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Abstract: In this paper a study on the buffer overflow period in a finite-buffer queue is presented. A special attention is paid to the
autocorrelation and batch arrivals, which are supposed to mimic the properties of real arrival processes. Using the batch Markovian
arrival process, formulas for the duration of the first, subsequent and stationary overflow periods, as well as formulas for the distribution
of the number of consecutive losses during the overflow period are shown. Moreover, analytical results are illustrated via numerical
examples. In particular, the influence of the autocorrelation and batch arrivals on the duration of the overflow period isdemonstrated.
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1 Introduction

The performance of a finite-buffer queueing system
depends on losses, i.e. jobs that were rejected the service
due to the buffer overflow. The most important
characteristics of the loss process include the stationary
loss ratio (i.e. the long-run fraction of lost jobs), the
number of losses in a finite time interval and the duration
of the buffer overflow period.

The buffer overflow period is the time interval from the
arrival of a job which overflows the buffer until the first
departure of a job from the system (making available one
position in the buffer). It is equal to the remaining service
time of the job being served upon arrival of the job which
overflows the buffer.

The importance of the buffer overflow period is
connected with the fact that during this period all arriving
jobs are lost, one after another. Therefore, the distribution
of the number of consecutive losses depends on the
distribution of the duration of the overflow period. On the
other hand, in many queueing applications, especially in
packet networking (e.g. the Internet), the distribution of
the number of consecutive losses plays an important role.
Roughly speaking, it makes a difference whether the
packets are being lost in long series or in short series with
accepted packets between them.

Therefore, the goal of this paper is finding the
distribution of the length of the buffer overflow as well as

the distribution of the number of jobs lost in the overflow
period. In contrast to the previous papers on this subject,
two important assumptions on the arrival process are
imposed herein:

(a)the interarrival times are correlated,
(b)the arrivals can occur in groups (batches).

To the best of the author’s knowledge, there are no
published studies on the buffer overflow period in
queueing systems that meet requirements (a) and (b).
Several papers devoted to the buffer overflow period in
the single-arrival queues can be found, [1]-[7], but the
systems studied there do not meet (b). There is also a
paper on the buffer overflow period in batch arrival
queues, [8], but with uncorrelated arrival process. Taking
into account both of the aforementioned requirements is
crucial in the performance evaluation of queues of
packets appearing in the packet networking. In particular,
it is well-known that the streams of packets are usually
strongly autocorrelated, so the Poisson processes (or other
renewal processes) do not reflect properly their
characteristics, [9,10]. This explains the need for an
autocorrelated arrival process model. The need for the
batch structure of arrivals is caused by the popularity of
the TCP1 protocol, which is responsible for the major part
of the Internet traffic. In TCP, the packets are sent to the
network in groups, according to a variable calledwindow,

1 Transmission Control Protocol
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which denotes the number of packets that can be injected
into the network without confirmation. (The reader
further interested in modeling the TCP behaviour using
batch arrivals is referred to [11]).

As will be demonstrated in Section 6, the batch
structure of arrivals has a deep impact on the buffer
overflow period. Namely, the dependence of the overflow
period on the buffer size may have a very irregular form –
changing the buffer size only by 1 position may result in a
significant change in the overflow period. This effect does
not appear in the single-arrival systems studied in [1]-[7].

As for the arrival process, the batch Markovian arrival
process (BMAP, [12,13]) is the most suitable for our
needs. It meets requirements (a), (b), and can be quite
easily parameterized to reflect the parameters of real
arrival processes (packet streams and others).

The remaining part of the paper is organized as
follows. In Section 2, all details of the queueing model
are given. In Section 3, the first buffer overflow period is
studied. In particular, Theorem1 of this section presents
the distribution of the length of the first buffer overflow
period depending on the initial queue size and the state of
the modulating process. In Section 4, the subsequent and
stationary overflows are studied using an embedded
Markov chain, whose transition matrix is given in
Theorem2. In Section 5, formulas for the number of
consecutive losses during the first, subsequent and
stationary overflow period are proven. Then, in Section 6,
numerical examples are presented. They include
examples of the dependence of the duration of the
overflow period on the buffer size, the initial queue
length, the system load and the autocorrelation structure.
The final conclusions are gathered in Section 7.

2 Model

The batch Markovian arrival process (BMAP, [12,13]), is
constructed by using a two-dimensional Markov process
(N(t),J(t)), where variableN(t) is the total number of job
arrivals in(0, t), while variableJ(t) is the auxiliary state
of the modulating Markov process. The Markov process
(N(t),J(t)) assumes values in state space{(i, j) : i ≥ 0,1≤
j ≤ m} and has the following infinitesimal generator:

Q=







D0 D1 D2 D3 · ·
D0 D1 D2 · ·

D0 D1 · ·
· · ·






,

whereDk, k≥ 0 arem×mmatrices,Dk is nonnegative for
k≥ 1, whileD0 has nonnegative off-diagonal elements and
negative diagonal elements. Moreover,

D =
∞

∑
k=0

Dk

is an irreducible infinitesimal generator and it must not be
equal toD0.

Let 1 denote the column vector of 1’s,Odenote the
square matrix of zeroes andπ denotes the stationary
vector forD, i.e.:

πD =O, π1= 1.

Using π we can compute the total arrival rate of the
BMAP:

Λ = π
∞

∑
k=1

kDk1, (1)

and the rate of arrivals of batches:

Λg = π(−D0)1. (2)

The BMAP can be also defined using a constructive
definition, which can be easily translated into any
programming language and used for simulation purposes.
Namely, we initialize the modulating process,J(t), using
some state, sayi (i.e. J(0) = i). The sojourn time in that
state is exponentially distributed with parameterµi , where

µi =−(D0)ii .

At the end of this sojourn time there occurs a
transition to another state and/or the arrival of a batch of
jobs. In particular, with probabilitypi( j,k) there occurs a
transition to statek with arrival of a batch of sizej,
where:

pi(0, i) = 0,

pi(0,k) =
1
µi
(D0)ik, 1≤ i,k≤ m, k 6= i,

pi( j,k) =
1
µi
(D j)ik, 1≤ i,k≤ m, j ≥ 1.

The probabilitiespi(k, j) will be often used in the
sequel, as well as the matrices

Yk = [pi(k, j)]i, j . (3)

An important characteristic of the BMAP is its
counting function,P(n, t), which is an m× m matrix
defined as

P(n, t) =
[

Pi, j(n, t)
]

i, j ,

Pi, j(n, t) = P{N(t) = n,J(t) = j|N(0) = 0,J(0) = i},

whereP stands for the probability.
Other important characteristics of the BMAP are

matricesAk, describing the distribution of the number of
arrivals and change of the state of the modulating process
during a random interval distributed according to a
distribution functionF , namely

Ak =

[

∫ ∞

0
Pi, j(k, t)dF(t)

]

i, j
. (4)

Now, having defined the arrival process we can
present the whole queueing model. Namely, we will deal
with the classic single-server queueing system with finite
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buffer, whose arrival process is a BMAP. The service time
is distributed according to a distribution functionF(·),
which is not further specified. The buffer size (system
capacity) is finite and equal tob, including the service
position. If a job upon its arrival finds the buffer full, it is
lost and never returns. We assume also that the time
origin corresponds to a departure epoch. In the standard
Kendall’s notation, such queueing system is denoted by
BMAP/G/1/b.

The queue size at timet will be denoted byX(t). We
adopt a convention thatX(t) includes the service position.
Thus X(t) is, in other words, the total number of jobs
present in the system at timet.

3 First overflow

We will start with analysis of the first overflow period
using the method of [14]. This method exploits special
recurrent sequences to solve the system of equations
occurring in the analysis of the model. The method can be
used in solving classic queueing models with different
Markovian arrival processes (e.q. [14,15]) as well as
some special models (e.g. [16]), provided that the buffer
size is finite.

The length of the first buffer overflow period will be
denoted asβ1 and is defined as

β1 = ζ − τ,

whereτ is the first time when the buffer gets full andζ is
the first job departure moment afterτ. Naturally,
distributions of random variablesζ , τ andβ1 depend on
the initial queue size,X(0), and the initial state of the
modulating process,J(0).

Let φn,i(t) be the tail of the distribution ofβ1, i.e.:

φn,i(t) = P{β1 > t|X(0) = n,J(0) = i}

and
φn(t) = [φn,1(t), . . . ,φn,m(t)]

T .

Now we will prove the following theorem.

Theorem 1. Distribution of the length of the first buffer
overflow period in the BMAP/G/1/b queue has the
following form:

φn(t) = −
b−n

∑
k=1

Rb−n−kgk(t)

+
b−n

∑
k=0

Rb−n−kAk

(

b

∑
k=0

Rb−kAk−
b

∑
k=1

k

∑
l=0

Yb−kRk−l Al

)−1

·

(

b

∑
k=1

Rb−kgk(t)−
b

∑
k=1

k

∑
l=1

Yb−kRk−l gl (t)+ sb(t)

)

,

(5)

where
R0 =O, R1 = A−1

0 ,

Rk+1 = R1(Rk−
k

∑
i=0

Ai+1Rk−i), k≥ 1, (6)

gk(t) = (1−F(t)) ·1− k−1

∑
i=0

∫ ∞

t
P(i,u− t)dF(u) ·1, (7)

sb(t) = (1−F(t))
∞

∑
k=b

Yk ·1, (8)

Ak, Yk are defined in (4), (3), respectively.

P r o o f of Theorem1. Assuming that the system is
non-empty att = 0, we can write the following system of
equations:

P{ β1 > t |X(0) = n,J(0) = i}

=
m

∑
j=1

b−n−1

∑
k=0

∫ ∞

0
P{β1 > t|X(0) = n+ k−1,J(0)= j}

·Pi, j(k,u)dF(u)

+

∫ ∞

t

(

1−
m

∑
j=1

b−n−1

∑
k=0

Pi, j(k,u− t)
)

dF(u),

0< n< b,1≤ i ≤ m. (9)

System (9) follows from the total probability law,
used with respect to the first departure moment. In
particular, the first component of (9) reflects the situation
where there is no buffer overflow before the first job
departure time,u. The second component reflects the
situation, where the buffer overflow occurs before timeu.
In fact, in order to haveβ1 > t, the buffer overflow must
occur in time interval (0,u − t) with u > t. The
probability that the buffer gets overflowed in interval
(0,u− t) is equal to 1−∑m

j=1∑b−n−1
k=0 Pi, j(k,u− t).

Assuming that the system is empty att = 0, we can
write the following system:

P{β1 > t | X(0) = 0,J(0) = i}

=
m

∑
j=1

b−1

∑
k=0

pi(k, j)P{β1 > t|X(0) = k,J(0) = j}

+
m

∑
j=1

∞

∑
k=b

pi(k, j)(1−F(t)), 1≤ i ≤ m. (10)

System (10) follows from the total probability law used
with respect to the size of the first arriving batch. In
particular, the first component corresponds to the case
where the first arriving batch does not overflow the buffer,
while the second component corresponds to the case
where the first batch overflows the buffer.

Using matrix notation to (9) yields:

φn(t) =
b−n−1

∑
k=0

Akφn+k−1(t)+gb−n(t). (11)
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Similarly, (10) yields:

φ0(t) =
b−1

∑
k=0

Ykφk(t)+ sb(t). (12)

Using substitutionϕn(t) = φb−n(t) we get:

n−1

∑
k=−1

Ak+1ϕn−k(t)−ϕn(t) = ψn(t), 0< n< b, (13)

ψn(t) = Anϕ1(t)−gn(t),

and

ϕb(t) =
b−1

∑
k=0

Ykϕb−k(t)+ sb(t) =
b

∑
k=1

Yb−kϕk(t)+ sb(t).

(14)
Using Lemma 3.2.1 of [14] we can obtain the general
solution of system (13) in the form:

ϕn(t) = Rnc(t)+
n

∑
k=1

Rn−kψk(t), n≥ 1, (15)

wherec(t) is a column vector which does not depend onn.
Substitutionn = 1 into (15) yieldsc(t) = A0ϕ1(t), which
then gives

ϕn(t) =
n

∑
k=0

Rn−kAkϕ1(t)−
n

∑
k=1

Rn−kgk(t). (16)

Now, substitutingn = b in (16) and exploiting (14) we
obtain the equation

∑b
k=0 Rb−kAkϕ1(t)−

b

∑
k=1

Rb−kgk(t)

=
b

∑
k=1

Yb−k

(

k

∑
l=0

Rk−l Al ϕ1(t)−
k

∑
l=1

Rk−l gl (t)

)

+ sb(t),

(17)

which allows us findingϕ1(t):

ϕ1(t) =

(

b

∑
k=0

Rb−kAk−
b

∑
k=1

k

∑
l=0

Yb−kRk−l Al

)−1

·

(

b

∑
k=1

Rb−kgk(t)−
b

∑
k=1

k

∑
l=1

Yb−kRk−l gl (t)+ sb(t)

)

.

(18)

Backward substitutionφn(t) = ϕb−n(t) in (16) finishes the
proof.

In some applications it might be convenient to use the
density function instead of the tail. It is easy to obtain
using Theorem1. Namely, density of the length of the
first overflow period is:

hn(t) = −φ ′
n(t) =

b−n

∑
k=1

Rb−n−kg
′
k(t)−

b−n

∑
k=0

Rb−n−kAk

·

(

b

∑
k=0

Rb−kAk−
b

∑
k=1

k

∑
l=0

Yb−kRk−l Al

)−1

·

(

b

∑
k=1

Rb−kg
′
k(t)−

b

∑
k=1

k

∑
l=1

Yb−kRk−l g
′
l (t)+ s′b(t)

)

.

(19)

4 Subsequent and stationary overflows

In this section we will analyze the length of thek-th
overflow period, i.e.βk, for arbitrary k, as well as the
limiting distribution whenk→ ∞.

Let ζk denote the end of thek-th overflow period and
let αk be the state of the modulating process at this time,
i.e.:

α0 = J(0), αk = J(ζk), k≥ 1.

As we may note, the distribution ofβk depends on the
state of the system (i.e. the queue length and the state of
the modulating process) at timeζk−1. However, the queue
size at timeζk is equal tob−1 for everyk≥ 1. Therefore,
the distribution ofβk depends in fact on the state of
modulating process at timeζk−1 only. Moreover, the
distribution of βk for some k is the same as the
distribution ofβ1 assuming the initial queue size ofb−1
and proper initial state of the modulation process.
Namely, fork≥ 2 we have

P{βk > t|αk−1 = i}= P{β1 > t|X(0) = b−1,J(0) = i}.

In this way, knowing the distribution ofαk−1, we can
find the distribution of βk by means of Theorem1.
Therefore, finding the distribution ofαk will be our
primary goal in this section.

We will start with the distribution ofα1, which
depends onX(0) andJ(0). It will be presented in a matrix
form:
Sn =

[

P{α1 = l |X(0) = n,J(0) = i}
]

i,l ,

0≤ n≤ b, 1≤ i, l ≤ m.

Theorem 2. Distribution of the state of the modulating
process at the end of the first buffer overflow period in the
BMAP/G/1/b queue has the form:

Sn = −
b−n

∑
k=1

Rb−n−kUk+
b−n

∑
k=0

Rb−n−kAk

·

(

b

∑
k=0

Rb−kAk−
b

∑
k=1

k

∑
l=0

Yb−kRk−l Al

)−1

·

(

b

∑
k=1

Rb−kUk−
b

∑
k=1

k

∑
l=1

Yb−kRk−lUl +
∞

∑
k=b

YkU0

)

, (20)
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where

Uk =
∞

∑
i=k

Ai . (21)

P r o o f of Theorem2. The proof is similar to the
proof of Theorem1. Namely, for the initially non-empty
system we obtain

P{ α1 = l |X(0) = n,J(0) = i}

=
m

∑
j=1

b−n−1

∑
k=0

∫ ∞

0
P{α1 = l |X(0) = n+ k−1,J(0)= j}

·Pi, j(k,u)dF(u)

+
∞

∑
k=n−b

∫ ∞

0
Pi,l (k,u)dF(u),

0< n< b,1≤ i ≤ m, (22)

while for initially empty system

P{ α1 = l |X(0) = 0,J(0) = i}

=
m

∑
j=1

b−1

∑
k=0

pi(k, j)P{α1 = l |X(0) = 0,J(0) = j}

+
m

∑
j=1

∞

∑
k=b

pi(k, j)
∫ ∞

0
P{J(u) = l |J(0) = j}dF(u).

(23)

Using the matrix notation, (22) and (23) yield:

Sn =
b−n−1

∑
k=0

AkSn+k−1+Ub−n, 0< n< b, (24)

S0 =
b−1

∑
k=0

YkSk+
∞

∑
k=b

YkU0. (25)

Proceeding in the same way as in the proof of Theorem1
we can easily finish the proof.

In order to compute the distribution ofαk, k ≥ 2, it is
sufficient to note that{αk}

∞
k=0 constitutes a discrete-time

Markov chain, whose transition matrix is equal toSn in the
first step andSb−1 in every next step. Therefore, ifv is the
vector of the initial distribution of the modulating process,
the distribution ofαk is vSn(Sb−1)

k−2, wheren is the initial
queue size. As a consequence, the distribution ofβk is

P{βk > t}= vSn(Sb−1)
k−2φb−1(t), (26)

whereφb−1(t) is given in (5) andn is the initial queue size.
Using the transition matrixSb−1 we can also obtain the

limiting distribution of βk ask → ∞. Namely, if w is the
stationary vector forSb−1, i.e.

wSb−1 = w, w1= 1, (27)

then we have

lim
k→∞

P{βk > t}= wφb−1(t). (28)

Consequently, the density of the length of the overflow
period in the steady state is

h(t) =−wφ ′
b−1(t). (29)

5 Number of losses during overflow periods

Let γk denote the number of loses in thek-th buffer
overflow period and

qn,i(l) = P{γ1 = l |X(0) = n,J(0) = i}, l = 0,1,2, . . . ,

qn(l) = [qn,1(l), . . . ,qn,m(l)]
T .

The following theorem is true.

Theorem 3. Distribution of the number of loses in the first
buffer overflow period in the BMAP/G/1/b queue has the
form:

qn(l) =−
b−n

∑
k=1

Rb−n−kAk+l1
+

b−n

∑
k=0

Rb−n−kAk

(

b

∑
k=0

Rb−kAk−
b

∑
k=1

k

∑
j=0

Yb−kRk− jA j

)−1

·

(

b

∑
k=1

Rb−kAk+l1− b

∑
k=1

k

∑
j=1

Yb−kRk− jA j+l1
+

b+l

∑
k=b

YkAb+l−k1) .

(30)

P r o o f of Theorem3. For the initially non-empty
system we obtain now

P{ γ1 = l |X(0) = n,J(0) = i}

=
m

∑
j=1

b−n−1

∑
k=0

∫ ∞

0
P{γ1 = l |X(0) = n+ k−1,J(0)= j}

·Pi, j(k,u)dF(u)

+
m

∑
j=1

∫ ∞

0
Pi, j(b+ l −n,u)dF(u).

0< n< b, 1≤ i ≤ m.

For initially empty system we get

P{ γ1 = l |X(0) = 0,J(0) = i}

=
m

∑
j=1

b−1

∑
k=0

pi(k, j)P{γ1 = l |X(0) = k,J(0) = j}

+
m

∑
j=1

b+l

∑
k=b

pi(k, j)
∫ ∞

0

m

∑
r=1

Pj ,r(b+ l − k,u)dF(u),

1≤ i ≤ m. (31)
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Therefore, we have

qn(l) =
b−n−1

∑
k=0

Akqn+k−1(l)+Ab+l−n1, 0< n< b, (32)

q0(l) =
b−1

∑
k=0

Ykqk(l)+
b+l

∑
k=b

YkAb+l−k1. (33)

Proceeding in the same way as in the proof of Theorem1
we can finish the proof.

It is easily seen that the distribution of the number of
losses in thek-th overflow period has the form:

P{γk = l} = vSn(Sb−1)
k−2qb−1(l), (34)

wheren is the initial queue size, while the number of jobs
lost in the overflow period in steady state is:

lim
k→∞

P{γk = l}= wqb−1(l). (35)

6 Examples

Let us note first that the values of the BMAP counting
function,P(n, t), as well as the integrals appearing in (4)
and (7), can be effectively computed using the
uniformization technique (see [12] for more details).
Therefore we can effectively obtain numerical results
from the presented theorems.

For numerical purposes, we use herein the following
BMAP (see also [17]):

D0 =





−5.69920 0.244077 0.0244077
0.00244077 −0.569920 0.0244077

0.000244077 0.00244077 −0.0569920



 ,

D1 =





0.00813590 0.0650872 0.650872
0.0650872 0.0000813590 0.00724095

0.00634600 0.000813590 0.0000813590



 ,

D4 =





0.00813590 0.0650872 0.650872
0.0650872 0.0000813590 0.00724095

0.00634600 0.000813590 0.0000813590



 ,

D10 =





0.0447475 0.357980 3.57980
0.357980 0.000447475 0.0398252

0.0349030 0.00447475 0.000447475



 .

Thus the batches of sizes 1, 4 and 10 are possible. The total
arrival rate is

Λ = 1, (36)

the rate of arrivals of batches is

Λg = 0.125, (37)

Table 1: Autocorrelation function for BMAP used in numerical
examples.

lag 1 2 3 4 5
correlation - 0.264 0.214 -0.176 0.144 -0.1183

lag 6 7 8 9 10
correlation 0.097 -0.079 0.065 -0.053 0.04

10 20 30 40
b

0.5

0.6

0.7

0.8

0.9

1
EHΒ1L

Fig. 1: The expected value ofβ1 versus the buffer size forX(0) =
0 andJ(0) = 1.

0.2 0.4 0.6 0.8
t

0.5

1

1.5

2

2.5

3
h0HtL

b= 10

b= 21

b= 20

b= 11

Fig. 2: The density ofβ1 for four different buffer sizes, 10, 11,
20, 21, and initial system parametersX(0) = 0, J(0) = 1.

and the average batch size is 8. Constant service time,d =
1, is assumed, so the offered load isρ = Λd = 1. It is
also worth noting that the considered BMAP has a non-
trivial autocorrelation function, with alternating signs. The
correlations for lags 1-10 are presented in Table1.

In Fig. 1 the average duration of the first overflow
period as a function of the buffer size is depicted. The
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system is initially empty and the initial state of the
modulating process is 1. As we can see, the shape is
irregular – there are jumps around the buffer sizes of 10
and 20. Naturally, it is connected with multiples of the
largest batch size. This effect is further demonstrated in
Fig. 2, in which the density function of the length of the
first overflow period for buffer sizes of 10, 11, 20 and 21
is depicted. We can see large differences betweenb= 10
andb= 11 cases, as well as betweenb= 20 andb= 21.
In fact, the shape of the density forb= 11 is closer to the
caseb = 20 than to the caseb = 10. Note also that for
b = 10 the density does not integrate to 1, which means
that there is an atom in the probability distribution at
t = 1. The existence of this atom is easy to explain by the
fact, that forb = 10 one large batch may overflow the
buffer.

Besides the buffer size, the duration of the first
overflow period depends on the initial queue size,n, and
the initial modulating state,j. Now we will check these
dependences. In Fig.3, the density functions of the length
of the first overflow period for initial queue sizes of 0, 10
and 19 are compared while in Fig.4 the densities of the
length of the first overflow period for all possible initial
states of the modulating process are compared.

0.2 0.4 0.6 0.8
t

1

2

3

4

5
hnHtL

n= 0

n= 10

n= 19

Fig. 3: The density ofβ1 for three different initial queue sizes, 0,
10, 19, the buffer size of 20 andJ(0) = 1.

Now we can proceed to the overflow period in the
steady state. First, we need the transition matrixSb−1 and
its stationary vector,w. Using (20) and (27) we obtain,
respectively,

S19 =





0.019689 0.069005 0.911304
0.129544 0.084486 0.785969
0.086155 0.109131 0.804712



 ,

and
w= [0.084984, 0.103178, 0.811837].
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i = 2

i = 3

i = 1

Fig. 4: The density of the length ofβ1 for three different initial
modulating states, the buffer size of 20 andX(0) = 19.

The resulting distribution of the duration of the buffer
overflow period in the steady state is depicted in Fig.5. In
addition, the density of the overflow period in the batch
Poisson arrivals case is depicted in this figure. Naturally,
the same batch sizes, 1, 4, 10, the same average batch
size, 8, and the same total arrival rate, 1, as in the BMAP
case, were used. Therefore, the difference between these
two arrival processes is the autocorrelation, which is
equal to zero in the batch Poisson case. As we can see, the
autocorrelation itself has a significant influence on the
distribution of the overflow period.
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t
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1
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hHtL
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BMAP

Fig. 5: The density of the length of the overflow period in the
steady state for the batch Poisson and BMAP arrivals,b= 20.

In the next example, we check the dependence of the
duration of the overflow period on the load offered to the
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system. For this purpose, the considered BMAP is scaled
so that its batch and autocorrelation structure is preserved,
but the total arrival rate varies from 0.2 to 5. As the
service time remains unaltered (and equal to 1), the
offered load also varies from 0.1 to 5. The resulting
average duration of the overflow period for three different
buffer sizes is depicted in Fig.6. As we can see, the curve
is almost flat in every case, which means that the
steady-state length of the overflow period depends very
little on the offered load. The same effect can be observed
for other BMAPs, with different autocorrelation functions
and batch size distributions.

1 2 3 4 5
Ρ

0.2

0.4

0.6

0.8

1
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b= 30

b= 20

b= 10

Fig. 6: The average duration of the steady-state overflow period
versus the system load for three buffer sizes.

7 Conclusions

We dealt with the buffer overflow period in the queueing
system fed with an arrival stream of autocorrelated and
batch structure. Formulas for the length of the first,
subsequent and stationary overflow periods were proven.
Moreover, the formulas for the distribution of the number
of consecutive losses during the overflow period were
shown. Using these formulas several numerical examples
were computed, presenting the dependence of the
overflow period on the buffer size, the initial queue size,
the system load and the autocorrelation.

Among other things, the examples demonstrated the
irregularity of the duration of the overflow period as a
function the buffer size, a strong dependence of the
overflow period on the autocorrelation structure and a
very small dependence of the steady-state overflow period
on the system load.
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