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Abstract: This study proposes a novel approach using fractional-order calculus to model gene expression dynamics, aiding the

development of effective treatments for various diseases. Results show that our method can capture non-linear dynamics and provide

insights into regulatory mechanisms, validated through numerical analysis. Sensitivity analysis revealed the most sensitive parameters

and variables, such as the transcription rate constant, messenger ribonucleic acid (miRNA) concentration, and protein concentration.

mRNA levels were found to be more sensitive to changes in alpha compared to protein levels due to direct effects on transcription and

degradation processes. The reproduction number (R0) was found to be a constant value determined by the transcription and mRNA

degradation rate constants, while the reproduction coefficient (R) decreases with increasing miRNA concentration due to the binding

of miRNA to mRNA. Additionally, the point at which R crosses R0 represents a threshold for the regulation of gene expression. The

study highlights the potential of fractional-order calculus in the field of gene expression modeling and provides a promising avenue for

developing more effective treatments for various diseases.
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1 Introduction

Gene expression refers to the process by which information stored in deoxyribonucleic acid (DNA) is converted into
functional proteins that perform various tasks within a cell [1–3]. Gene expression is a fundamental process for the
functioning of all living organisms [4, 5]. It plays a vital role in the regulation of cellular processes, development,
differentiation, and response to environmental changes. Therefore, understanding gene expression and its regulation
mechanisms is crucial for numerous fields such as medicine, biotechnology, agriculture, and ecology.

Numerous scientists have made significant contributions to the study of gene expression. For instance, in [6], the authors
emphasized the significance of cell-to-cell interactions in preserving organismal development and homeostasis, and that
disruption of these interactions may lead to the onset of various diseases. In order to gain a deeper understanding of
intercellular signaling pathways, researchers employ protein-protein interaction databases and RNA sequencing
technologies to analyze gene expression data. The specific focus of their investigation involves the identification of
ligand-receptor pairs that serve as indicators of intercellular communication. Authors of [7] studied the relationship
between mRNA and protein expression, which are key components of gene expression. The authors review recent studies
that have investigated the correlation between mRNA and protein levels and discuss how contextual factors and buffering
mechanisms can impact this relationship. They also highlight the limitations of current technologies for measuring
protein expression at the single-cell level. They conclude that both mRNA and protein measurements have their own
strengths and weaknesses, and their utility largely depends on the research context. Transcriptomic data are closer to the
genome and reflect upstream processes, while proteomic data are more directly related to phenotype and more robust
against functionally irrelevant mRNA-level variability. However, post-transcriptional and post-translational regulation
induces functionally important changes in protein abundances that cannot be seen at the mRNA level. Also, authors
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of [8] described a new method for reconstructing the spatial relationships of cells within tissues using RNA sequencing
data. Unlike previous methods, which rely on the expression patterns of marker genes, this new approach uses a
probabilistic embedding algorithm to identify cells with similar transcriptional profiles that are likely to be spatially
close. The authors demonstrate the effectiveness of their approach by successfully reconstructing the spatial expression
patterns of genes in a variety of tissues from different organisms. They also identify genes that are spatially informative
and suggest that many more genes than previously thought may be involved in spatial features and functions of tissues.

Mathematical modeling is an indispensable tool to understand the complex mechanisms involved in gene
expression [9–13]. Several mathematical models have been proposed to represent gene expression, including ordinary
differential equations, partial differential equations, and stochastic models [14–16]. Recently, fractional-order calculus
has emerged as a powerful mathematical tool for modeling complex systems, including biological systems [17–19].
Fractional calculus involves the use of non-integer derivatives and integrals, which allow modeling of non-local and
memory-dependent phenomena [20, 21]. The use of fractional calculus in biology has been gaining popularity in recent
years, and several studies have reported successful applications of fractional calculus to model biological
systems [22, 23]. For instance, fractional calculus has been used to model the spread of epidemics, population dynamics,
and metabolic networks [24]. However, the application of fractional calculus to gene expression modeling is still limited.

The modeling of gene expression has garnered interest for numerous decades, resulting in the proposal of several
mathematical models aimed at representing this intricate process. One of the most widely used models is the ordinary
differential equation (ODE) model, which assumes that the gene expression rate is proportional to the difference between
the gene’s transcription rate and degradation rate [25, 26]. The ODE model has been successfully applied to represent
gene expression in numerous organisms, including bacteria, yeast, and mammals. Despite its success, the ODE model
has limitations, such as its inability to model non-local and memory-dependent phenomena. To overcome these
limitations, partial differential equation (PDE) models have been proposed, which take into account the spatial
distribution of cells and gene products [27]. PDE models have been used to model the development of embryos and
tumor growth. However, PDE models are computationally expensive and require high computational power, making
them unsuitable for large-scale simulations [28, 29]. Stochastic models have also been proposed to represent gene
expression, which take into account the random nature of gene expression events [30, 31]. Stochastic models have been
successfully applied to model gene expression noise, and they have been used to explain the observed variability in gene
expression across cells. However, stochastic models are computationally expensive and require large data sets to
accurately estimate model parameters [32, 33]. Fractional-order calculus provides an alternative approach for modeling
gene expression, which offers advantages over traditional modeling approaches. Fractional-order models can capture
non-local and memory-dependent phenomena, which are not captured by traditional models. Moreover, fractional-order
models require fewer parameters and offer higher accuracy in modeling complex systems. Several studies have reported
successful applications of fractional calculus to model biological systems [34, 35]. However, the application of fractional
calculus to gene expression modeling is still limited.

In this study, we propose a novel approach to model gene expression using fractional-order calculus shown schematically
in Figure 1, with variables and parameters described in Table 1. The model is a mathematical representation of gene
expression that takes into account various factors, including mRNA, protein, gene, micro ribonucleic acids (miRNAs),
histone modifications, and DNA methylation, as well as transcription factors, enhancers, and silencers that influence
gene expression. The system is governed by eleven reaction rate constants that represent transcription, mRNA
degradation, translation, protein degradation, basal gene expression, gene activation by transcription factors, enhancers
and silencers, as well as the effect of miRNAs, histone modifications, and DNA methylation on gene expression. The
model uses conformable fractional derivatives to capture the non-local memory of the system. The model equations
describe the rate of change of mRNA, protein, and gene concentrations over time, with each equation accounting for the
various factors that influence gene expression. We aim to investigate the advantages of using fractional-order calculus
over traditional modeling approaches and explore the potential of this approach for predicting gene expression patterns.
Our approach has the potential to provide insights into the regulatory mechanisms of gene expression and to facilitate the
development of new treatments for diseases related to gene expression dysfunction.

2 Preliminaries

Definition 21Caputo derivative [36]

The Caputo derivative of order α ∈ (0,1) of a sufficiently differentiable function f (t) is defined as follows:
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Dα
t f (t) =

1

Γ (1−α)

∫ t

0
(t − τ)−α d

dτ
f (τ)dτ,

where Γ is the gamma function.

Definition 22Gamma function [37]

The gamma function Γ (z) is defined for Re(z)> 0 by the integral

Γ (z) =

∫ ∞

0
xz−1e−xdx.

Definition 23Laplace transform of the Caputo derivative [38]

The Laplace transform of the Caputo derivative Dα
t of order α ∈ (0,1) of a function f (t) is defined as:

L Dα
t f (t)(s) = sα

L f (t)(s)− sα−1 f (0+),

where L f (t)(s) is the Laplace transform of f (t) and f (0+) denotes the right-sided limit of f (t) at t = 0.

Definition 24Banach contraction principle [39]

let (X ,d) be a metric space, and let T : X → X be a function. Then T is a Banach contraction if there exists a constant
0 ≤ k < 1 such that for all x,y ∈ X ,

d(T (x),T (y))≤ k,d(x,y).

3 Model formation

Dα
t m(t) = k1g(t)− k2m(t)− k9m(t)miRNA(t)

Dα
t p(t) = k3m(t)− k4p(t)

Dα
t g(t) =−k5g(t)+ k6t f (t)+ k7e(t)− k8s(t)

− k10g(t)h(t)− k11g(t)d(t).

(1)

The model postulates a proportional relationship between the concentration of mRNA transcripts, which serve as
intermediates in the gene expression process, and the rate of protein production. It incorporates various factors such as
mRNA, protein, gene, miRNAs, histone modifications, and DNA methylation, as well as transcription factors, enhancers,
and silencers that influence gene expression. The system is governed by eleven reaction rate constants, denoted as k1

through k11. Specifically, k1 represents the transcription rate constant, k2 represents the mRNA degradation rate constant,
k3 represents the translation rate constant, and k4 represents the protein degradation rate constant. k5 represents the basal
gene expression rate constant, k6 represents the rate constant for the binding of transcription factors to the gene promoter,
and k7 and k8 represent the rate constants for the binding of enhancers and silencers, respectively. k9 represents the rate
constant for the binding of miRNAs to mRNA, which may result in mRNA degradation or translational inhibition. The
effect of histone modifications and DNA methylation on gene expression is represented by rate constants k10 and k11,
respectively, which alter the chromatin structure and affect the accessibility of the gene promoter.
The model’s first equation captures the rate of change of the mRNA concentration m(t) over time. The term k1g(t)
denotes the rate of transcription of mRNA from the gene g(t), which is proportional to the concentration of the gene. The
term −k2m(t) denotes the degradation of mRNA, which is proportional to the concentration of mRNA. The term
−k9m(t)miRNA(t) represents the impact of miRNAs on mRNA degradation or translational inhibition, which is
proportional to the concentration of mRNA and miRNA.
The second equation describes the rate of change of the protein concentration p(t) over time. The term k3m(t) denotes
the rate of translation of protein from mRNA, which is proportional to the concentration of mRNA. The term −k4 p(t)
denotes the degradation of protein, which is proportional to the concentration of protein.
The third equation describes the rate of change of the gene concentration g(t) over time. The term −k5g(t) represents the
basal gene expression rate, which is independent of other factors. The term k6t f (t) represents the rate of gene activation
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Fig. 1: Fractional-order gene model schematic.

by transcription factors that bind to the promoter region of the gene and enhance its transcription. The term k7e(t)
represents the rate of gene activation by enhancers, which are DNA elements that can increase the expression of nearby
genes. The term −k8s(t) represents the rate of gene repression by silencers, which are DNA elements that can decrease
the expression of nearby genes. The terms −k10g(t)h(t) and −k11g(t)d(t) represent the effect of histone modifications
and DNA methylation on gene expression, respectively. These modifications can alter the chromatin structure and affect
the accessibility of the gene promoter, thereby leading to changes in gene expression.
The gene expression model presented here is a comprehensive representation of the complex processes involved in gene
regulation. The system includes mRNA, protein, and gene components, as well as other critical elements of gene
regulation, such as miRNAs, histone modifications, and DNA methylation. Additionally, the model takes into account
the effect of transcription factors, enhancers, and silencers on gene expression. The conformable fractional derivative of
order α is applied to each variable, taking into account the non-local memory of the system.

Table 1: Summary of the model.

Symbol Description Rate constant

m(t) mRNA k1g(t)−k2m(t)−k9m(t)miRNA(t)
p(t) Protein k3m(t)−k4 p(t)
g(t) Gene −k5g(t)+k6t f (t)+k7e(t)−k8S(t)

−k10g(t)h(t)−k11g(t)d(t)
miRNA(t) microRNA −

t f (t) Transcription factor k6

e(t) Enhancer k7

s(t) Silencer k8

h(t) Histone modification k10

d(t) DNA methylation k11
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4 Model analysis

Theorem 41The solution to system 1 exists and is unique

Proof.To prove the existence and uniqueness of the solution to the fractional order gene expression model in Eq. (1), we
will use the fixed-point theorem.
First, we define the state vector x(t) = [m(t), p(t),g(t),miRNA(t)]T , and we rewrite Eq. (1) in the following compact form:

Dα
t x(t) = F(x(t)), (2)

where F(x(t)) is a nonlinear vector function that depends on the state vector x(t).

Next, we define the Banach space X = C([0,T ],Rn), equipped with the norm |x|X = max0 ≤ t ≤ T |x(t)|. Here, T is
the length of the time interval, and C([0,T ],Rn) denotes the space of continuous functions from [0,T ] to R

n.

To use the fixed-point theorem, we need to show that F is a contraction mapping on the Banach space X . That is, there
exists a constant L < 1 such that for all x,y ∈ X ,

|F(x)−F(y)|X ≤ L|x− y|X . (3)

To prove the contraction property, we use the Lipschitz condition. Suppose that there exists a constant K > 0 such that for
all x,y ∈ X ,

|F(x)−F(y)|X ≤ K|x− y|X . (4)

To apply the Lipschitz condition, we first note that the fractional derivative operator Dα
t is a bounded linear operator on

the Banach space X , with operator norm |Dα
t |< 1. To see this, let T : X → X be a linear operator. Then:

|Dα
t f |X ≤

| f |X
Γ (2−α)

T 2−α

2−α
.

Thus, for any f ∈ X , we have

|Dα
t f |X ≤

1

Γ (2−α)

T 2−α

2−α
| f |X .

Therefore, Dα
t is a bounded linear operator on X with operator norm

|Dα
t |= sup

| f |X ≤1

|Dα
t f |X ≤

1

Γ (2−α)

T 2−α

2−α
.

It follows that |Dα
t |< 1 since 0 < α < 1 and T > 0.

Therefore, we have:

|F(x)−F(y)|X = |Dα
t x(t)−Dα

t y(t)|X

≤ |Dα
t (x(t)− y(t))|X

= |Dα
t ||x(t)− y(t)|X

= K|x(t)− y(t)|X ,

(5)

where K = |Dα
t |. This shows that the Lipschitz constant K < 1, and thus F is a contraction mapping on the Banach space

X .

By the Banach fixed-point theorem, there exists a unique solution x(t) to the fractional-order gene expression model in
Eq. (1) for 0 ≤ t ≤ T . Moreover, this solution can be obtained as the limit of a sequence of iterates generated by the
fixed-point iteration method:

xk+1(t) = F(xk(t)), k = 0,1,2, . . . , (6)

where x0(t) is an arbitrary continuous function on [0,T ].

This completes the proof of the existence and uniqueness of the solution to the fractional-order gene expression model in
Eq. (1).

© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


468 D. Amilo et al.: Newly Proposed Solutions ...

4.1 Analytic solution

To analytically solve the gene expression model presented in system 1, Laplace transform is utilized. The Laplace
transform is initially applied to each equation, with the assumption of zero initial conditions for all variables. The
transformed equations are derived as follows:

sα M(s)− sα−1m(0+) = k1G(s)− k2M(s)− k9M(s)MiRNA(s)

sα P(s)− sα−1 p(0+) = k3M(s)− k4P(s)

sα G(s)− sα−1g(0+) =−k5G(s)+ k6T F(s)+ k7E(s)− k8S(s)

− k10G(s)H(s)− k11G(s)D(s),

(7)

where M(s), P(s), G(s), MiRNA(s), T F(s), E(s), S(s), H(s), and D(s) are the Laplace transforms of m(t), p(t), g(t),
miRNA(t), t f (t), e(t), s(t), h(t), and d(t), respectively. We assume that the fractional derivative is a conformable
fractional derivative of order α and that the initial conditions are zero.

Next, we solve for each variable in terms of the others using algebraic manipulations:

M(s) =
k1G(s)

sα + k2 + k9MiRNA(s)

P(s) =
k3M(s)

sα + k4

G(s) =
k6T F(s)+ k7E(s)− k8S(s)

sα + k5 + k10H(s)+ k11D(s)
.

(8)

Substituting these expressions for M(s) and P(s) into the equation for G(s), we obtain:

G(s) =
k6T F(s)+ k7E(s)− k8S(s)

sα + k5 + k10H(s)+ k11D(s)

−
k3k1

(sα + k2 + k9MiRNA(s))(sα + k4)(sα + k5 + k10H(s)+ k11D(s))
G(s).

(9)

Solving for G(s), we obtain:

G(s) =
k6T F(s)+ k7E(s)− k8S(s)

(sα + k5 + k10H(s)+ k11D(s))

+
k3k1

(sα + k2 + k9MiRNA(s))(sα + k4)(sα + k5 + k10H(s)+ k11D(s))
×

k6T F(s)+ k7E(s)− k8S(s)

(sα + k5 + k10H(s)+ k11D(s))
.

(10)

We can simplify this expression further by finding a common denominator:

G(s) =
(k6T F(s)+ k7E(s)− k8S(s))(sα + k2 + k9MiRNA(s))(sα + k4)

(sα + k5 + k10H(s)+ k11D(s))(sα + k2 + k9MiRNA(s))(sα + k4)

+
k3k1(k6T F(s)+ k7E(s)− k8S(s))

(sα + k2 + k9MiRNA(s))(sα + k4)(sα + k5 + k10H(s)+ k11D(s))(sα + k5 + k10H(s)+ k11D(s))
.

(11)

Now, we can factor out G(s) from the numerator and simplify:

G(s) =
1

(sα + k5 + k10H(s)+ k11D(s))(sα + k2 + k9MiRNA(s))(sα + k4)

× [(k6TF(s)+ k7E(s)− k8S(s))(sα + k2 + k9MiRNA(s))(sα + k4)

+ k3k1(k6T F(s)+ k7E(s)− k8S(s))(sα + k5 + k10H(s)+ k11D(s))].

(12)
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Finally, we can solve for G(s) by multiplying both sides by the common denominator and rearranging:

G(s) =
(k6T F(s)+ k7E(s)− k8S(s))(sα + k2 + k9MiRNA(s))(sα + k4)

(sα + k5 + k10H(s)+ k11D(s))(sα + k2 + k9MiRNA(s))(sα + k4)

+
k3k1(k6T F(s)+ k7E(s)− k8S(s))(sα + k5 + k10H(s)+ k11D(s))

(sα + k2 + k9MiRNA(s))(sα + k4)(sα + k5 + k10H(s)+ k11D(s))
.

(13)

G(s) =
A

sα + k5 + k10H(s)+ k11D(s)
+

B

sα + k2 + k9MiRNA(s)
+

C

sα + k4

+
D

sα + k5 + k10H(s)+ k11D(s)
+

E

(sα + k5 + k10H(s)+ k11D(s))2
,

(14)

where A, B, C, D, and E are constants that we need to determine. We can find these constants by multiplying both sides
by the denominator of each term and then substituting appropriate values for s. To find A, we multiply both sides by
sα + k5 + k10H(s)+ k11D(s) and then set s = −(k5 + k10H(0)+ k11D(0)), where H(0) and D(0) are the initial values of
H(s) and D(s), respectively. Similarly, we can find the other constants by appropriate choices of s. After some algebraic
manipulation, we find that:

A =
k6T F(0)+ k7E(0)− k8S(0)

(k5 + k10H(0)+ k11D(0))2

B =
k3k1

(k2 + k9MiRNA(0))(k4 − k2)

[

k6T F(0)+ k7E(0)− k8S(0)

k5 + k10H(0)+ k11D(0)
−

k6TF(0)+ k7E(0)− k8S(0)

k5 + k10H(0)+ k11D(0)+ k4 − k2

]

C =
k6T F(0)+ k7E(0)− k8S(0)

k4 − k2

D =−
k3k1

(k2 + k9MiRNA(0))(k4 − k2)

E =
k3k1

(k2 + k9MiRNA(0))(k5 + k10H(0)+ k11D(0))2
.

(15)

Substituting these values in the expression for G(s), we obtain:

G(s) =
k6T F(0)+ k7E(0)− k8S(0)

(sα + k5 + k10H(s)+ k11D(s))2
+

k3k1

(k2 + k9MiRNA(0))(k4 − k2)
[

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)
−

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)+ k4 − k2

]

+
k6T F(0)+ k7E(0)− k8S(0)

k4 − k2

·
1

sα + k4

−
k3k1

(k2 + k9MiRNA(0))(k4 − k2)
·

1

sα + k5 + k10H(s)+ k11D(s)

+
k3k1

(k2 + k9MiRNA(0))(k5 + k10H(0)+ k11D(0))2
·

∂

∂ s

[

1

sα + k5 + k10H(s)+ k11D(s)

]

.

(16)

Obtaining the time-domain expression for each expression:

k6T F(0)+ k7E(0)− k8S(0)

(sα + k5 + k10H(s)+ k11D(s))2
=

1

sα + k5 + k10H(s)+ k11D(s)
·

∂

∂ s

[

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)

]

. (17)
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We can then express G(s) as:

G(s) =
1

sα + k5 + k10H(s)+ k11D(s)
·

[

∂

∂ s

[

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)

]

+
k3k1

(k2 + k9MiRNA(0))(k4 − k2)

[

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)
−

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)+ k4 − k2

]

+
k6T F(0)+ k7E(0)− k8S(0)

k4 − k2

·
1

sα + k4

−
k3k1

(k2 + k9MiRNA(0))(k4 − k2)
·

1

sα + k5 + k10H(s)+ k11D(s)

+
k3k1

(k2 + k9MiRNA(0))(k5 + k10H(0)+ k11D(0))2
·

∂

∂ s

[

1

sα + k5 + k10H(s)+ k11D(s)

]]

.

(18)

We can now take the inverse Laplace transform of each term separately. The first term in 18 involves finding the inverse
Laplace transform of a function that is the product of two functions, one of which has a derivative. We can use the
convolution theorem to simplify this term as:

L
−1

[

∂

∂ s

[

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)

]]

=
∫ t

0

∂

∂τ

[

L
−1

(

k6T F(0)+ k7E(0)− k8S(0)

(sα + k5 + k10H(s)+ k11D(s))2

)]

dτ. (19)

The inverse Laplace transform of the second term in 18 is simply:

L
−1

[

k3k1

(k2 + k9MiRNA(0))(k4 − k2)

[

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)
−

k6T F(0)+ k7E(0)− k8S(0)

sα + k5 + k10H(s)+ k11D(s)+ k4 − k2

]]

=
k3k1

(k2 + k9MiRNA(0))(k4 − k2)

[

k6TF(0)+ k7E(0)− k8S(0)

(k4 − k2)(t − τ)
−

k6TF(0)+ k7E(0)− k8S(0)

(k4 − k2)(t − τ)

]

.

(20)

The inverse Laplace transform of the third term in 18 is:

L
−1

[

k6T F(0)+ k7E(0)− k8S(0)

k4 − k2

·
1

sα + k4

]

=
k6T F(0)+ k7E(0)− k8S(0)

k4 − k2

·
1

tα−1Γ (α)
. (21)

where Γ (α) is the gamma function.

The inverse Laplace transform of the fourth term in 18 is:

L
−1

[

−
k3k1

(k2 + k9MiRNA(0))(k4 − k2)
·

1

sα + k5 + k10H(s)+ k11D(s)

]

=−
k3k1

(k2 + k9MiRNA(0))(k4 − k2)
·

1

tα−1Γ (α)
.

(22)

Finally, the inverse Laplace transform of the fifth term in 18 is:

L
−1

[

k3k1

(k2 + k9MiRNA(0))(k5 + k10H(0)+ k11D(0))2
·

∂

∂ s

[

1

sα + k5 + k10H(s)+ k11D(s)

]]

=
k3k1

(k2 + k9MiRNA(0))(k5 + k10H(0)+ k11D(0))2
·

∂

∂ t

[

1

tα−1Γ (α)

]

=−
k3k1

(k2 + k9MiRNA(0))(k5 + k10H(0)+ k11D(0))2
·

α

tαΓ (α + 1)
.

(23)
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Substituting these inverse Laplace transforms back into the original equation, we obtain the time-domain representation
of the mRNA expression:

m(t) =
k3k1

(k2 + k9MiRNA(0))(k4 − k2)

[

k6T F(0)+ k7E(0)− k8S(0)

(t − τ)Γ (α)

−
k6T F(0)+ k7E(0)− k8S(0)

tα−1Γ (α)

+
α

(k2 + k9MiRNA(0))(k5 + k10H(0)+ k11D(0))2
·

k3k1

tαΓ (α + 1)

]

.

(24)

Equation 24 represents the concentration of mRNA at time t in terms of the initial concentrations of various molecules
and the model parameters. The first term represents the contribution of the delayed feedback loop, the second term
represents the contribution of the auto-regulatory loop, and the third term represents the contribution of the degradation
process.

p(t) =
k3k1(k6T F(0)+ k7E(0)− k8S(0))2

k4(k2 + k9MiRNA(0))

[

1

Γ (α + 1)
tα e−k4t

−
1

k4 − k5

(

1

Γ (α + 1)
−

1

Γ (α + 1,k4/k5)

)

e−k5t

(

tα −
1

(k4/k5)α
tα2F(1)(α,1−α,1−α − k4/k5,−t(k4 − k5))

)

+
k3k1(k6TF(0)+ k7E(0)− k8S(0))

k5 − k10H(0)− k11D(0)

(

k10H(0)

k5 − k10H(0)− k11D(0)

)α+1

·2F(1)(α + 1,1;α + 2;k10H(0)t)

+
k3k1(k6TF(0)+ k7E(0)− k8S(0))

k4 − k5

(

k11D(0)

k4 − k5 − k10H(0)

)α+1

·2F(1)(α + 1,1;α + 2;k11D(0)t)

+
k3k1(k6TF(0)+ k7E(0)− k8S(0))

(k4 − k5)(k5 − k10H(0)− k11D(0))

(

k10H(0)

k4 − k10H(0)− k11D(0)

)α+1(
k11D(0)

k4 − k5 − k10H(0)

)α+1

·2F(1)

(

α + 1,1;α + 2;
k10k11H(0)D(0)

(k4 − k10H(0)− k11D(0))(k5 − k10H(0)− k11D(0))
t

)]

.

(25)

g(t) =
k12(k6TF(0)+ k7E(0)− k8S(0))

(k12 + k13)α+1

∞

∑
n=0

(−1)n

n!Γ (αn+ 1)

×

[

(

k13

k12 + k13

t

)αn+1

F(1)

(

αn+ 1,α + 1,−
k12k13

(k12+ k13)2
t

)

−

(

k12

k12 + k13

t

)αn+1

F(1)

(

αn+ 1,α + 1,−
k12k13

(k12 + k13)2
t

)

]

.

(26)

5 Numerical analysis

The numerical solution for the dynamics of system 1 is carried out using the Matlab FDE12 solver which implements the
predictor-corrector method of Adams-Bashforth-Moulton [40].

5.1 Reproduction number and coefficient

The reproduction number and reproduction coefficient are concepts used in epidemiology to describe the spread of
infectious diseases. They can be adapted to describe the dynamics of other types of systems as well, including gene
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expression models.

In this gene expression model, the reproduction number and reproduction coefficient can be defined in terms of the rate
constants governing the interactions between different components of the system.

The reproduction number R0 represents the average number of new mRNA transcripts produced by a single gene in the
absence of any regulation or inhibition. It can be calculated as follows:

R0 =
k1

k2

(27)

Here, k1 represents the transcription rate constant, and k2 represents the mRNA degradation rate constant. The ratio of
these two rate constants represents the rate at which new mRNA transcripts are produced relative to the rate at which
existing mRNA transcripts are degraded.

The reproduction coefficient R represents the average number of new mRNA transcripts produced by a single gene in the
presence of regulation or inhibition. It can be calculated as follows:

R =
k1

k2 + k9[miRNA]
. (28)

Here, k1 represents the transcription rate constant, k2 represents the mRNA degradation rate constant, and k9 represents
the rate constant for the binding of miRNAs to mRNA. The term [miRNA] represents the concentration of miRNA. The
denominator of the equation represents the combined rate at which existing mRNA transcripts are degraded and the rate
at which miRNA molecules bind to mRNA and cause degradation or translational inhibition.

The reproduction number and reproduction coefficient are essential parameters in understanding the dynamics of gene
expression systems. A high reproduction number or coefficient implies that a gene can produce many mRNA transcripts,
leading to an increased production of proteins. On the other hand, a low reproduction number or coefficient suggests that
the gene expression is inhibited, leading to a reduced production of proteins. Medical researchers can use this
information to identify potential targets for drug development or gene therapy to treat diseases resulting from gene
expression dysregulation.

5.2 Sensitivity analysis

To perform a sensitivity analysis, we vary each parameter and variable by a small amount and observe how it affects the
behavior of the system. We use the numerical method known as the finite difference method to estimate the sensitivity
coefficients for each parameter and variable [41]. The sensitivity coefficients quantify the rate of change of the model
output with respect to changes in the input variables.

We will define the sensitivity coefficient Si for the i-th parameter as follows:

Si =
∆ lny

∆ lnki

, (29)

where ∆ lny is the change in the logarithm of the model output y due to a small change ∆ lnki in the logarithm of the i-th
parameter.

Similarly, we will define the sensitivity coefficient S j for the j-th variable as follows:

S j =
∆ lny

∆ lnv j

, (30)

where ∆ lnv j is the change in the logarithm of the j-the variable.

The results of the sensitivity analysis are summarized in Table 2. We observe that the most sensitive parameters are k1 and
k2, which control the transcription and mRNA degradation rates, respectively. The most sensitive variables are mRNA and
protein, which are the intermediates and final products of the gene expression process, respectively.
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Table 2: Summary of sensitivity coefficients for parameters and variables in the gene expression model.

Symbol Description Sensitivity coefficient

k1 Transcription rate constant 1.5

k2 mRNA degradation rate constant -0.8

k3 Translation rate constant 0.1

k4 Protein degradation rate constant -0.1

k5 Basal gene expression rate constant -0.05

k6 Rate constant for binding of transcription factors 0.02

k7 Rate constant for binding of enhancers 0.01

k8 Rate constant for binding of silencers -0.01

k9 Rate constant for binding of miRNAs to mRNA -0.02

k10 Rate constant for effect of histone modifications 0.01

k11 Rate constant for effect of DNA methylation -0.01

m(t) mRNA 1.5

p(t) Protein -0.7

g(t) Gene 0.1

miRNA(t) microRNA 0

t f (t) Transcription factor 0.02

e(t) Enhancer 0.01

s(t) Silencer -0.01

h(t) Histone modification 0.01
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Fig. 2: Dynamics of the gene expression model
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Fig. 4: Dynamics of the gene expression model

© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 3, 463-480 (2024) / www.naturalspublishing.com/Journals.asp 475

0 10 20 30 40 50 60

time

40

60

80

100

120

140

160

180

G
e
n
e

m(t); alpha=0.4

m(t); alpha=0.6

m(t); alpha=0.8

p(t); alpha=0.4

p(t); alpha=0.6

p(t); alpha=0.8

g(t); alpha=0.4

g(t); alpha=0.6

g(t); alpha=0.8

Fig. 5: Dynamics of the gene expression model

Sensitivity analysis of gene expression model

-1 -0.5 0 0.5 1 1.5

Sensitivity coefficient

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

Fig. 6: Sensitivity analysis result

© 2024 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


476 D. Amilo et al.: Newly Proposed Solutions ...

k1 k2 k3 k4 k5 k6 k7 k8 k9 k1
0

k1
1 m p g

m
iR

N
A tf e s h

-1

-0.5

0

0.5

1

1.5
S

e
n
s
it
iv

it
y
 c

o
e
ff
ic

ie
n
t

Sensitivity analysis of gene expression model

Fig. 7: Sensitivity analysis result
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Fig. 8: Reproduction number and coefficient
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Fig. 9: Perturbation trajectory of m(t) and p(t)
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Fig. 10: Perturbation trajectory of m(t), p(t) and g(t)

6 Result and conclusion

The presented model utilizes fractional calculus to simulate the dynamics of gene expression in a biological system. The
model includes interactions between different genetic elements such as mRNA, proteins, genes, miRNA, transcription
factors, enhancers, silencers, histone modifications, and DNA methylation, with rate constants for each element
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determining the rate of transcription, translation, and degradation. The simulation results show that the behavior of the
gene system varies with changes in the value of alpha. In particular, increasing alpha can lead to faster decay of mRNA
and protein levels, meaning that the gene expression response becomes faster. This is because the fractional derivative
operator represents a non-local time-derivative that takes into account the entire history of the function, and higher values
of alpha lead to more weight being placed on the recent values of the function. Therefore, the gene expression response
becomes more sensitive to recent changes in the levels of regulatory elements.

The results reveal that different variables in the model have different sensitivities to changes in alpha. For example, the
mRNA levels (represented by the variable ’m’) are more sensitive to changes in alpha compared to protein levels
(represented by the variable ’p’). This is because mRNA levels are more directly affected by the transcription and
degradation processes that are influenced by alpha, whereas protein levels are also affected by translation processes that
are not directly affected by alpha. The simulation results, represented in Figures 2, 3, 4 and 5, demonstrate how different
gene expression elements change over time with varying fractional orders of the derivative. The plots show the
time-dependent behavior of mRNA, proteins, and genes for different fractional orders of the derivative. These results can
have significant implications in medical research, particularly in the study of genetic diseases. By modeling the behavior
of genes, proteins, and other genetic elements, researchers can gain a better understanding of the underlying mechanisms
of diseases and develop targeted therapies.

The sensitivity analysis conducted on the gene expression model yielded the results summarized in Table 2 and shown in
Figures 6 and 7. The sensitivity coefficient represents the fractional change in the output of the model due to a fractional
change in the corresponding parameter or variable. A positive sensitivity coefficient indicates that an increase in the
value of the parameter or variable will lead to an increase in the output, while a negative sensitivity coefficient indicates
that an increase in the value will lead to a decrease in the output. From the table, we can see that the most sensitive
parameter is k1, the transcription rate constant, with a sensitivity coefficient of 1.5. This means that a 1% increase in the
transcription rate constant will result in a 1.5% increase in the output of the model. The second most sensitive parameter
is m(t), mRNA concentration, also with a sensitivity coefficient of 1.5. This implies that a 1% increase in mRNA
concentration will result in a 1.5% increase in the output of the model. On the other hand, the most sensitive variable is
p(t), protein concentration, with a sensitivity coefficient of -0.7. This suggests that a 1% increase in protein
concentration will lead to a 0.7% decrease in the output of the model. The next most sensitive variables are k2 and k4, the
mRNA and protein degradation rate constants, respectively, with sensitivity coefficients of -0.8 and -0.1. This means that
an increase in the degradation rate constants will result in a decrease in the output of the model.

From a medical perspective, these sensitivity coefficients can provide insight into potential therapeutic targets for
diseases that involve aberrant gene expression. For example, if a disease is characterized by low levels of a specific
protein, then targeting the transcription rate constant or mRNA concentration may be an effective approach for
increasing protein expression. Similarly, if a disease is characterized by high levels of a specific protein, targeting the
degradation rate constant may be a viable option for reducing protein expression. However, any such interventions would
require careful consideration of potential side effects and the complex nature of gene expression regulation.

The reproduction number, R0, is a measure of the average number of new mRNA transcripts produced by a single gene in
the absence of any regulation or inhibition. It is determined by the ratio of the transcription rate constant, k1, and the
mRNA degradation rate constant, k2. The reproduction coefficient, R, is a measure of the average number of new mRNA
transcripts produced by a single gene in the presence of regulation or inhibition, and is calculated by taking into account
the concentration of miRNA, which affects the rate at which existing mRNA transcripts are degraded or inhibited. Figure
8 shows the values of R0 and R as a function of miRNA concentration. The red line shows R0, which remains constant
regardless of the concentration of miRNA. This is because R0 is a constant value determined by the rate constants k1 and
k2. The blue line shows R, which decreases with increasing miRNA concentration. This is because the binding of
miRNA to mRNA reduces the rate at which new mRNA transcripts are produced, leading to a decrease in R. The point at
which R crosses R0 is an important threshold, as it represents the concentration of miRNA at which the regulation of
gene expression shifts from promoting to inhibiting mRNA production. The results have important implications for
medical research. Dysregulation of gene expression is a hallmark of many diseases, including cancer, and understanding
the mechanisms that control gene expression can help in the development of new therapies. The reproduction number
and coefficient are important parameters in determining the potential for gene expression dysregulation and can be used
to identify targets for drug development or gene therapy. The plot shows how changes in miRNA concentration can affect
gene expression and provides insight into the regulatory mechanisms that control gene expression.

Furthermore, this model can be used to predict the effects of drugs on gene expression and protein synthesis. The
fractional order of the derivative can be used to fine-tune the model to a specific disease or treatment, enabling a more
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accurate representation of the disease or treatment’s effects on gene expression. In conclusion, the fractional gene
expression model presented in Figure 1 and Equation 1 can contribute to advancing our knowledge of gene expression
dynamics in healthy and diseased states, and aid in guiding medical research and drug development efforts. Overall, the
simulation provides valuable insights into the behavior of the gene regulatory network and how it is influenced by the
fractional derivative parameter alpha. These insights can help in understanding the mechanisms underlying gene
expression and in designing interventions to modulate gene expression for therapeutic purposes. The gene expression
model demonstrated robustness to small perturbations in the initial conditions, as evidenced by the lack of significant
differences between the original and perturbed plots, as shown in Figures 9 and 10. This indicates a stable and consistent
behavior of the gene regulatory network, highlighting its resilience and predictability in maintaining its intended
functions.

The novelty of this research lies in the use of fractional-order calculus to model gene expression dynamics, which offers
significant advantages over traditional integer-order models. The fractional-order derivative takes into account the
memory effect, which means that past gene expression levels affect the current levels, unlike ordinary differential
equations. Moreover, the proposed model is less complex than partial differential and stochastic models, making it a
more practical approach for analyzing gene expression data. The study shows that the proposed fractional model can
capture the nonlinear dynamics of gene expression and provide insights into the underlying regulatory mechanisms,
which cannot be fully explained by traditional integer-order models. The sensitivity analysis reveals the most sensitive
parameters and variables, providing valuable insight into potential therapeutic targets for diseases that involve aberrant
gene expression. Furthermore, the proposed model can be used to predict the effects of drugs on gene expression and
protein synthesis, providing a more accurate representation of the disease or treatment’s effects on gene expression. This
highlights the potential of fractional-order calculus in the field of gene expression modeling and provides a promising
avenue for developing more effective treatments for various diseases.
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