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Abstract: In this study, a new modified Weibull distribution, called the alpha power modified Weibull distribution, is proposed and
studied. The new distribution is a generalization of several well known distributions. The shapes of the density and hazard rate functions
are obtained. The density function shows several shapes including skewed, approximately symmetric and decreasing shapes. The
hazard rate function also shows shapes including decreasing, increasing, bathtub and modified bathtub shapes. Several properties of the
distribution including moments, moment generating function, inequality measures, order statistics and stochastic ordering are derived.
Also, several actuarial measures are derived. The numerical studies of the actuarial measures of the developed distribution are compared
with other distributions. Various estimation methods are used to estimate the parameters of the distribution and a simulation study is
conducted to ascertain the performance of the estimators. A bivariate extension of the distribution is also derived in the study. The
distribution is used to model two real failure data sets to ascertain its usefulness. The results show that the new distribution can serve

as an alternative to modeling failure data sets.
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1 Introduction

The need to properly model data is very crucial for
successful practice in engineering, insurance and
medicine among other fields. This usually involves
finding a suitable distribution which can best explain the
variations in the data or extract enough information from
the data. In literature, there are several -classical
distributions. These include the Weibull, exponential,
Pareto and gamma distributions, among others. These
distributions are widely used to provide parametric fit to
data sets. However, some data sets exhibit certain
characteristics, such as non-monotonic failure rates,
which render classical distributions inappropriate in
providing a good parametric fit to the data sets. Also, due
to the ever increasing complexity of data sets from
different fields, no single distribution can provide a good
fit to all of them. Due to this, researchers constantly
develop new distributions to provide some flexibility in
modeling data sets.

Due to the need for flexible distributions to model
various data sets, several methods have been developed
for the construction of new distributions. Some of these
methods include transformed-transformer (T-X) method

[1], exponentiated generalized class [2], quadratic
transmutation map [3], cubic transmutation map [4,5] and
alpha power transformation method [6]. These methods
have been used extensively in literature to develop new
distributions.

The Weibull distribution [7], though widely used,
does not provide good fit to data sets which exhibit
non-monotonic failure rates; such as bathtub, upside
down bathtub, among other shapes. Thus, several
extensions and modifications of the Weibull distribution
have been developed by researches to make it more
flexible and enhance its usefulness. Some of these include
the exponentiated Weibull distribution [8], modified
Weibull distribution [9], beta Weibull distribution [10],
beta modified Weibull distribution [11], Kumaraswamy
Weibull (KW) distribution [12], beta-exponentiated
Weibull distribution [13], alpha power Weibull (APW)
distribution [14], exponentiated power generalized
Weibull (ExPGW) distribution [15], alpha power
exponentiated Weibull (APExW) distribution [16], and
modified beta modified Weibull distribution [17]. Others
include exponent power Weibull (ExPW) distribution
[18], heavy-tailed beta-power transformed Weibull
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distribution [19], modified beta inverse flexible Weibull
extension distribution [20], and Marshall-Olkin alpha
power inverse Weibull distribution [21], among others.

Though several distributions have been developed by
researchers, including several extensions of the Weibull
distribution, there is always the need for the development
of new distributions. The Weibull distribution has gained
popularity and usefulness among researchers and
practitioners. Thus, an its extensions are expected to
provide more flexible and useful distributions. Hence, in
this article, a new extension of the modified Weibull
distribution, proposed by Lai et al. [9], is constructed
using the alpha power transformation. Several properties
of the new distribution, actuarial measures and a bivariate
extension of the distribution are studied.

The new distribution is a generalization of several
known distributions including Weibull, modified Weibull,
exponential, Rayleigh, among others. Thus, the new
distribution is expected to be more flexible and useful
with applications in different fields.

The rest of the article is organized as follows: section
2 presents the new distribution. Several statistical
properties of the distribution, including the quantile
function, moments, moment generating function,
inequality measures, order statistics and stochastic
ordering are studied in section 3. In section 4, some
actuarial measures, including value-at-risk (VaR), tail
VaR, tail variance, tail variance premium, mean excess
function and limited expected value function, are derived
and numerical results compared with other distributions.
In section 5, the parameters of the distribution are derived
using several estimation methods and simulation studies
are performed in section 6. Applications to real data sets
are given in section 7 to show the flexibility of the new
distribution. A bivariate extension of the distribution is
given in section 8 and the conclusion of the study is given
in section 9. Some proposals for future work are given in
section 10.

2 Alpha Power Modified Weibull
Distribution (APMW)

In this section, the proposed modification of the modified
Weibull distribution using the alpha power transformation
is presented. Given a baseline distribution F(x), the
cumulative distribution function (CDF) and probability
density function (PDF) of the alpha power family of
distributions are given respectively as
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Using the modified Weibull distribution as the
baseline distribution with CDF and PDF given
respectively as  F(x) = 1 — et x>,
a>0,b>0,c>0and f(x) =alb+ cx)xb’lecxe’“xbecx,
the new modified Weibull distribution, called the alpha
power modified Weibull (APMW) distribution is
obtained. The CDF and PDF of the new distribution are
given respectively as
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The survival function of the APMW distribution is
defined as S(x) = 1 — G(x) and given by

a (l ﬂl’faxbeex >

Sx)= =1 &>0,a#0x>0. (3)
e’“xbecx, a=1,x>0
Also, the hazard rate function of the APMW

distribution, defined as 7 = g(x)/S(x), is given by
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The APMW distribution is a generalization of several

distributions. These are shown in Table 1. This indicates
that the APMW distribution is flexible.

Table 1: Special Distributions of the APMW distributions

No. Distribution a b «

[

Modified Weibull 1
Alpha power Weibull

Weibull 1
Alpha power one parameter Weibull 1

One parameter Weibull 1 1
Alpha power exponential
Exponential

Alpha power Rayleigh
Rayleigh

O 01 N W —
cNeoNeoloBoRoRoN e}

R — —

When o = 1 in Table 1, the modified Weibull
distribution, whose properties are established in literature,
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is obtained (see Lai et al. [9]). Henceforth, only the case
o # 0 will be considered when referring to the APMW
distribution.

For some parameter values, Fig. 1 shows the plots of
the PDF of the APMW distribution. It can be observed
that the APMW distribution can exhibit right skewed, left
skewed, almost symmetric and decreasing shapes.

Also, Fig. 2 shows the plots of the hazard rate
function of the APMW distribution for some parameter
values. The plot shows that the hazard rate function can
exhibit decreasing, increasing, bathtub, modified bathtub,
J and reversed J shapes. The different shapes indicate the
flexibility of the APMW distribution and its ability to
model various data sets with different characteristics.

The expansion of the PDF of the APMW distribution
is given below. The expansion of the PDF of a distribution
is useful for the derivation of some properties of the
distribution. Using the following series representation

= 3V gy
- 4 ] g <,
i=0 :
the PDF of the APMW distribution can be written as

()= Y vif* (), 4
i=0

where v; = %(log o)™ and f*(x) = a(i+1)(b+

cx)xb~1eeFe=alit1)x"¢ g the PDF of the modified Weibull
distribution with parameters a(i + 1), b and c.

3 Statistical Properties

In this section, various statistical properties of the APMW
distribution are derived. These include the quantile

function, moments, moment generating function,
inequality measures, order statistics and stochastic
ordering.

3.1 Quantile Function

The quantile function of a distribution is useful for the
generation of random numbers from the distribution. The
quantile function can also be used to derive other
statistical measures, such as skewness and kurtosis, of a
distribution. The quantile function of a distribution is
obtained as the inverse function of the CDFE. If u € (0, 1),
then the CDF of the APMW distribution in equation (1)
can be equated to u and written as

1 —axge”“
———@a'e )w
l—o

After some algebraic manipulations, we have

€ e — € (1L 1o {1o801L= (1 @)u) ~loga %'
b b\ a logo

Using the Lambert function defined as W (xe*) = x, the
quantile function is obtained as

e ol
o)

where u# € (0,1). The quantile function obtained in
equation (5) can be used to obtain the skewness and
kurtosis of the distribution. This can be achieved via
Bowley skewness (S) and Moors kurtosis (K) given
respectively as

_2@@)+0o(3)-20(3)
e(3)-0()

and
0(5)-2(@)+2()-2®)
o(3)-2(5)

Fig. 3 shows plots of skewness and kurtosis of the
APMW distribution for some parameter values. It can be
observed that the APMW distribution can exhibit various
degree of skewness and kurtosis, including negative
skewness. This illustrates the flexibility of the distribution
and its ability to model data sets with varying degrees of
skewness and kurtosis.

K=

3.2 Moments

In this subsection, the non-central and incomplete
moments of the APMW distribution are obtained. If the
moments of a random variable exist, they can be used to
obtain the measures of central tendency and dispersion,
among other properties.

3.2.1 Non-central moment

The rth non-central moment of a distribution with PDF
g(x) is defined as

Using the expansion of the PDF of the APMW distribution
in equation (4), we have

JTHES Zvia(i—i— 1)/xr(b+cx)xb7'ecxefa("ﬂ)"becxdx.
i=0
0

(6)
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Fig. 1: Plot of the PDF of the APMW distribution
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Fig. 3: Plot of skewness and kurtosis of the APMW distribution
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Let u = xPe* = % = (b + cx)x’~te* and
= by (2”%) where W(z) = )oi CL 5220 Also, as
= pU7 ) = G-nr < >

x — 0, u — 0 and as x — oo, u — oo, Substituting these
into equation (6) gives

MU e
whereej:((ji), jf’z(i)]1

be written as

i=0 0 j=1
Again,
[} r (<)
i sy
<Z ejub) = Z Ej..j;u?,
J=1 J1seesdr=1
where Ej . = ej ...ej, and s, = ji + -+ j.

Substituting into equatlon (8) gives

w=Y X vali+ DB [ule . o)
LoL J

Letting t = a(i+ Nu=u= a(z+1) and 4L = qa(i+1).
Also,as u — 0,1 — 0 and as u — oo, t — oo, Substltuting
these into the equation (9) and with some algebraic
manipulations, we obtain
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u; — Z Vi J1seeesr - /lb e*ldt
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Using the gamma  function defined as
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If =1 in equation (10), then E(X)
and given as

= U is obtained
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3.2.2 Incomplete moment

The rth incomplete moment of a distribution is defined as

my(y) =

PDF of the APMW in equation (4) into the definition, we
have

y
J x"g(x)dx. Substituting the expansion of the

=) y
mp(y) = Y via(i+1) / X (b4 ex)a etV g
i=0 s

With similar algebraic manipulations as that of the rth
non-central moment, we have the rth incomplete moment
as

Ej]a Jr b ¢
Bl (g (1)),
(a(i+1))? ( (12))

where y(a,y) = [§x*"'e~dx is the lower incomplete
gamma function. Letting r = 1 gives the first incomplete
moment of the APMW distribution as

o oo

m = viiej a(i by ) .
w=LL (a(l.m)ﬂ(b“ (i+1)y )3
(13)

3.3 Moment generating function

The moment generating function (MGF) of a distribution
is useful in obtaining the moments of a distribution. The
MGEF of a distribution is defined as

Mx(t)=E[¢X] =Y —u,.

Substituting equation (10) into the definition gives the
MGF of the APMW distribution as

m=YYy ¥ viiﬂE"""“"' T (F+1).

r=0i=0jy,... jr=1

3.4 Inequality measures

Inequality measures are useful in studying disparities in
income and poverty, and have applications in many fields
including insurance, economics, reliability and medicine.
The Lorenz and Bonferroni curves are studied for the
APMW distribution.

The Lorenz curve of a distribution is defined as

Lg(y) = L fxg( Ydx = ﬁml( y), where m;(y) is the first

incomplete moment given by equation (13). Thus,
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substituting equation (13) into the definition gives the
Lorenz curve of the APMW distribution as

Y Y Ly<i+l,a(i+l)ybe@> .

Alternatively, the Lorenz curve can be obtained in
terms of the quantile function of a distribution [22] as

wm=%%b@m

where u € (0,1) and Q(r) is the quantile function of the
distribution. Lorenz curves of a distribution are of convex
shapes and for Lg(u) = u, the curve becomes the bisector
of the first quadrant, known as the point of minimal
inequality. The area between Lg(u) = u and the Lorenz
curve is the area of concentration. An important
inequality index that can be obtained using the Lorenz
curve 1is the Gini index. It can be defined as
G=1-2[) Ls(u)du.
Bonferroni curve of a distribution is defined as

_ Le(y)
G(y)

Bg(y)

Substituting the Lorenz curve of the APMW distribution
and the CDF of the APMW distribution into the definition
gives the Bonferroni curve of the APMW distribution.
Similarly, Bonferroni curve can be defined in terms of the
quantile function as

ue (0,1).

Bonferroni index is the area between the Bonferroni curve
and Bg(u) = 1, and is defined as B=1 — fol Bg(u)du.

Fig. 4 shows the plots of the Lorenz and Bonferroni
curves of the APMW distribution for some parameter
values. It can be observed that the Lorenz curves of the
APMW distribution are of convex shapes.

3.5 Order Statistics

In many areas of statistical theory and practice, order
statistics are of significance. Given that X;,X>,...,X, are
random samples from the APMW distribution. Let X;., be
the ith order statistics from the sample. The PDF of the ith
order statistic is defined as

_onlgly) N (n—i
8in(x) = m Z ( p ) (=1)?

" p=0

x [G(x))P T (14)

From equation (1) and using generalized binomial
expansion, we have

' 1 pti—1 ben\ P
e ) N (R
1l—o
1 pHi—1 pri—1 .
_ <1 ) Z (71)k <P+]z ])
- =0
k
% <a1e”"{¢’f’”"> .

Substituting equations (2) and (15) into equation (14),
and after some algebraic manipulations, we obtain the PDF
of the ith order statistic as

s)

n—i p+i—1 o

gim(x) = Z Z ZV;klf**(x); (16)
p=0 k=0 =0
where
LAkt — o) P (loga)* ) (n—i\ (p+i—1
Vil = Blin—i+1) P k
_1\pHk+l
X 7( 1) (k—i—])l

I+1)

and f** (x) = a(l+ 1) (b+cx)x>~ ' e%e~ 1HD2¢ is the PDF
of the modified Weibull distribution with parameters a(/ +
1),b and ¢, and B(a, D) is the beta function.

The first and nth order statistics of the APMW
distribution are also obtained respectively as:

n—1 oo

g1a(x) =ng()[1 =G = ¥ Y (a—1)" Vi (),
k=01=0

and

n—1

gun@) = ng@ G = ¥ Y ol £ (),

k=01=0

N(1—a)” k
defined in equation (16).

where v = 2@y T DET (n—z) and f**(x) is as

3.6 Stochastic Ordering

In reliability theory and other fields, stochastic ordering is
used for the assessment of comparative behaviour. Given
the two random variables X; and X, with density
functions  gx,(x;a,b,04,c) and  gx,(x;a,b,00,c¢),
respectively. If the following conditions hold, the random
variable X, is stochastically greater than X; in the
following ordering:
gx, (%)

i. Likelihood ratio order (X; <) X): if ==L is an
8x, (x

Z

decreasing function of x.
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Fig. 4: Plot of Lorenz and Bonferroni curves of the APMW distribution

ii. Stochastic order: (X,
X.

iii. Hazard rate order (X; <p; X»): 1f
for all x.

iv. Mean residual life order (X,
] SE[XQ*[ |X2<t].

The stochastic orders above are related to each other
[23] as follows:

Sst Xz) if FXI (x) S FXZ (x) for all
x; (%)

) is decreasing

mr]XQ) le[Xl —1 |X1 <

(X1 < Xo) = (X1 < Xo) = (X1 S Xo) =
Given the ratio of the PDFs of X; and X, as
axbe”

sl (o) (e ()

the differential of the logarithm of the ratio is given as

(X1 <5t X2).

d.  gx() o1 er—ade (al)

—log 2L = q(b+cx)x” e og [ — |. (17

% e ) ( ) gl ) 47
x; (%)

()<0for

If o < o in equation (17), then log

all x. Thus, for a; < 0, X is greater than X1 m stochastic
order with respect to likelihood ratio order, (X; < X3).
By implication (X; <;,, X»), (X1 <, X2) and (X; <y X3).

4 Actuarial Measures

In actuarial practice, the assessment of risk exposures is
very critical to firms. Risk measures have been developed
for this purpose. Given a probability distribution, risk
measures are used to assess the degree of risk exposure to
a firm. In this section, various actuarial measures are
derived for the APMW distribution. These measures
include the value-at-risk (VaR), tail VaR, tail variance, tail
variance premium, limited expected value function and
mean excess function.

4.1 Value-at-risk

Value-at-risk (VaR), also known as quantile risk measure,
is a widely used risk measure. VaR is usually specified at
a given confidence level p. Thus, VaR,, represents the loss
that will not be exceeded with probability p. VaR is defined
as VaR, = inf{x e R: P(X <x) > p}. For a continuous
distribution, the definition of VaR simplifies to the quantile
of the distribution, that is VaR, = Q(p). Hence, the VaR
for APMW distribution is given as

1
b c 1 log(l-(1—a)p b
VaRp:ZWlE(—;log{l— el 10(ga ))})

where p € (0,1). For simplicity, let VaR, = Q,,.

)

4.2 Tail value-at-risk

Tail value-at-risk (TVaR), also known as conditional tail
expectation, defines the expected value of the worst case
of a loss. That is, the loss with 1 — p probability. Given a
loss random variable X and P(X < Qp) = p, then TVaR is
defined as E [X ]X > 0, ]. Thus, TVaR is given as

L
- /xg(x)dx. (18)

From the PDF of the APMW in equation (4), we have

TVaR,(x) =

o

/Xg(x)dx = Zvia(i+ 1) / (b+ cx)x b=1 jex —ali+1)xe™ g
0, i=0 o,
After some algebraic manipulations, we have

SE— ( +1,a(i+1 )QgeCQf’),
0 i=0j: 1 l+1))5 b
»

19)
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where I'(a,y) = fy‘x’xa’le’xdx is the upper incomplete
gamma function.

Substituting equation (19) into (18) gives the TVaR of
the APMW distribution as

I & & viej
TVaR,(x) = A

L=P 33 (a(i+1))b

x T <i Flali+ 1)Q§eCQp> .

4.3 Tail variance

The tail variance (TV) measure computes the variance
beyond VaR. The TV of a distribution is defined as

TVy(x) = E [X*|X > Q,] — (TVaR,).

Using the expansion of the PDF of the APMW
distribution given by equation (4) and after some
algebraic manipulations, we have
2 I v
EX*|X>Q,] =—

1 “PiZ0ji.p=1(a(i+1))

I (%2 +Lali+1)Qhe ).

viE j1, j2

)
b

where s, = ji + j» and Ej, j, = ej, - ej,. Substituting this
into the definition gives the TV of the APMW distribution
as
| =
TV,(x) = ——
l=p = e (a(i+1))

xT (%2 +La(i+ 1)Q’;eCQl’) — (TVaR,)>.

ViE j1, J2

2
b

4.4 Tail variance premium

Another widely used measure is the tail variance premium
(TVP). TVP of a distribution is defined as

6€(0,1).
For the APMW distribution, TVP is given as

e e
TVP,(x) = ,
PO T B )

TVP,(x) = TVaR, + 8TV,,

viej

«T (é +La(i+ 1)Q§;e"Qﬁ) +8TV,, S€(0,1).

4.5 Limited expected value function

Limited expected value function (LEVF) of a distribution
is defined as

0,

/xg(x)dx+ o (1 fF(Qp)) .
0

E[LAQp| =E [min(L,Qp)] =

Using the first incomplete moment of the APMW
distribution given in equation (13), we have the limited
expected value function of the APMW distribution given
as

=

R
E[LAQP]:Tpi;oj;m

xT (i +1a(i+ 1)Q§’,eCQP)

+ 2 <1 - ae“Q”beCQp> .

Vi€;j

o—1

4.6 Mean excess function

The mean excess function (MEF), also known as the
mean residual function or complete expectation of life, is
another useful measure. In an insurance context, the mean
excess function is the expected payment per claim on a
policy with a fixed amount deductible of ¢, with payments
less than ¢ not honoured. In a mortality context, it can be
defined as the remaining lifetime of a life, given that the
life reached age ¢. The mean excess function is defined as

oo

1 3
e(t) =E[X —t]X>1] = %./xg(x)dxft.
t
Using equations (3) and (19), with Q) = t, the mean
excess function of the APMW distribution is given as

CX 71 N N . .
o(r) = 21 (1 —ae ) Yy —<—

a =0 j=1 (a(i+1))%

xT <i+ La(i+ 1)t”e“’> —1.

4.7 Numerical simulations of some actuarial
measures

The numerical study of the actuarial measures defined are
studied in this subsection. The study is done for the
APMW, APEXE, APW and exponential distributions. The
study is carried as follows:

i. Generate a random sample of 150 from the

distributions using their quantile functions.

ii. The parameters of the sample is estimated using
maximum likelihood method.

iii. Steps i and ii are repeated for 1500 times and the VaR,
TVaR, TV and TVP computed.

iv.Steps 1 to iii are repeated for p =
(0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.975,0.999).
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Tables 2 and 3 show the simulation results for the
actuarial measures of the four distributions for different
sets of parameter values. It can be observed that the
APMW distribution has higher values of the actuarial
measures as compared to the other competing
distributions. Fig. 5 and Fig. 6 illustrate the actuarial
measures in Table 2. Also, Fig. 7 and Fig. 8 illustrate the
actuarial measures in Table 3. The results show that the
APMW distribution have higher values of VaR, TVaR and
TVP, and decreasing values of TV. This suggests that the
APMW distribution can be used as an alternative
distribution to model insurance loss data.

5 Parameter Estimation

Different parameter estimation methods are employed to
estimate the parameters of the APMW distribution. These
include the maximum likelihood estimation (MLE),
maximum product spacing (MPS), ordinary least squares
(OLS), Cramér-von Mises (CVM), Anderson-Darling
(AD) and percentile (PC) methods of estimation.

5.1 Maximum Likelihood Estimation Method

Suppose that xj,x7,...,x, are random samples from the
APMW distribution with density function given by
equation (2) and let ¥ = (a,b,o,c) be the set of
parameters of the distribution. Then the likelihood
function for the density is defined as

b—1) Zlog X; +c2x,

e ) log(0). (20)

¢ =nlog(a)+ Zlog (b+cx;)+

i=1
n

—al; (xf?ecx‘) Z (

The differential of equation (20) with respect to each
parameter gives the score functions as follows:

/2 b ex L ) n
Z 10g )Jiecx, ax; e Z)Jz?eLXi +=
i= i=1 a
(9K /! b b cx; /! b
= Zalog((x)xi log (x;) e e™" —q le» e“ilog (x;)
i=1

i=1

n n
+ + ) log(xi),
lzibﬂz ;g(z)

0 1wt
da X o
al

n n
o b+l e b ex; 1 en:
30 = z{alog((x)xi i ie faz{){? e
= i=

n

n
Z{ b+cx, ZX,‘

i=1

The parameter estimates = (4,b, &,¢)’ are obtained by
equating the score function to zero and solving for the

parameters. The solution to the equations will not yield
closed-forms for the estimates as the score functions are
non-linear. Thus, numerical methods are employed in this
study to solve the non-linear equations.

5.2 Maximum Product Spacing

An alternative method to maximum likelihood method is
the maximum product spacing method (MPS). Given the
uniform spacing

Si=Glxg |y) -G
where G(x(g) | ¥) =0, G(x(y41) | W) = L and Y140 Si(y) =

1. The MPS parameter estimates of the distribution can be
obtained by maximizing the following function

(X(H) ly),

n+1

Z logSi(y

with respect to y = (a,b, &, c).

5.3 Ordinary Least Squares Estimation Method

Let x(1),X(2) - .-, X() be ordered samples from a random
sample from the APMW distribution. Then the following
function is minimized to obtain the OLS estimates of the
parameters of the APMW distributions:

n i
7,':21 G(X(i>|w)*n+1

5.4 Cramér-von Mises Minimum Distance
Estimation Method

The CVM estimation method obtains the parameter
estimates by minimizing the difference between the
empirical and cumulative distribution functions. That is,
the estimators are obtained by minimizing the function

C2i-1 2

n
12n+lzl 2n

5.5 Anderson-Darling Estimation Method

The Anderson-Darling (AD) is a minimum distance
estimator. The AD parameter estimates of the APMW
distribution are obtained by minimizing the function

n

Aly)=—n— % Y [logG(x
i=1

o | w)+log(1=Glxi | w))],

with respect to ¥ = (a,b, o, ¢).
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Table 2: Numerical Estimates of Actuarial Measures
Distribution = Parameters p VaR TvaR TV (6=0.2) TVP
0.600  5.0792 6.9940 2.1597 7.4259
0.650  5.4393 7.2420 1.9746 7.6369
a=0.08 0.700  5.8188 7.5111 1.7946 7.8701
APMW b=1.30 0.750  6.2275 7.8093 1.6173 8.1328
o =1.80 0.800  6.6805 8.1493 1.4395 8.4372
c=0.10 0.850  7.2047 8.5540 1.2565 8.8053
0.900  7.8570 9.0729 1.0593 9.2848
0975 9.6102  10.5361 0.6656 10.6693
0.999  12.3269 12.9421 0.3267 13.0074
0.600  1.8255 3.1634 1.6668 3.4967
0.650  2.0165 3.3411 1.6518 3.6715
0.700  2.2322 3.5443 1.6375 3.8718
a=0.80 0.750  2.4820 3.7824 1.6237 4.1072
APEXE a=1.20 0.800  2.7820 4.0713 1.6105 4.3934
c=1.80 0.850  3.1618 4.4406 1.5979 4.7602
0.900  3.6882 4.9569 1.5857 5.2740
0975  5.4490 6.7036 1.5681 7.0172
0999 94813  10.7315 1.5627 11.0440
0.600  0.9645 2.0171 1.1080 2.2388
0.650  1.1051 2.1577 1.1080 2.3793
0.700  1.2673 2.3200 1.1080 2.5416
0.750  1.4593 2.5119 1.1080 2.7335
Ex a=0.95 0.800  1.6941 2.7468 1.1080 2.9684
0.850  1.9970 3.0496 1.1080 3.2712
0.900  2.4238 3.4764 1.1080 3.6980
0975  3.8830 4.9357 1.1080 5.1573
0999 7.2713 8.3240 1.1080 8.5456
0.600  2.0433 3.4508 1.6439 3.7796
0.650  2.2589 3.6368 1.6016 3.9571
0.700  2.4984 3.8468 1.5588 4.1586
o =230 0.750 27711 4.0899 1.5148 4.3929
APW B =120 0.800  3.0923 4.3807 1.4686 4.6744
A =0.50 0.850  3.4904 4.7466 1.4183 5.0303
0.900  4.0282 5.2483 1.3602 5.5204
0975 5.7386 6.8791 1.2248 7.1240
0.999  9.3337  10.3788 1.0534 10.5895
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Fig. 5: Plot of VaR and TVaR using parameter values in Table 2
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Fig. 6: Plot of TV and TVP using parameter values in Table 2
Table 3: Numerical Estimates of Actuarial Measures
Distribution Parameters p VaR TvaR TV (6 =0.6) TVP
0.600  2.8409 5.6169 6.7338 9.6572
0.650  3.2318 5.9862 6.6032 9.9481
a=0.20 0.700  3.6805 6.4088 6.4509 10.2793
APMW b=1.10 0.750  4.2076 6.9032 6.2695 10.6649
a=0.40 0.800  4.8467 7.5001 6.0472 11.1284
c=0.02 0.850  5.6594 8.2552 5.7639 11.7135
0.900  6.7797 9.2906 5.3778 12.5173
0.975 10.3453  12.5694 4.2483 15.1184
0.999 17.1378 18.8712 2.6686 20.4723
0.600  0.5307 1.1042 0.3187 1.2954
0.650  0.6094 1.1806 0.3174 1.3711
0.700  0.6995 1.2685 0.3162 1.4582
a=1.80 0.750  0.8052 1.3720 0.3149 1.5610
APEXE a=2.00 0.800  0.9337 1.4982 0.3136 1.6864
c=0.80 0.850  1.0980 1.6603 0.3124 1.8477
0.900 1.3278 1.8878 0.3111 2.0745
0.975  2.1046 2.6613 0.3093 2.8469
0.999  3.8950 4.4506 0.3087 4.6358
0.600  0.6109 1.2775 0.4444 1.5442
0.650  0.6999 1.3665 0.4444 1.6332
0.700  0.8026 1.4693 0.4444 1.7360
0.750  0.9242 1.5909 0.4444 1.8575
Ex a=1.50 0.800  1.0730 1.7396 0.4444 2.0063
0.850 1.2647 1.9314 0.4444 2.1981
0.900  1.5351 2.2017 0.4444 2.4684
0.975 2.4593 3.1259 0.4444 3.3926
0.999  4.6052 5.2718 0.4444 5.5385
0.600  0.9473 2.2077 1.8214 3.3005
0.650 1.1035 2.3769 1.8523 3.4883
0.700  1.2864 2.5743 1.8877 3.7070
a=2.10 0.750  1.5060 2.8107 1.9293 3.9683
APW B =0.80 0.800 1.7793 3.1040 1.9797 4.2919
A =120 0.850  2.1389 3.4888 2.0440 47152
0.900  2.6590 4.0431 2.1330 5.3229
0.975  4.5469 6.0377 2.4222 7.4910
0.999  9.4813 11.1665 3.0038 12.9687
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Fig. 7: Plot of VaR and TVaR using parameter values in Table 3
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Fig. 8: Plot of TV and TVP using parameter values in Table 3

5.6 Percentile Method

The percentile (PC) method can be used to estimate the
parameters of a distribution. Given that ¢; = .47 is an
unbiased estimator of G(x(;) | ¥), then the PC estimates of
the parameters of APMW can be obtained by minimizing

Py) =Y [x) — 0],

i=1

with respect to y = (a,b, @, c), where Q(g;) is the quantile
function of the APMW distribution given by equation (5).

6 Simulation Study

In this section, Monte Carlo simulation study is carried
out to assess the performance of the MLE, MPS, OLS,
CVM, AD and PC estimators of the parameters of the
APMW distribution. In comparing the various estimation

methods, the average estimate (AE), average bias (AB)
and root mean square errors (RMSE) of the estimators are
computed and then examined. The simulation study was
carried out wusing the following parameter sets:
I: (a,b,a,c) (0.9,0.6,2.5,0.8) and
II: (a,b,0,c) = (0.3,3.2,0.5,6.8). The study was carried
out using the following process:

i. Generate random observations of size
n = 30,80,150,250 and 500 using the given
parameter values and quantile function of the APMW
distribution defined by equation (5).

ii. Compute the estimates of the parameters using the

MLE, MPS, OLS, CVM, AD and PC estimators.

Repeat steps 1 and ii for N = 1,500 times.

Compute the average estimate (AE), average bias

(AB) and root mean square errors (RMSE) of the

estimators of the parameters. The AE, AB and RMSE

are computed using the following

iii.
iv.
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1 1
AE=—Y i, AB=—Y (i —
N;w, N;(w ¥)
and
RMSE = lN(A» )
- N l llll ‘V Y

=
where ¥ = (a,b,a,c).

The simulation results consisting of the AE, AB and
RMSE of the estimators for parameter sets I and II are
presented in Tables 4 and 5 respectively. It can be
observed from the results that as the sample size
increases, AE, AB and RMSE of all the estimators
decrease. This implies that all the estimators are
consistent as the sample size increases. However, the
results reveal that the MLE estimators generally have
least values of AE, AB and RMSE than the other
estimators.

7 Applications

In this section, the APMW distribution is applied to two
real data sets to ascertain its usefulness and flexibility.
The performance of the APMW distribution is compared
to several competing distributions including KW
distribution, ExXPGW distribution, APEXW distribution,
APW distribution, alpha power exponentiated exponential
(APEXE) distribution [24], Weibull Burr XII (WBXII)
distribution [25], ExPW distribution and Weibull
distribution [7]. The CDF of the distributions are given as
follows:

o KW:

Flx)=1- {1 - (1 —e*W)‘)“r, a,b,a,c>0

e ExXPGW:
Fl)=[1=e! =7 b ae>0
o APEXW:
F(x) = T [1 —a(lfﬂ ) } , a,b,o,c>0
e APW:
lfe"“‘b
F(x):1—|:]—(x :|, a,b,(x>0
o APEXE:
1 1— 7ax)b
F(x):m{l—a( ¢ :|, a,b,(x>0
e WBXII:
F(-x) =1 _eia[(H»Xb)Cil]a; a7b7aac >0

o W:
x\b
Fx)=1-¢ @), ap>0

The performance of the distributions are compared
using the following goodness-of-fit measures: Akaike
information criterion (AIC), Bayesian information
criterion  (BIC),  Anderson-Darling (AD) and
Kolmogrove-Smirnov (KS). The distribution with the
largest value of the measures, but with highest KS
measure p-value is the best distribution which describes
the data sets.

The shapes of the hazard rate functions of the data sets
are obtained by using a graphical method based on the total
time on test (TTT) transformation [26]. Given the order
statistics of a sample x;., (i = 1,...,n), the TTT plot is
obtained by plotting the scaled empirical TTT given by

Z?:[ Xin ’

6(5) =
n

where t = 1,...,n, against L. The corresponding
hazard rate function is decreasing if the TTT transform is
convex below the 45 line and it is increasing if the TTT
is concave above the 45° line. Also, the hazard rate
function is bathtub if it is convex below and then concave
above the 45 line. Finally, it is unimodal or upside down
bathtub if it is concave above and then convex below the
45 line [26,27].

Yo Xin+ (n—1)xen

7.1 Data Set 1: Turbochargers Failure Data

The first data set considered is the time-to-failure (103h)
rate of turbocharger of a type of engine. The data set
consists of 40 observations and can be found in Xu et al.
[28]. The data is given as follows: 1.6, 2.0, 2.6, 3.0, 3.5,
3.9,45,4.6,4.8,5.0,5.1,53,54,5.6,5.8, 6.0, 6.0, 6.1,
6.3,6.5,6.5,6.7,7.0,7.1,7.3,7.3,7.3,7.7,7.7,7.8,7.9,
8.0,8.1,8.3,84,84,8.5,8.7,8.8,9.0.

The characteristics of the first data set is ascertained
by obtaining the shape of the failure data set and the shape
of the hazard rate function of the data set. A histogram
and TTT plot of the data are obtained for this purpose and
shown in Fig. 9. Fig. 9 (a) shows the histogram of the data.
It can be observed that the data is negatively skewed. Also,
Fig. 9 (b) shows the TTT plot of the data set. The failure
rate is an increasing function as it can be observed that
the TTT plot is concave in shape. Hence, the shapes of the
histogram and TTT plot of the data set indicates that the
APMW distribution is a suitable candidate for modeling
1t.

Table 6 shows the parameter estimates of all the
distributions with their corresponding standard errors in
parenthesis.
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Table 4: Simulation Results for parameter values set I

n Estimate  Parameter =~ MLE MPS OLS CVM AD PC

0.8715 0.7846 0.9775 0.9377 1.0018  0.9408
0.6232  0.7051 0.5312 0.5615 0.5718 0.4978
2.6120 2.0432 3.4886 3.1835 3.4723 3.5045
0.9461 1.0621 0.8901 0.953 0.8591 0.9129
0.3525 0.3346 0428 0.4107 0.3972 0.4286
0.1696  0.1899 0.2276  0.2110 0.1807  0.238
1.4523  1.2573 1.7446 1.6134 1.7791 1.8004
0.3383 0.3850 0.4168 0.4152 0.3457  0.402
0.2122  0.1790 0.3338 0.3038 0.2977 0.2792
0.0498  0.0691 0.0763 0.0697 0.0517 0.0818
25932 1.8715 3.7197 3.2507 3.7941 3.8734
0.1880 0.2445 0.2763 0.2874 0.1908 0.2444
0.9307 0.8219 0.9582 0.9461 0.9823 1.1052
0.6144  0.6521 0.5633 0.5852 0.5940 0.5920
29679 2.1970 3.3801 3.1640 3.3615 3.9346
0.8323  0.9206 0.8295 0.8444 0.7981 0.7353
0.2651 0.2428 0.3024 0.3026  0.2840 0.3979
0.1111  0.1177 0.1396  0.1381  0.1207  0.1665
1.5570  1.2859 1.7319 1.6420 1.7303  1.9922
0.2103  0.2263  0.2627 0.2631 0.2175  0.2983
0.1129  0.0913 0.1591 0.1645 0.1380 0.2521
0.0207  0.0256  0.0299 0.0299 0.0229  0.0425
3.0090 2.0059 3.6309 3.3175 3.6139 4.5162
0.0701  0.0814 0.1091 0.1101 0.0750  0.0765
0.9210 0.8290 0.9424 0.9331 0.9607 1.0521
0.6034 0.6299 0.5763 0.5866 0.5888  0.5822
3.0112 23319 32785 3.1762 3.2957 3.8570
0.8194 0.8865 0.8146 0.8316 0.7968 0.7512
02122 0.2080 0.2503  0.2565 0.2294 0.3151
0.0825 0.0849 0.1026  0.1030 0.0881 0.1268
1.5403 1.3216 1.6979 1.6488 1.6685 1.9379
0.1587 0.1703 0.2024 0.2100 0.1700 0.2241
0.0681 0.0628 0.1012 0.1063  0.0838  0.1598
0.0112 0.0121 0.0159 0.0167 0.0121  0.0249
29600 2.1398 3.5166 3.3354 3.4149 4.3328
0.0402  0.0458 0.0646 0.0684 0.0460 0.0765
0.9350 0.8493 0.9456 09129 0.9346 1.0273
0.5992  0.6235 0.5798 0.5914 0.5886 0.5826
31111 24106 3.3212 3.0184 3.1868 3.8389
0.8028 0.8579 0.8079 0.8226 0.8034 0.7563
0.1923  0.1892 0.2315 0.2184 0.2060 0.2597
0.0663  0.0711 0.0796 0.0802 0.0695 0.0957
1.5438 1.2770 1.7052 1.5707 1.6064 1.8887
0.1299  0.1440 0.1672 0.1665 0.1410 0.1763
0.0529 0.0498 0.0798 0.0723 0.0431 0.1024
0.0071  0.0086 0.0098 0.0100 0.0044 0.0145
3.0038 2.0690 3.5304 3.0613 3.2072 4.1991
0.0260 0.0324 0.0437 0.0436  0.0310 0.0471
09158 0.8564 0.9334 09193 0.9238 0.9968
0.5962 0.6120 0.5849 0.5892 0.5910 0.5833
29696 25179 3.1792 3.0764 3.1111 3.6484
0.8068 0.8424 0.8020 0.8119 0.8045 0.7654
0.1666  0.1692 0.2007 0.199  0.1771  0.2105
0.0501  0.0509 0.0607 0.0605 0.0529 0.0691
1.3842  1.2577 1.5970 1.5465 1.5043 1.7310
0.1023  0.1097 0.1299 0.1334 0.1108 0.1301
0.0385 0.0379 0.0562 0.0547 0.0431 0.0636
0.0039  0.0042 0.0056 0.0057 0.0044 0.0074
25432 2.0646 3.1722 3.0238 1.5043 3.7246

00164 00183 00258 00272 00185  0.0260
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Table 5: Simulation Results for parameter values set 11
n Estimate  Parameter MLE MPS OLS CVM AD PC
a 0.4607 0.5251  0.6107 0.6491 0.5065 0.5706
AE b 3.0448 3.4419 34086 3.7558 3.0790  3.4835
o 0.4435 0.4916  0.2966 0.2879 0.3683  0.3078
c 8.2470 82361 63840 6.4262 7.2910 6.2508
a 0.3800 0.4005  0.4311 0.4387 0.3934 0.4045
30 AB b 1.4483 14632 14207 1.4236 1.5305 1.1909
o 0.2968 0.2642  0.3678 0.3524 0.3421 0.3564
c 2.5818 22297 2.1643 1.7766 23816 1.8172
a 0.1635 0.1785  0.2004 0.2073 0.1735 0.1836
MSE b 3.0491 29853 3.0986 3.0267 3.4313 2.0336
o 0.1021 0.0825  0.1487 0.1404 0.1324  0.1435
c 13.6139  11.7628 69114 5.2455 9.6950 4.6029
a 0.4051 0.5019  0.6116 0.6473  0.5257 0.4668
AE b 2.8783 3.3474 34920 3.7082 32706 3.1157
o 0.4479 0.4812  0.3359 0.3215 0.3999 0.3998
c 8.0804 7.4663  6.0312 59772 6.7797 6.8915
a 0.3498 0.3738  0.4072 0.4182 0.3814 0.3576
30 AB b 1.1853 1.0253  0.9881 0.9861 1.0925 1.0545
o 0.2753 02535 0.3259 0.3249 0.3060 0.3148
c 2.3639 1.7242  1.6447 1.4698 1.7694 1.7961
a 0.1430 0.1620  0.1883 0.1966 0.1678 0.1514
MSE b 2.0914 1.5003  1.5256 1.4364 1.8503 1.6782
o 0.0913 0.0785  0.1234  0.1228 0.1100 0.1156
c 13.6139 59712 3.8560 3.2162 5.1087 4.8328
a 0.3823 0.4872  0.6112 0.6142 0.5109 0.4374
AE b 2.8455 32291 35903 3.5910 3.2616 3.0132
o 0.4528 0.5100  0.3719 0.3783 0.4381 0.4351
c 7.9573 7.3319  6.0081 6.0403 6.6925 7.1484
a 0.3320 0.3607  0.3940 0.3954 0.3612 0.3488
150 AB b 1.0212 0.8870  0.8331 0.8194 0.8818 0.9493
o 0.2655 0.2343  0.3007 0.2964 0.2831 0.2864
c 2.1559 1.6339  1.3528 1.3265 1.5276 1.8169
a 0.1321 0.1541  0.1813 0.1826 0.1561  0.1445
MSE b 1.5908 1.1524  1.0041 09746 1.2114 1.4087
o 0.0857 0.0674  0.1082  0.1042  0.0963  0.0987
c 8.3814 5.0869 23544 23343 3.5647 5.0249
a 0.3688 0.4650  0.6069 0.5994 0.5019 0.4073
AE b 2.8847 3.1943 35429 3.5607 3.2764 3.0382
o 0.4440 0.4970 04163 0.4182 0.4624 0.4327
c 7.7989 7.1965  6.0057 6.0764 6.6651 7.1874
a 0.3160 0.3377  0.3856 0.3807 0.3497 0.3227
250 AB b 0.8774 0.7491  0.7053 0.7370  0.7594  0.8230
o 0.2573 0.2214  0.2683  0.2785 0.2590 0.2745
c 1.9875 1.5262  1.2748 1.2361 1.3695 1.6012
a 0.1230 0.1409  0.1761 0.1826  0.1493  0.1287
MSE b 1.1825 0.8215  0.6872 0.7464 0.8490  1.0453
o 0.0823 0.0623  0.0894 0.0936  0.0820 0.0913
c 6.7715 39973 19075 1.8415 2.6011 3.9121
a 0.3656 0.4470  0.5856 0.5737 0.4803 0.3974
AE b 2.9018 3.1554  3.4539 3.4354 32335 3.0395
o 0.4505 0.4915  0.4734 05000 0.5178 0.4581
c 7.7085 7.1876  6.1380 6.1943  6.6642 7.2074
a 0.3059 0.3233  0.3673 0.3552  0.3186  0.3095
500 AB b 0.7555 0.6522  0.6125 0.6093 0.5964 0.6598
o 0.2333 0.2068  0.2355 0.2367 0.2260  0.2352
c 1.8411 14714  1.1646 1.1125 1.1895 1.4926
a 0.1171 0.1321  0.1652 0.1589 0.1317  0.1207
MSE b 0.8806 0.6275 0.5134 0.5116 0.5363  0.644
o 0.0691 0.0554  0.0698 0.0699 0.0636 0.0707
e 57051 3657616177 15060 1916 32514
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Fig. 9: (a) Histogram and (b) TTT plot for first data set

Table 6: Parameter Estimates of Distributions for First Data Set

Distribution a b o c
0.8907 38.7527 43115 0.0558
APMW (0.0727)  (0.0000)  (0.0680)  (0.0000)
KW 0.8901 38.7527 0.0558 43115
(0.4963)  (0.0249) (0.0069) (2.3621)
0.0048 1.6922 3.7637 2.0854
ExPGW (0.0102) (1.0860) (2.5158) (0.9262)
0.0039 3.0603 3.9313 1.0497
APExW (0.0185) (2.0472) (1.1832) (1.2671)
0.0078 2.7960 11.4946
APW (0.0073)  (0.4566) (0.0197)
0.5795 7.2001 34.1927
APExE (0.0712)  (3.6640) (1.4477)
0.0031 3.0248 1.6987 0.5929
WBXII (0.0051) (1.1277) (0.6237) (0.2312)
0.0024 4.2626 3.5438
ExPW (0.0028)  (0.5949) (0.0035)
W 6.9202 3.8728
(0.2947)  (0.5176)

Table 7 shows the goodness-of-fit measures for the
distributions. Table 7 also shows the p-values of the AD
and KS test statistics. The results from the Table 7 show
that the APMW distribution has the least of all the
goodness-of-fit measures, except the Weibull distribution
in terms of the BIC measure, and the highest of the AD
and KS p-values. Hence, the results indicate that the
APMW distribution best describes the data set.

The histogram of the data set with the estimated
densities of the distributions are shown in Fig. 10. It can
be observed that the APMW distribution best estimates
the data set.

Density

0.10
Il

0.05
¥

0.00
L
A

Fig. 10: Plots of empirical and fitted densities for first data set

Fig. 11 shows the Probability-Probability (P-P) plots
of the distributions. Fig. 10 and Fig. 11 show that the
APMW distribution best describes the data as the
expected and observed probabilities cluster more along
the diagonal.

Fig. 12 shows the profile log-likelihood plots of the
estimated parameters of the APMW distribution. The
intersection of the vertical and horizontal lines indicate
the parameter estimates on Fig. 12. It can be observed that
the estimated parameters are the maxima for the first data
set.

7.2 Data Set 2: Remission Times of Bladder
Cancer Patients

The second data set consist of remission times (in
months) of a random sample of 128 bladder cancer
patients reported [29]. The data is given as follows: 0.08,
2.09, 3.48, 4.87,6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52,
4.98, 6.97,9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22,
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Table 7: Goodness-of-fit Measures for first data

PN AD KS
Distribution AIC BIC Statistic  p-value  Statistic  p-value
APMW 168.2466  175.0021 0.2780 0.9535 0.0881 0.9155
Kw 172.8478  179.6033 0.6768 0.5775 0.1110 0.7083
ExPGW 172.2541  179.0096 0.6562 0.5955 0.1113 0.7051
APExW 172.2289  178.9844 0.5330 0.7124 0.1017 0.8020
APW 170.3263  175.3930 0.5194 0.7260 0.0989 0.8288
APEXE 179.9017  184.9683 1.0723 0.3210 0.1308 0.5003
WBXII 175.5777  182.3332 1.0752 0.3197 0.1220 0.5914
ExPW 184.0918  189.1585 1.2824 0.2380 0.1665 0.2172
w 168.9510  172.3288 0.6583 0.5937 0.1077 0.7426

APMW Distribution KW Distribution ExPGW Distribution
3 2 i i
32 g2 g2
u o u o w o
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
Observed probability Observed probability Observed probability
APEXxW Distribution APW Distribution APEXE Distribution
32 32 g2
g 3 & 3 & 2
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
Observed probability Observed probability Observed probability
WBXII Distribution ExPW Distribution W Distribution
g & &

0.0 0.4 0.8

Observed probability

0.0

Observed probability

0.0 0.4

Observed probability

Fig. 11: P-P plots of fitted distributions for first data set

13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31,
0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64,
3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18,
5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,
17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14,
79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02,
4.34, 5.71, 7.93, 1.46, 18.10, 11.79, 4.40, 5.85, 8.26,
11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02,

13.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 12.07,
6.76,21.73,2.07, 3.36,6.93, 8.65, 12.63, 22.69.

The histogram and the TTT plot of the second data set
are shown in Fig. 13. The shape of the histogram, shown
in Fig. 13 (a), indicates that the data set is positively
skewed. The TTT plot in Fig. 13 (b) shows that its shape
is concave and then convex, which indicates that the
shape of the failure rate of the data set is upside down
bathtub. Again, these characteristics show that the

APMW distribution is suitable for modelling the data.
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Fig. 12: Profile log-likelihood plots for APMW estimated parameters for first data set
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Fig. 13: (a) Histogram and (b) TTT plot for second data set

Table 8 gives the parameter estimates of all the
distributions with their corresponding standard errors in
parenthesis.

Table 9 presents the goodness-of-fit measures for the
APMW and the competing distributions. Table 9 shows
that, APMW distribution has the least in terms of AD and

KS measures and the highest of their p-values. However,
the APW distribution has the least statistic in terms of the
AIC and BIC measures. The results show that the APMW
distribution competitively describes the data set.

Fig. 14 shows the histogram and estimated densities
of the estimated distributions. It can be observed that the

@© 2022 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett. 11, No. 1, 13-34 (2022) / www.naturalspublishing.com/Journals.asp

Table 8: Parameter Estimates of Distributions for Second Data
Set

Distribution a b a c
0.0178 1.3623 0.0329 0.0069
APMW (0.0126)  (0.1452)  (0.0893)  (0.0088)
KW 3.5790 2.4525 0.1973 0.5077
(3.9282) (5.6202) (0.2138)  (0.4428)
0.0799 6.8417 9.5559 0.2806
ExPGW (0.0211)  (3.1827) (0.2808)  (0.0588)
0.0632 0.9532 0.0195 1.5088
APExW (0.0861) (0.3283) (0.0496) (0.7355)
0.0167 1.2726 0.0176
APW (0.0086)  (0.0864) (0.0343)
0.0534 1.4154 0.0210
APEXE (0.0298) (0.1624) (0.0482)
1.7374 0.8455 2.1844 0.2869
WBXII (3.2358) (0.3128) (0.6472) (0.1493)
0.0297 1.6988 0.4011
ExPW (0.0082)  (0.1267) (0.0007)
W 9.6582 1.0528
(0.8574)  (0.0680)

APMW distribution competes favourably with the other
distributions.

0.10
]

0.08
1

0.06
1

Density

0.04
1

0.02
1

0.00
L

Fig. 14: Plots of empirical and fitted densities for second data set

Fig. 15 shows the P-P plots for the second data set for
all the fitted distributions. The plots confirm that all the
distributions best describe the data set.

Fig. 16 shows the profile log-likelihood plots of the
estimated parameters of the APMW distribution for the
second data set. The intersection of the vertical and
horizontal lines on Fig. 16 indicate the parameter
estimates. Again, tt can be observed that the estimated
parameters are the maxima for the second data set.

8 Bivariate Extension

In this section, a bivariate extension of the APMW
distribution is presented. Let Gy, (x;) and Gx,(x2) be
marginal distribution functions of X; and X, respectively.
Let (X;,X;) be a pair of random variables, a joint
distribution function can be defined using a copula
associated with the pair. If K is a copula associated with
the pair (X;,X>), the joint distribution function is given by

Gx, x,(x1,%2) = K(Gx, (x1), Gx, (x2)).

In this article, we use Clayton copula [30] which is
defined as

_1
2]

K(m,n) = [mfe—i—nfe—l} , 6 >0.
Thus, the joint distribution of the random pair (X;,X>)
is given as

G, 1,3 = [ (G, (1)) 0+ (G, ()0 1] ¥ 020

This gives the joint bivariate distribution as

1

2 i\ "8 0
1 1—e i

() )

GXI,XZ(thZ): (X[>O,(X[75071:172 7

{ z a xb"e"'” -0 g
):(lfe’it “) 71} )
i=1

a=1i=12

21

where a; > 0,b; > 0,¢; > 0,i = 1,2 are marginal
parameters. Also, the joint density function is given by

. o
g [ citbrremin ogas o 1gee
b ooy i
i=1 (Ot,'fl)eaixilgclxlfcixi

gx,.x, (X1,%2) =
o>0,a#1,
o b

(ai(biJrciXi)x?' L pcixi—aix;"efi ’)

Il
-

1
-1

a=1.
(22)
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Table 9: Goodness-of-fit Measures for Second Data Set
s e AD KS
Distribution AIC BIC Statistic  p-value  Statistic  p-value
APMW 828.0655 839.0736 0.1182 0.9998 0.0329 0.9991
KwW 831.6745 843.0826  0.2364 0.9771 0.0424 0.9757
ExPGW 832.2547  843.6628 0.2801 0.9522 0.0440 0.9651
APExW 830.0074  841.4155 0.1253 0.9997 0.0353 0.9972
APW 828.7486  837.3047  0.2102 0.9874 0.0435 0.9690
APEXE 828.2043  836.5804 0.1289 0.9996 0.0356 0.9969
WBXII 832.5345 843.9426  0.3127 0.9282 0.0472 0.9381
ExPW 831.9942  840.5503 0.2795 0.9526 0.0417 0.9791
w 834.1968  839.9009  0.8743 0.4302 0.0663 0.6272
APMW Distribution KW Distribution ExPGW Distribution
“ g a T T T T T T “ g T T T T T - g T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Observed probability Observed probability Observed probability
APEXxW Distribution APW Distribution APEXE Distribution
“ g T T T T T “ g a T T T T T T -
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Observed probability Observed probability Observed probability
WBKXII Distribution ExPW Distribution W Distribution
“ g T T T T T “ g - g a T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Observed probability Observed probability Observed probability

Fig. 15: P-P plots of fitted distributions for second data set

The conditional density functions can be obtained as

8X1,X, (X1,X2
gx, % (X1 | Xo =x2) = M

The main focus of this article was on the univariate
case of APMW distribution. Hence, we did not treat into
details the bivariate case. However, the bivariate case will

2x, (x2) be explored in a future article.
and
gx, % (X2 | X1 =x1) = Bax ) ,0) 9 Conclusion
' 8X (xl)
In this paper, alpha power modified Weibull distribution is
proposed and studied. The new distribution generalizes
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Fig. 16:

several well known distributions. From the shapes of the
hazard rate function, the new distribution can model data
sets with decreasing, increasing, bathtub, modified
bathtub shapes. Several properties of the distribution are
studied and various estimation methods used to estimate
the parameters of the distribution. It was shown that the
estimators are consistent via a simulation study. Also,
some actuarial measures were derived and a simulation
study conducted on them. A bivariate extension of the
distribution is also derived in the study. The usefulness of
the distribution is ascertained by using it to model two
real lifetime data sets. The results show that the new
distribution can serve as an alternative to modeling
lifetime data.

10 Future Work

The article extensively considered the univariate case of
the APMW distribution with applications to complete
data sets. Future work would consider the application of
the distribution to censored data. It would also consider
the development of cure rate models using APMW
distribution to describe the susceptible group of a
population.

Profile Loglikelihood

Profile Loglikelihood

-1000 -500

-2000

-411.5

-412.5

0.000 0.004 0.008

c

Profile log-likelihood plots for APMW estimated parameters for second data set

Again, a bivariate extension of the APMW is
introduced in the current study. In future work, a general
multivariate extension would be considered. The
properties of the distribution would be studied and
applications to real multivariate data sets considered.
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