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Abstract: In this paper a study on the buffer overflow period in a finitéfér queue is presented. A special attention is paid to the
autocorrelation and batch arrivals, which are supposedinaiavihe properties of real arrival processes. Using thetbMarkovian
arrival process, formulas for the duration of the first, ggent and stationary overflow periods, as well as formalaghe distribution
of the number of consecutive losses during the overflow gegie@ shown. Moreover, analytical results are illustratedmnamerical
examples. In particular, the influence of the autocorrefeséind batch arrivals on the duration of the overflow periatkimonstrated.
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1 Introduction the distribution of the number of jobs lost in the overflow
period. In contrast to the previous papers on this subject,

The performance of a finite-buffer queueing system!WO important assumptions on the arrival process are
depends on losses, i.e. jobs that were rejected the servidgPosed herein:

due to the buffer overflow. The most important (a)the interarrival times are correlated,

characteristics of the loss process include the stationary(b)the arrivals can occur in groups (batches).

loss ratio (i.e. the long-run fraction of lost jobs), the
number of losses in a finite time interval and the duration
of the buffer overflow period.

To the best of the author's knowledge, there are no
published studies on the buffer overflow period in
gueueing systems that meet requirements (a) and (b).

arri\T:Ieokf)L;ﬁ?c:t?\ﬁr:{i:%wo?/eerrlﬁgv:/sst?heetlB:J?‘fg]rtirr:/fitll IL(Zamfitrrs]te Several papers devoted to the buffer overflow period in
J the single-arrival queues can be found]-[7], but the

dep_a_rtur_e of a job from t_he system (making _a\_/anable .Onesystems studied there do not meet (b). There is also a
position in the buffer). It is equal to the remaining service

: : . . . .~ paper on the buffer overflow period in batch arrival
g?eerf?;vtgetr]]‘;bbﬁiflenrg served upon arrival of the job which queues, §], but with uncorrelated arrival process. Taking

X . . into account both of the aforementioned requirements is
The importance of the buffer overflow period is q

connected with the fact that during this period all arriving crucial in the performance evaluation of queues of
. o 9 packets appearing in the packet networking. In particular,
jobs are lost, one after another. Therefore, the distidiputi b bp J b g-np

; it is well-known that the streams of packets are usually
of the number of consecutive losses depends on th

o . - %trongly autocorrelated, so the Poisson processes (ar othe
distribution of the duration of the overflow period. On the .., o, processes) do not reflect properly their

other hand, in many queueing applications,.es_pec.ially incharacteristics, 9,10]. This explains the need for an
packet networking (e.g._ the Internet), the Q|str|but|on of autocorrelated arrival process model. The need for the
':Qe mrj]rlnber of I((:_onse%utlveklosses dp;fays an mp;\or&z\ant rt(;:ebatch structure of arrivals is caused by the popularity of
oughly speaking, 1t makes a difierence whether ey 1B protocol, which is responsible for the major part
packets are being lost in long series or in short series W'ﬂbf the Internet traffic. In TCP, the packets are sent to the

accepted packets between them. network in groups, according to a variable calgitido
Therefore, the goal of this paper is finding the groups, g W

distribution of the length of the buffer overflow as well as 1 Transmission Control Protocol
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which denotes the number of packets that can be injected Let 1 denote the column vector of 1@denote the
into the network without confirmation. (The reader square matrix of zeroes and denotes the stationary
further interested in modeling the TCP behaviour usingvector forD, i.e.:
batch arrivals is referred td 1).

As will be demonstrated in Section 6, the batch m=0, nl=1
structure of arrivals has a deep impact on the buffer

overflow period. Namely, the dependence of the overflow Using 1T we can compute the total arrival rate of the

period on the buffer size may have a very irregular form — MAP: w
changing the buffer size only by 1 position may resultin a N = nz kD1, (1)
significant change in the overflow period. This effect does K=1
not appear in the single-arrival systems studied]q f]. and the rate of arrivals of batches:
As for the arrival process, the batch Markovian arrival
process (BMAP, 12,13)) is the most suitable for our Ng = 1(—Dp)1. 2)

needs. It meets requirements (a), (b), and can be quite

easily parameterized to reflect the parameters of real The BMAP can be also defined using a constructive

arrival processes (packet streams and others). definition, which can be easily translated into any
The remaining part of the paper is organized asprogramming language and used for simulation purposes.

follows. In Section 2, all details of the queueing model Namely, we initialize the modulating processt), using

are given. In Section 3, the first buffer overflow period is some state, say(i.e. J(0) = i). The sojourn time in that

studied. In particular, Theorefhof this section presents state is exponentially distributed with parametgrwhere

the distribution of the length of the first buffer overflow

period depending on the initial queue size and the state of Hi = —(Do)ii-

the modulating process. In Section 4, the subsequent and

stationary overflows are studied using an embeddeqra

Markov chain, whose transition matrix is given in

Theorem?2. In Section 5, formulas for the number of

consecutive losses during the first, subsequent an

stationary overflow period are proven. Then, in Section 6, .

. . Pi (07 I) = 07

numerical examples are presented. They include

examples of the dependence of the duration of the _ 1 : .

overflow period on the buffer size, the initial queue pi(0.k) = E(DO)"" 1<ik=m ki,

length, the system load and the autocorrelation structure.

At the end of this sojourn time there occurs a
nsition to another state and/or the arrival of a batch of
jobs. In particular, with probability;(j,k) there occurs a
gansition to statek with arrival of a batch of sizgj,
Wwhere:

The final conclusions are gathered in Section 7. pi(j,K) = E(Dj)ik, 1<ik<m, j>1
Hi
The probabilitiespi(k, j) will be often used in the
2 Model sequel, as well as the matrices
The batch Markovian arrival process (BMARZ2 13)), is Y = [pi(k, j)]i‘j . 3)
constructed by using a two-dimensional Markov process '
(N(t),J(t)), where variablé(t) is the total number of job An important characteristic of the BMAP is its

arrivals in (0,t), while variableJ(t) is the auxiliary state counting function,P(n,t), which is anm x m matrix
of the modulating Markov process. The Markov processdefined as

matricesAy, describing the distribution of the number of
arrivals and change of the state of the modulating process
WhereDk, k>0aremxm matricesDk is nonnegaﬁve for dUring a random interval distributed according to a
k> 1, whileDg has nonnegative off-diagonal elements anddistribution functionF, namely

negative diagonal elements. Moreover, -
A= | [ Ry @

D= ;Dk i.]
k= Now, having defined the arrival process we can
is an irreducible infinitesimal generator and it must not bepresent the whole queueing model. Namely, we will deal
equal toDg. with the classic single-server queueing system with finite

(N(t),J(t)) assumes values in state spédej) :i >0,1< P(n,t) = [R,j(n,t)] i
j <m} and has the following infinitesimal generator: o )
R,j(n,t) =P{N(t) =n,J(t) = j|N(0) = 0,J(0) =i},
Do Bl BZ 83 whereP stands for the probability.
Q= 0 D; Di P Other important characteristics of the BMAP are
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buffer, whose arrival process is a BMAP. The service timewhere

is distributed according to a distribution functidt(-),
which is not further specified. The buffer size (system
capacity) is finite and equal tb, including the service
position. If a job upon its arrival finds the buffer full, it is

lost and never returns. We assume also that the time
origin corresponds to a departure epoch. In the standard
Kendall's notation, such queueing system is denoted by o(t) =

BMAP/G/1/b.

The queue size at timtewill be denoted byX(t). We
adopt a convention tha¢(t) includes the service position.
Thus X(t) is, in other words, the total number of jobs
present in the system at tinhe

3 First overflow

We will start with analysis of the first overflow period
using the method of14]. This method exploits special

recurrent sequences to solve the system of equations
occurring in the analysis of the model. The method can be

used in solving classic queueing models with different
Markovian arrival processes (e.ql419) as well as
some special models (e.dLq]), provided that the buffer
size is finite.

The length of the first buffer overflow period will be
denoted a@; and is defined as

Br={—

wherert is the first time when the buffer gets full agdis
the first job departure moment after. Naturally,
distributions of random variabled, T and3; depend on
the initial queue sizeX(0), and the initial state of the
modulating procesd0).

Let gn,i(t) be the tail of the distribution o8y, i.e.:

hi(t) =P{B1>t[X(0) =n,J(0) =i}

and
(t) = [@ha(t)... hm(®)]"-
Now we will prove the following theorem.

Theorem 1 Distribution of the length of the first buffer
overflow period in the BMARG/1/b queue has the
following form:

b—n

= - Z Ro—n—k9k(t)

b—n b

*‘j{ Rb n— kAk

<‘Z Ro— kA — inkRkIAI> N

(ZRb kOk(t ZZYb kRi-101 (t ()>,
(5)

Rl_A617

—_iAwlei),
k=1 ,o0

(1—F(t)-1— Zo/t P(i,u—t)dF(u)- 1

>>k§bvk-n

Ro=0,

Rer1 = Ri(Re k>1, (6)

(7)

S(t) = (8)

A, Y¢ are defined in4), (3), respectively.

P roof of Theorenml. Assuming that the system is
non-empty at = 0, we can write the following system of

equations:
P{ Br >t [X(0) =n,J(0) =i}
—gbil/ P{B1>t|X(0) = n+k—1,3(0) = j}
RLj(ku)dF(u)
+./t'°° g i i(k,u—t))dF(u),

1
O<n<bl<i<m

9)

System @) follows from the total probability law,
used with respect to the first departure moment.
particular, the first component od)(reflects the situation
where there is no buffer overflow before the first job
departure timeu. The second component reflects the
situation, where the buffer overflow occurs before time
In fact, in order to havgs; > t, the buffer overflow must
occur in time interval (O,u —t) with u > t. The
probability that the buffer gets overflowed in interval
(O,u—t)is equalto - 3™, 720 R j(k,u—t).

Assuming that the system |s emptyta& 0, we can
write the following system:

P{B1>t | X(0)=0,J(0) =i}
m b-1

B Z Z pi(k, ))P{B1 > t|X(0) =

Z

System {0) follows from the total probability law used
with respect to the size of the first arriving batch. In
particular, the first component corresponds to the case
where the first arriving batch does not overflow the buffer,
while the second component corresponds to the case
where the first batch overflows the buffer.

Using matrix notation to9) yields:

In

k,J(0) = J}

pi(k,j)(1—F(t)), 1<i<m. (10)

b—n-1

= k; Acthi-1(t) + Go—n(t). (11)
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Similarly, (10) yields:

b-1
= > Yk@k(t) +(b). (12)
K=0
Using substitutiomn(t) = @_n(t) we get:
n-1
Z A 10nk(t) — dn(t) = Un(t), 0<n<b, (13)
k=1
Wn(t) = Anda(t) — an(t),
and
;Yk% k(1) + ot sz k@k(t) + Su(t).
(14)

Using Lemma 3.2.1 of 4] we can obtain the general
solution of system(3) in the form:

bult) =Rc)+ 3 R i), n=1,  (15)
k=1

wherec(t) is a column vector which does not dependon
Substitutionn = 1 into (15) yieldsc(t) = Ag@(t), which
then gives

Z Rn—kgk(t (16)

;Rn KA1 (t)

Now, substitutingn = b in (16) and exploiting 14) we
obtain the equation

b

5P o Ro-kAkda(t) — z Ro_k0k(t)

b
= (Z)Rk 1A P1(t) sz 101 (t ) S(t),
17)

which allows us findingp1 (t):

1
<;Rb KA — Z)Yb kR |A|>

b K
(ZRb KOk (t ZYb kR-101 () + st ))

(18)

Backward substitutiogh(t) = ¢p_n(t) in (16) finishes the

proof.

In some applications it might be convenient to use the
density function instead of the tail. It is easy to obtain

using Theorenil. Namely, density of the length of the
first overflow period is:

ZRbnkgk sznkAk

b k

_ Z %kaR“A;)l

Rb kKt Z ZYb KRe-101(t) + () )
(19)

A

—
™M= TM-o
il

4 Subsequent and stationary overflows

In this section we will analyze the length of theth
overflow period, i.e., for arbitraryk, as well as the
limiting distribution wherk — oo,

Let {x denote the end of thieth overflow period and
let ay be the state of the modulating process at this time,
ie.

ap = J(0), ox=J3({k), k>1.

As we may note, the distribution @ depends on the
state of the system (i.e. the queue length and the state of
the modulating process) at tingg_;. However, the queue
size at time(y is equal tob — 1 for everyk > 1. Therefore,
the distribution of B« depends in fact on the state of
modulating process at timég_1 only. Moreover, the
distribution of By for some k is the same as the
distribution of 31 assuming the initial queue size lof- 1
and proper initial state of the modulation process.
Namely, fork > 2 we have

P{B > t|ay_1 =i} = P{B1 > t|X(0) =b—1,J(0) = i}.

In this way, knowing the distribution af,_;, we can
find the distribution ofBx by means of Theoreni.
Therefore, finding the distribution o&yx will be our
primary goal in this section.

We will start with the distribution ofaq, which
depends oiX(0) andJ(0). It will be presented in a matrix
form:

S= [P{al = ||X(0) = n,J(O) = iHi,p
0<n<b, 1<i,l<m.
Theorem 2 Distribution of the state of the modulating
process at the end of the first buffer overflow period in the
BMAP/G/1/b queue has the form:
b—n

S=- sznkUkJF;RbnkAk

-1
<;Rb kA — Z)Yb KR |A|>

: KUk — Yo—kRk—1U ooYU 20
<kZlekk I(leZkakll+l(zbk(L>v( )
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where
(21)

Uy = _im.

P roof of Theoren?. The proof is similar to the
proof of Theoreml. Namely, for the initially non-empty
system we obtain

P{ a; =1 [X(0)=n,J(0) =i}
m b—n-1

_ j; > /(;wp{al: 11X(0) = n+ k—1,3(0) = j}

-BLj(k,u)dF(u)
+ kib‘/ooo PI,| (ka U)dF(U),

O<n<b1<i<m,
while for initially empty system
P{ a; =1 |X(0)=0,3(0) =i}
m b-1

=3 S pik.))P{ar=1X(0) =0,3(0) = j}
j=1k=0

(22)

Mz 7

+ pi (K, j ooIP’Ju:IJO:deu.
3 3 wiki) [ PR =190 = j)dF)
(23)
Using the matrix notation2@) and 3) yield:
b—n-1
S= % Ak31+k—l+Ub—na 0<n< ba (24)
k=
b-1 00
S=3 %S+ § Wlo. (25)
kZO k kZb Wo

Proceeding in the same way as in the proof of Theotem
we can easily finish the proof.

In order to compute the distribution of, k > 2, it is
sufficient to note thafay}_, constitutes a discrete-time
Markov chain, whose transition matrix is equaBgin the
first step andy,_; in every next step. Therefore \fis the
vector of the initial distribution of the modulating proses
the distribution ofoy is v&§,(S,_1)% 2, wheren is the initial
queue size. As a consequence, the distributioBy as

P{Bc >t} =VS(So-0) 21 (t),

whereg@,_1(t) is given in §) andnis the initial queue size.

Using the transition matris, 1 we can also obtain the
limiting distribution of Bx ask — . Namely, ifw is the
stationary vector fog, 4, i.e.

(26)

Consequently, the density of the length of the overflow
period in the steady state is

h(t) = —we_4(t). (29)

5 Number of losses during overflow periods

Let y denote the number of loses in theth buffer
overflow period and

oni(l) =P{y1 =1|X(0) =n,J(0) =i}, 1=0,1,2,...,

th(l) = [Qn,l(l)v---aqn,m(l)]-r-

The following theorem is true.

Theorem 3Distribution of the number of loses in the first
buffer overflow period in the BMAP/G/1/b queue has the
form:

b—n

tnl(l) = — 3 Roon i1
k=1

b—n b bk -1
+ —N— _ — Y, 7'A'
k;Rb kA <kzORb KAk kZ]_J: b-kRe | J>

b k

b
: (kzl Ro— kA1 1 — kZlJZle—kRk—jAHI 1
bl
+ kszkAbJrlk]l) :

(30)

P roof of Theoren8. For the initially non-empty
system we obtain now

P{y=11X(0)=n.J(0) =i}
m b—n-1 ,rco
=3 Y [ Fa=IXO=n+k-130)= )
=1 k= 0
-BLj(k,u)dF(u)
m oo
+Z/O R.i(b+1 —n,u)dF(u).
=1
O<n<b, 1<i<m.
For initially empty system we get
P{y1=1[X(0)=0,J(0) =i}

m b—1
> > pilk P{yr =1]X(0) = k,J(0) = j}
k=0

WS_1=w, wl=1, (27) =1
m b+l o M
then we have + pi(k, j)/ Pjr(b+I—k u)dF(u),
| S35
Il|m P{B >t} =wag_1(t). (28) 1<i<m  (31)
—500
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Therefore, we have Table 1: Autocorrelation function for BMAP used in numerical
examples.
b—n-1 lag 1 2 3 4 5
()= > Adnik-1(l)+Aps1-nl, 0<n<b, (32) correlation | - 0.264 | 0.214 | -0.176 | 0.144 | -0.1183
k=0 lag 6 7 8 9 10
b1 bl correlation| 0.097 | -0.079| 0.065 | -0.053 0.04

) = YOk (1 Y, k1. 33
do(l) kZO KOk ( )+|<Zb Ao i1k (33)

Proceeding in the same way as in the proof of Theokt E(By
we can finish the proof. 1
It is easily seen that the distribution of the numbe 0.9
losses in thé-th overflow period has the form: 08
P{y =1} = VvS(S-1)* ap-1(1), (34) o
wheren is the initial queue size, while the number of jc
lost in the overflow period in steady state is: 0.6
lim By =1} = wap-1(1). (35) 05
‘ ‘ ‘ — b
6 Examples 1o 20 30 40
Let us note first that the values of the BMAP counting Fig. 1: The expected value ¢ versus the buffer size fot(0) =
function,P(n,t), as well as the integrals appearing #) ( 0andJ(0) = 1.
and (7), can be effectively computed using the
uniformization technique (seel?] for more details).
Therefore we can effectively obtain numerical res * h
o(t)
from the presented theorems. 3
For numerical purposes, we use herein the follov
BMAP (see also17)): 25
—5.69920 0244077 00244077 2
Do = | 0.00244077 —0.569920 00244077,
0.000244077 0244077 —0.0569920 15
[0.00813590 0650872 0650872 ) S~
D= | 0.0650872 (00000813590 0724095 , 05
0.00634600 (000813590 @MO0081359( ' b=10
L _ /
‘ ‘ ‘ : t
[0.00813590 (0650872 0650877] 02 04 06 08
Ds= | 0.0650872 (00000813590 M®0724095 ,
| 0.00634600 (00813590 MO0081359( Fig. 2: The density of; for four different buffer sizes, 10, 11,

20, 21, and initial system paramet&&0) = 0, J(0) = 1.
0.0447475 57980 357980
Dig= | 0.357980 0000447475  (@M398252 .
0.0349030 00447475 0044747
d the average batch size is 8. Constant service time,
is assumed, so the offered loadgs= Ad = 1. It is
also worth noting that the considered BMAP has a non-

Thus the batches of sizes 1, 4 and 10 are possible. The tota_ifi]n
arrival rate is ’

AN=1, (36)  trivial autocorrelation function, with alternating sigihe
the rate of arrivals of batches is correlations for lags 1-10 are presented in Tdble
In Fig. 1 the average duration of the first overflow
Ng=0.125 (37)  period as a function of the buffer size is depicted. The

@© 2013 NSP
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system s initially empty and the initial state of hyg(t)
modulating process is 1. As we can see, the sha 3
irregular — there are jumps around the buffer sizes «

and 20. Naturally, it is connected with multiples of 25
largest batch size. This effect is further demonstrat

Fig. 2, in which the density function of the length of 2
first overflow period for buffer sizes of 10, 11, 20 anc

is depicted. We can see large differences betweenlC 15
andb = 11 cases, as well as betweler- 20 andb = 21,

In fact, the shape of the density for= 11 is closer to th 1
caseb = 20 than to the casb = 10. Note also that f

b = 10 the density does not integrate to 1, which m 05
that there is an atom in the probability distributior

t = 1. The existence of this atom is easy to explain b

fact, that forb = 10 one large batch may overflow 0.2 0.4 0.6 0.8
buffer.

Besides the buffer size, the duration of the first
overflow period depends on the initial queue sizeand
the initial modulating statej. Now we will check these
dependences. In Fi, the density functions of the length
of the first overflow period for initial queue sizes of 0, 10
and 19 are compared while in Fig.the densities of the
length of the first overflow period for all possible initial
states of the modulating process are compared.

Fig. 4: The density of the length ¢8; for three different initial
modulating states, the buffer size of 20 a0@) = 19.

The resulting distribution of the duration of the buffer
overflow period in the steady state is depicted in Bign
addition, the density of the overflow period in the batch
Poisson arrivals case is depicted in this figure. Naturally,
the same batch sizes, 1, 4, 10, the same average batch

hn(t) size, 8, and the same total arrival rate, 1, as in the BMAP
5 case, were used. Therefore, the difference between these
two arrival processes is the autocorrelation, which is
equal to zero in the batch Poisson case. As we can see, the
4 autocorrelation itself has a significant influence on the
distribution of the overflow period.
3
2 ht)
1 2
0.2 0.4 0.6 0.8 15
Fig. 3: The density of3; for three different initial queue sizes 1 batch Poisson
10, 19, the buffer size of 20 arlf0) = 1. _”/
o 05
Now we can proceed to the overflow period in
steady state. First, we need the transition magix anc
its stationary vectorw. Using 0) and @7) we obtair ‘ ‘ ‘ ‘ t
respectively, 0.2 04 0.6 0.8
0.019689 0069005 0911304 Fig. 5: The density of the length of the overflow period in the
Sio= | 0.129544 (0084486 0785969 steady state for the batch Poisson and BMAP arrivads 20.
0.086155 0109131 0804712
and In the next example, we check the dependence of the
w = [0.084984 0.103178 0.811837. duration of the overflow period on the load offered to the
@© 2013 NSP
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