

The mentioned pathogens could be bacteria, microorganisms, and parasites. These bodies are transferred by virus
from a different individual, creatures, polluted food, or disposal to any of the environmental constituents which are
infected by any of the mentioned organisms. These diseases have several signs in body, containing raised one warmth
and anxiety, moreover to additional traits which vary regarding the position of contamination, nature, and hardness of the
infection. It is permissible to possess a disease that produces moderate signs, and hence it does not require to be solved.
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Indeed, there are severe situations that may affect mortality. Also, they probably influence the population scale of several
kinds. In a more dangerous situation, some species probably indeed become dead because of some fatal infections that
occurred in some extremely rational populations. Mathematical systems for foretelling the progression of varieties of
such pathogen have been utilized in an escalating way in the latest decades. The biological species are most susceptible
to any disease that can affect the development of species. We study the predator-prey interplay. Such disease is able to
influence the power of predators and performance of shooting, which places some predators at threat of extirpation.
During the literature review, several investigations were examined on the predator-prey interplay in bearing the
contagious infections [13,14,15,16,17].

On the other hand, there are various approaches that the predators examine for reaching prosperous hunting. Predator
assistance is an efficient approach that several predators seek a unique prey. Such an approach can be so beneficial in
degrading the hunting failure scale. Numerous anglers perform in the aforementioned approach. For instance, some
animals such as lions, and dogs are distinguished for the great ability scale in this manner. Modelling of such particular
performance of predator was firstly formed in [18] wherein an uncomplicated pattern was employed for representing
such collaboration. There were studies that investigated such performance in the predator-prey interplay [19,20,21,22,
23,24,25,26,27]. Regarding the achieved outcomes in [28], time-fractional derivative possesses wide applicability for
explaining various real-life conditions, that is recognized with memory impact for the dynamical model; memory speed
is named for non-integer order, memory function of kernel of non-integer derivative. The mentioned derivative (ABC) is
applied to model several phenomena [29,30,31,32]. Regarding the mentioned inclinations, we examine the
eco-epidemiological system given below:

du1

dt
= f1(u1,u2,u3) = s1(u1(t)+ u2(t))− (s2 + s3u3(t))u3(t)u1(t)− s4u1(t)u2(t)− s5u1(t),

du2

dt
= f2(u1,u2,u3) = s4u1(t)u2(t)− (s2 + s3u3(t))u3(t)u2(t)− s5u2(t),

du3

dt
= f3(u1,u2,u3) = s6(s2 + s3u3(t))u3(t)(u1(t)+ u2(t))− s7u3(t),

(1)

where it may be noted that the state variables u1(t),u2(t), and u3(t) respectively stand for densities of susceptible prey,
infected prey, and the predator populations. Regarding initial conditions (ICs), we have u1(0) = u1,0(t),u2(0) = u2,0(t)
and u3(0) = u3,0(t). Moreover, one can see that there are 7 parameters playing the vital role for the dynamics of the
model’s behavior. Description of these parameters is detailed in the Table 1.

Table 1: Small Vital parameters involved in the eco-epidemiological system.

Parameters Description

s1 Reproduction number of the prey population

(s2 + s3u3(t))u3(t)u1(t)
& (s2 + s3u3(t))u3(t)u2(t) Hunting cooperation functional [18]

s4 Transmission rate of the prey population

(infection rate)

s5 Death rate of the prey population

s6 Conversion rate of prey biomass into

predator biomass

s7 Natural mortality of the predator population

The next section is selected to implement some fundamental definitions to comprehend remaining analysis carried out
in other forthcoming sections.

2 Essential Definitions

Definition 1.Riemann–Liouville derivative of order α > 0 for function X is defined as

RL
D

α
t X(t) =

1

Γ (n−α)

∫ t

0

X (n)(ζ )

(t − ζ )n−α+1
dζ , n− 1 < α < n. (2)
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Definition 2.Caputo derivative of order α > 0 of X : (0,∞)→ R is defined as

C
D

α
t X(t) =

1

Γ (n−α)

∫ t

0
(t − ζ )n−α−1X (n)(ζ )dζ . (3)

where ⌈·⌉ signifies the ceiling function and n = ⌈α⌉ , and 0 < α ≤ 1.

Definition 3.Suppose X ∈ H1(a,b),b > a,α ∈ [0,1] so, the Caputo–Fabrizio derivative is:

CF
D

α
t (X(t)) =

W (α)

1−α

∫ t

a
X ′(ζ )exp

[

−α
t − ζ

1−α

]

dζ , (4)

where W (α) for W (0) =W (1) expresses a normalization function and exerting X /∈ H1(a,b) we own

CF
D

α
t (X(t)) =

αW (α)

1−α

∫ t

a
(X(t)−X(ζ ))exp

[

−p
t − ζ

1−α

]

dζ , (5)

Definition 4.Consider X ∈H1(a,b),a< b and α ∈ [0,1] so the Atangana–Baleanu derivative for X in the Caputo structure

is written as

ABC
D

α X(t) =
W (α)

1−α

∫ t

a
X ′(y)Eα

[

−α
(t − ζ )α

1−α

]

dζ , (6)

where Eα is known as the Mittag–Leffler function explained in [33,34].

Eα(z) =
∞

∑
n=0

zn

Γ (nα + 1)
,

Theorem 1.Consider the differential equation containing the Atangana–Baleanu differential operator:

ABC
0 D

α
t f (t) = u(t). (7)

The foregoing equation possesses a unique answer if the subsequent theorem is performed

f (t) =
1−α

W (α)
u(t)+

α

W (α)Γ (p)

∫ t

0
u(ζ )(t − ζ )α−1dζ ,

To view the evidence of the stated theorem, we refer to [35]. The common time-fractional order of the differential equation
described in (7) is a problem of the form

D
α X(t) = F(X(t), t),α ∈ (0,1), (8)

Theorem 2.Suppose a function Q(X(t)) exists, that results in a negative semi-definite non-integer function defined

D pQ(X(t)) by p ∈ (0,1], so the model (2) would be stable, periodically and [36,37] is given to depict the analysis of

stability.

3 Analysis by Non-integer Order

We suppose B= B(L)×B(L), which B(L) named continuous Branch function on interval L containing

‖u1,u2,u3‖= ‖u1‖+ ‖u2‖+ ‖u3‖‖,

which ‖u1‖= sup{|u1(t) : t ∈ L}, ‖u2‖= sup{|u2(t) : t ∈ L} and ‖u3‖= sup{|u3(t) : t ∈ L} ,
Following, we develop the problem (1) by interchanging the traditional derivative by ABC one:

ABC
0 D

α
t u1(t) = s1(u1(t)+ u2(t))− (s2 + s3u3)u3(t)u1(t)− s4u1(t)u2(t)− s5u1(t),

ABC
0 D

α
t u2(t) = s4u1(t)u2(t)− (s2 + s3u3)u3(t)u2(t),

ABC
0 D

α
t u3(t) = s5(s2 + s3u3(t))u3(t)(u1(t)+ u2(t))− s5,

(9)
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Regarding ICs
u1(0) = u1,0(t),u2(0) = u2,0(t),u3(0) = u3,0(t), (10)

Under adopting the notion of the Atangana-Baleanu-Caputo derivative and the Theory of Theorem 1, we reconstruct (2)
to fractional Volterra integral of problem formation

u1(t)− u1(0) =
1−α

W (α)
[s1(u1(t)+ u2(t))− (s2 + s3u3)u3(t)u1(t)− s4u1(t)u2(t)− s5u1(t)]

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1 × [s1(u1(t)+ u2(t))− (s2 + s3u3)u3(t)u1(t)− s4u1(t)u2(t)− s5u1(t)]dζ ,

u2(t)− u2(0) =
1−α

W (α)
[s4u1(t)u2(t)− (s2 + s3u3)u3(t)u2(t)]

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1 × [s4u1(t)u2(t)− (s2 + s3u3)u3(t)u2(t)]dζ ,

u3(t)− u3(0) =
1−α

W (α)
[s5(s2 + s3u3(t))u3(t)(u1(t)+ u2(t))− s5]

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1 × [s6(s2 + s3u3(t))u3(t)(u1(t)+ u2(t))− s7u3(t)]dζ ,

(11)

Now, we take

B1(u1, t) = s1(u1(t)+ u2(t))− (s2 + s3u3)u3(t)u1(t)− s4u1(t)u2(t)− s5u1(t)

B2(u2, t) = [s4u1(t)u2(t)− (s2 + s3u3)u3(t)u2(t)

B3(u3, t) = s6(s2 + s3u3(t))u3(t)(u1(t)+ u2(t))− s7u3(t)
(12)

Beside, we provide the subsequent result.

Lemma 1.The kernels Bi(S, t) , for i = 1,2,3 hold the Lipschitz condition for 0 ≤ Bi(ui, t)< 1, i = 1,2,3 .

Proof.Opening by i = 1 we own B1(u1, t) = r(u1(t)+ u2(t)) −(λ + au3)u3(t)u1(t) −δ1(t)u2(t)− µu1(t). Let u1 and u∗1,
then we own

‖B1(u1, t)−B1(u
∗
1, t)‖= ‖−α {u1(t)− u∗1(t)}‖ ≤ ‖α‖‖u1(t)− u∗1(t)‖ ≤ G1‖u1(t)− u∗1(t)‖ (13)

which G1 = α . Take m1 = maxt∈L ‖u1(t)‖, m2 = maxt∈L ‖u2(t)‖ and m3 = maxt∈L ‖u3(t)‖ be limited functions, so

‖B1(u1, t)−B1(u
∗
1, t)‖ ≤ G1‖u1(t),u

∗
1(t)‖

resembling phrases for components xi , for i = 2,3 to get ‖Bi(ui, t)−Bi(u
∗
i , t)‖ ≤ Gi‖ui(t),u

∗
i (t)‖ , for i = 2,3 . Hence,

the Lipschitz condition works for B1 , and contraction works for 0 ≤ G1 < 1. Using the considered kernels (11) results

u1(t) = u1(0)+
1−α

W (α)
B1(u1, t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B1(ζ ,u1)dζ ,

u2(t) = u2(0)+
1−α

W (α)
B2(u2, t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B2(ζ ,u2)dζ ,

u3(t) = u3(0)+
1−α

W (α)
B3(u3, t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B3(ζ ,u3)dζ ,

(14)

by similar recursive equations

u1,n(t) =
1−α

W (α)
B1(u1,n−1, t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B1(ζ ,u1,n−1)dζ ,

u2,n(t) =
1−α

W (α)
B2(u2.n−1, t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B2(ζ ,u2,n−1)dζ ,

u3,n(t) =
1−α

W (α)
B3(u3,n−1, t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B3(ζ ,u3,n− 1)dζ ,

(15)
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The difference among consecutive terms in the denoting is offering with

Z1n(t)≡ u1,n(t)− u1,n−1(t) =
1−α

W (α)
[B1(u1,n−1, t)−B1(u1,n−2, t)]

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1 [B1(ζ ,u1,n−1)−B1(ζ ,u1,n−2)]dζ ,

Z2n(t)≡ u2,n(t)− u2,n−1(t) =
1−α

W (α)
[B2(u2,n−1, t)−B2(u2,n−2, t)]

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1 [B2(ζ ,u2,n−1)−B2(ζ ,u2,n−2)]dζ ,

Z3n(t)≡ u3,n(t)− u3,n−1(t) =
1−α

W (α)
[B3(u3,n−1, t)−B3(u3,n−2, t)]

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1 [B3(ζ ,u3,n−1)−B3(ζ ,u3,n−2)]dζ ,

(16)

we state that

ui,n =
n

∑
j=1

Zi j(t), i = 1,2,3.

Now, we take (16) and use the norm to have

‖Z1n‖= ‖u1,n(t)− u1,n−1(t)‖ ≤
1−α

W (α)
‖B1(u1,n−1, t)−B1(u1,n−2, t)‖+

p

W (α)Γ (α)

×‖

∫ t

0
(t − ζ )α−1 [B1(u1,n−1, t)−B1(u1,n−2, t)]dζ‖.

(17)

To satisfy the Lipschitz condition, we have

‖u1,n(t)− u1,n−1(t)‖ ≤
1−α

W (α)
χ1‖u1,n−1 − u1,n−2‖

+
p

W (α)Γ (α)
× χ1

∫ t

0
(t − ζ )α−1‖u1,n−1 − u1,n−2‖dζ ,

(18)

and

‖Z1n‖ ≤
1−α

W (α)
χ1‖Z1n−1‖+

α

W (α)Γ (α)
× χ1

∫ t

0
(t − ζ )α−1‖Z1n−1(ζ )‖dζ , (19)

Equivalent expressions guard for rest elements:

‖Zin‖ ≤
1−α

W (α)
χ1‖Zin−1‖+

α

W (α)Γ (α)
× χ1

∫ t

0
(t − ζ )α−1‖Zin−1(ζ )‖dζ , i = 2,3, (20)

We take solutions X1(t),X2(t) and X3(t) exist for model (9) that indicates

‖u1(t)−X1(t)‖ ≤
1−α

W (α)
[B1(u1, t)−B1(X1, t)]

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1 [B1(u1, t)−B1(X1, t)]dζ

≤
1−α

W (α)
‖B1(u1, t)−B1(X1, t)‖

+
α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1‖[B1(u1, t)−B1(X1, t)‖dζ ,

(21)

By regarding traits of the Lipschitz condition yields in

‖u1(t)−X1(t)‖ ≤
1−α

W (α)
χ1‖u1(t)−X1(t)‖+

χ1tα

W (α)Γ (α)
‖u1(t)−X1(t)‖ (22)
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which results

‖u1(t)−X1(t)‖

[

1−
χ1(1−α)

W (α)
+

χ1tα

W (α)Γ (α)

]

≤ 0 (23)

with ‖u1(t)−X1(t)‖ = 0, it indicates u1(t) = X1(t) . Alike phrases exist for segments ui(t), i = 2,3 .Consequently, the
fractional problem (9) owns a unique answer.

3.1 Numerical Scheme

Now, we practice the numerical approach developed in [38] to resolve the problem for simulations. The method has the
following form:

un+1 = u0 +
1−α

W (α)
f (u(tn), tn)+

α

W (α)

n

∑
q=0

{

hα f (uq, tq)

Γ (α + 2)
an

−
hα f (uq−1, tq−1)

Γ (α + 2)
bn

}

+Eα
n ,

(24)

where an = (n+ 1− q)α(n− q+ 2+α)− (n− q)α(n− q+ 2+ 2α) and bn = (n+ 1− q)α+1− (n− 1)α(n− q+ 1+α)
and the remaining term E

p
n is expressed by

Eα
n =

α

W (α)Γ (α)

n

∑
q=0

∫ tq−1

tq

(ζ − tq)(ζ − tq−1)

2

∂ 2

∂ζ 2
× [ f (u(ζ ),ζ )]ζ=λζ

(tn+1 − ζ )α−1dζ , (25)

To understand more of this approach, we recommend the work carried out in [38]. So, exercising the kernels, Eq.(14)
changes to the following

u1(t) = u1(0)+
1−α

W (α)
B1(u1(t), t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B1(ζ ,u1(ζ ))dζ ,

u2(t) = u2(0)+
1−α

W (α)
B2(u2(t), t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B2(ζ ,u2(ζ ))dζ ,

u3(t) = u3(0)+
1−α

W (α)
B3(u3(t), t)+

α

W (α)Γ (α)

∫ t

0
(t − ζ )α−1

B3(ζ ,u3(ζ ))dζ .

(26)

Thus, exercising the technique given in (24) at t = tn+1, we own

u1,n+1 = u1,0 +
1−α

W (α)
B1(u1(tn), tn)+

α

W (α)

n

∑
q=0

{

hαB1(u1,q, tq)

Γ (α + 2)
an

−
hαB1(u1,q−1, tq−1)

Γ (α + 2)
bn

}

+ 1Eα
n ,

u2,n+1 = u2,0 +
1−α

W (α)
B2(u2(tn), tn)+

α

W (α)

n

∑
q=0

{

hαB2(u2,q, tq)

Γ (α + 2)
an

−
hpB2(u2,s−1, ts−1)

Γ (p+ 2)
bn

}

+ 2Eα
n ,

u3,n+1 = u3,0 +
1−α

W (α)
B3(u3(tn), tn)+

α

W (α)

n

∑
q=0

{

hαB3(u3,q, tq)

Γ (α + 2)
an

−
hpB3(u3,q−1, tq−1)

Γ (α + 2)
bn

}

+ 3Eα
n ,

(27)

by an = (n+ 1− q)α(n− q+ 2+α)− (n− q)α(n− q+ 2+ 2α), bn = (n+ 1− q)α+1 − (n− q)p(n− q+ 1+α) and
iEα

n for i = 1,2,3 is depicted as

iEα
n =

α

W (α)Γ (p)

n

∑
q=0

∫ tq−1

tq

(ζ − tq)(ζ − tq−1)

2

∂ 2

∂ζ 2
[Bi(u(ζ ),ζ )]ζ=λζ

(tn+1 − ζ )α−1dζ , (28)

The following section is dedicated to reveal the performance of the above discussed numerical scheme.
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4 Numerical Experiments

Now, we use the proposed numerical scheme as discussed in the above-mentioned section to get the approximate
solutions of the eco-epidemiological system as suggested in the present study under the novel fractional operator with
the name of ABC. We solve the system for different values of fractional order α . Figures 1 to 3 show the results for
different values of α and also for different values of the ICs including u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for
s1 = 1.5,s2 = 1.5,s3 = 0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5. The fractional orders taken for these figures are
0.95,0.96,0.97 and 0.98. Indeed, the figures 4 to 6 are dedicated to depict the results for α values and with ICs given as
u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.5,s2 = 0.5,s3 = 0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5;
successfully. Similarly, figures 7 to 27 are obtained to show the results for s1,s2,s3,s4,s5,s6 and s7 along with the
selected fractional orders for the parameter α > 0.

In the Figure 1, each state variable is simulated over considerably large time interval [0,500] to understand dynamics of
their behaviour. It is observed that the densities of susceptible prey, and predator populations highly fluctuate under
selected ICs and the parameters whereas the density of the infected prey sharply decrease over a very small time interval
and then goes to vanish as quickly as possible and this situation occurs because susceptible and the predator population
are at greater variation.

If we closely look at the Figure 2 then we realize that that patterns like limit cycles occur in the phase portrait forms
under different values of α and the parameters. Some strange chaotic type behavior is observed in the figure which is not
possible to obtain with classical version of the eco-epidemiological system, that is, when α = 1. Similarly, Figure 3
shows 3-dimensional plot for the underlying system wherein, once again, chaotic type behavior with predator-prey limit
cycles is observed. This phenomenon is highly obvious in natural situations as well. Thus, it is said that ABC operator is
capable enough to capture the most natural occurrences in the world.

The Figure 4 is obtained with a slight variation in the s2 parameter that appears in the hunting cooperation functional as
described in the Table 1. By decreasing s2 from 1.5 to 0.5 in the figure 4, it is observed that the peaks of the fluctuations
within the susceptible prey and predator populations decrease including the peak in the infected prey. However, there are
still limit cycles having varying structures are observed as can be seen in the Figures 5 (2D phase-plane diagrams) and 6
(3 dimensional dynamics). While keeping the ICs same and varying some values of the parameters, we observe drastic
change in the dynamics of the eco-epidemiological system as can be seen in the time series plots in the Figure 7 wherein
one can note that the not only peak of fluctuations decrease but the infected prey slightly increase also. One may also
note that as value of fractional order α approaches 1, the fluctuations increase. Some interesting limit cycles in the form
of phase-planes and 3 dimensional plots are also depicted in the Figures 8 and 9; respectively.

Looking at the Figure 10, one can observe that there comes huge change in the behavior of all three populations when
parameters are varied particularly the parameters s3 and s7 with little bit high values while ICs and the fractional order α
are still same as considered in previous figures. Limit cycles as shown in the Figure 11 are reduced in size and this
happens due to the fact that now there are not many fluctuations in the populations. Similarly, the Figure 12 refers the
chaotic behavior that lasts for smaller interval of time.

Likewise, upon carrying out numerous other simulations of the eco-epidemiological system as suggested in the present
study under the novel fractional operator with the name of ABC, we have obtained interesting dynamics and patterns that
were not not encountered with operators having no memory such as those classical ones also called integer-order
derivatives. These other simulations based upon time series, phase-portraits and 3 dimensional structures can be
visualized in the Figures from 13 to 27 wherein different parameters’ values are taken into consideration in order to
obtain the various kinds of behavior for the system via ABC operator.
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Fig. 1: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for parameters s1 = 1.5,s2 =
1.5,s3 = 0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5.

0 1 2 3 4 5 6 7 8 9 10

u
1
(t)

0

0.2

0.4

0.6

0.8

1

1.2

u
2
(t

)

=0.95

=0.96

=0.97

=0.98

,

0 1 2 3 4 5 6 7 8 9 10

u
1
(t)

0

1

2

3

4

5

6

7

u
3
(t

)

=0.95

=0.96

=0.97

=0.98

,

0 0.2 0.4 0.6 0.8 1 1.2

u
2
(t)

0

1

2

3

4

5

6

7

u
3
(t

)

Fig. 2: 2D plots of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.5,s2 = 1.5,s3 =
0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5.
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Fig. 3: Chaotic behaviour of of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.5,s2 =
1.5,s3 = 0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5.
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Fig. 4: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.5,s2 = 0.5,s3 =
0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5.
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Fig. 5: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.5,s2 = 0.5,s3 =
0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5.
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Fig. 6: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.5,s2 = 0.5,s3 =
0.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 0.5.
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Fig. 7: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 3.5,s2 = 3.05,s3 =
0.8,s4 = 2.5,s5 = 0.15,s6 = 0.5 and s7 = 0.3.
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Fig. 8: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 3.5,s2 = 3.05,s3 =
0.8,s4 = 2.5,s5 = 0.15,s6 = 0.5 and s7 = 0.3.
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Fig. 9: Chaotic behaviour of of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 3.5,s2 =
3.05,s3 = 0.8,s4 = 2.5,s5 = 0.15,s6 = 0.5 and s7 = 0.3.

0 50 100 150 200 250

t

0

0.5

1

1.5

2

2.5

3

u
1
(t

)

=0.95

=0.96

=0.97

=0.98

,

0 50 100 150 200 250

t

0

0.5

1

1.5

2

2.5

3

3.5

4

u
2
(t

)

=0.95

=0.96

=0.97

=0.98

,

0 50 100 150 200 250

t

0

0.5

1

1.5

2

2.5

u
3
(t

)

=0.95

=0.96

=0.97

=0.98

Fig. 10: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 0.55,s2 = 0.5,s3 =
3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 11: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 0.55,s2 = 0.5,s3 =
3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 12: Chaotic behaviour of of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 =
0.55,s2 = 0.5,s3 = 3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 13: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 0.75,s2 = 0.5,s3 =
3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 14: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 0.75,s2 = 0.5,s3 =
3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 15: Chaotic behaviour of of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 =
0.75,s2 = 0.5,s3 = 3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 16: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 0.95,s2 = 0.5,s3 =
3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 17: 2D plot of solutions for different values of α with initial conditions u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 =
0.95,s2 = 0.5,s3 = 3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 18: Chaotic behaviour of of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 =
0.95,s2 = 0.5,s3 = 3.5,s4 = 0.5,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 19: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.2,s2 = 0.5,s3 =
3.5,s4 = 0.05,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 20: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.2,s2 = 0.5,s3 =
3.5,s4 = 0.05,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 21: Chaotic behaviour of of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 =
1.2,s2 = 0.5,s3 = 3.5,s4 = 0.05,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 22: Plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 3.5,s2 = 1.5,s3 =
3.5,s4 = 0.05,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 23: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 3.5,s2 = 1.5,s3 =
3.5,s4 = 0.05,s5 = 0.5,s6 = 0.5 and s7 = 1.5.
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Fig. 26: 2D plot of solutions for different values of α with ICs u1(0) = 0.01,u2(0) = 1.1 and u3(0) = 0.05 for s1 = 1.5,s2 = 1.5,s3 =
0.5,s4 = 0.05,s5 = 0.5,s6 = 0.5 and s7 = 0.5.
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5 Conclusion

In this research study, numerical simulations of the Prey-Predator system is investigated using the ABC operator. We used
the theorem of fixed-point to establish the occurrence and uniqueness of the results of the underlying system. Employing
numerical approach, solutions of the system are produced that depict quite interesting dynamical features not possible to
achieve under the classical approach of differential calculus. To understand the influence of fractional order α , numerical
investigations are illustrated under engaging various fractional orders of α . To explain the chaotic behavior in deep, we
have tried various values of the involved parameters in the model so that the state variables like susceptible prey, infected
prey, and the predator populations could be visualized under ABC operator with different values of α . It may be noted that
such detailed analysis under the ABC operator has not been previously encountered in the existing literature for the eco-
epidemiological system. Future studies would include the analysis of the discussed system with another operator called
the Caputo-Fabrizio operator and some optimal control theory would also be discussed in the realm of fractional calculus.
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