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Abstract: In this paper, we used Global Error Minimization (GEM)method for nonlinear oscillators. This method convert the nonlinear
oscillators into an equivalent optimization problem to obtain an analytical solution of the problem. Approximate solution obtained by
GEM method is compared with the solution of He’s variational approach. Weobserve from the results that this method is very simple,
easy to apply, and gives a very good accuracy by using first-order approximation and simplest trial functions. Comparison made with
other known results show that new method provides a mathematical tool to the determination of limit cycles of more complex nonlinear
oscillators. This method is applied on nonlinear differential equations. It has demonstrated the accuracy and efficiency of this method
by solving some example. Example is given to illustrate the effectiveness and convenience of the method.
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1 Introduction

There are many approaches for approximating solutions
to nonlinear oscillatory systems. The most widely studied
approximation methods are the perturbation methods [6].
The simplest and perhaps one of the most useful of these
approximation methods is the Lindstedt-Poincare
perturbation method, where by the solution is analytically
expanded in the power series of a small parameter [2]. To
overcome this limitation, many new perturbative
techniques have been developed. Modified
Lindstedt-Poincare techniques [3,4,5], the homotopy
perturbation method [6,7,8,9,10,11,12] or linear delta
expansion [13,14,15] are only some examples of them. A
recent detailed review of asymptotic methods for strongly
nonlinear oscillators can be found in [1,35,36,37,38].
The harmonic balance method is another procedure for
determining analytical approximations to the periodic
solutions of differential equations by using a truncated
Fourier series representation [2,16,17,18,19,20,21,22,
23,24]. This method can be applied to nonlinear
oscillatory systems where the nonlinear terms are not
small and no perturbation parameter is required.

In this paper, we used new variational approach
proposed by He [25] to develop a method called GEM

(Global Error Minimization) method. In this method, the
nonlinear oscillator is converted to an equivalent
minimization problem. We combine the general idea of
global error minimization in the AVK method [26] and
He’s variational approach [25] for solving the nonlinear
ODE’s. The idea of error minimization is a natural
process. Therefore, we believe that GEM method
provides a natural way to obtain a solution.
Suppose nonlinear oscillator

u′′+F
(
u′,u, t

)
= 0 (1)

with initial conditionsu(0) = A andu′ (0) = 0.

2 Preliminaries

Definition 1.Consider the nonlinear system(1); we define
the following functional for the oscillator equation, called
the global error functional [26]. Suppose

E
(
u′,u, t

)
=

T∫

0

∣∣∣∣u′′+F
(
u′,u, t

)∣∣∣∣2dt, T =
2π
ω

(2)

ω is the primary natural frequency and E is a continuous
functional.
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Definition 2.We convert the nonlinear ODE in equation
(1) and(2) to the following minimization problem:
Minimize

E
(
u′,u, t

)

such that
u(0) = A,u′(0) = 0. (3)

Lemma 1.If h is a nonlinear continuous function on[0,T]
and non-negative(h≥ 0), then the necessary and

sufficient condition for
T∫

0
h du= 0 is h≡ 0 on [0,T] [26].

Proof.See [26].

Theorem 1.The necessary and sufficient condition for u
to be a solution of the nonlinear ODE [1] with initial
condition u(0) and u′ (0) = 0 is E(u′,u, t) = 0 the
minimization problem3.

Proof.See methods[26].

3 Outline of the procedure

The solution of equation (1) can be expressed in the form
of Fourier series [27]:

u= a0+
∞

∑
n=1

(ancosnωt +bnsinnωt) . (4)

Here a0, an and bn are constants. These unknown
constants could not be determined for the case of infinite
Fourier series. However, we can approximate equation (4)
by a finite series [28,29]:

ũ= a0+
m

∑
n=1

(ancosnωt +bnsinnωt). (5)

Various methods have been developed for determining the
unknown constants used in equation (5), [1,28,30,31,32].
In this paper, a natural and efficient method will be
developed for determining these unknowns.

The nonlinear problem [1] is first converted to the
minimization problem with the unknown constants of
equation (5). Consider the case whereE (u′,u, t) = 0;
then, with respect to Theorem 1,ũ happens to be the exact
solution. Generally such a case will not arise for
nonlinear problems. However, ifE (u′,u, t) ∼= 0, we find
an excellent analytical approximated of the original
nonlinear(1). It is worth noting that we know the desired
answer of our minimization problem in advance, which is
zero. Therefore, we have a valuable measure for
comparing the accuracy of the approximated solutions.
Note thatE (u′,u, t) is the global error and any reduction
in this functional, by choosing a better trial solution,
would greatly improve the approximation of the
analytical solution.

4 Applications

In order to assess the advantages and the accuracy of new
method, we will execute our examples, we use Maple
package 11.

Example 1.Now we apply GEM [34] to the following
nonlinear oscillator:

u′′+u+au3+bu5+cu7 = 0, (6)

with initial conditions given by (3).

We begin the procedure with the simplest trial solution:

ũ1 (t) = bcosωt. (7)

Next, we convert equation (6) to the minimization
problem:
Minimize

E
(
u′,u, t

)
=

T∫

0

∣∣∣
∣∣∣ũ′′1 + ũ1+aũ3

1+bũ5
1+cũ7

1

∣∣∣
∣∣∣
2
dt, T =

2π
ω

,

such that
ũ1 (0) = A, ũ′1 (0) = 0. (8)

The constraints of the minimization problem are readily
satisfied by choosingb = A. Therefore, by replacing
ũ1(t) = Acosωt in (8) and performing the integration, we
obtain:
Minimize

E
(
u′1,u1, t

)
=

A2π (q1+q2)

1024ω
, (9)

where

q1 = 1024
(
1+ω4)−2048ω2+429c2A12 (10)

+ 1280bA4+1120cA6+1536aA2 (11)

q2 = 504b2A8+640a2A4−1536aω2A2+1120abA6 (12)

+ 1008acA8−1280bω2A4+924bcA10−1120cω2A6
.(13)

The solution of equation (9) could be found through the
condition,
Minimize

∂E (ũ′1, ũ1, t)
∂ω

= 0.

ω =

√
192+144aA2+120bA4+105cA6−3Q

24
, (14)

whereQ=
√

Q1+Q2 with

Q1 = 9984a2A2+17280abA6+15456acA8 (15)

+ 24576aA2+7648b2A8 (16)

Q2 = 13888bcA10+20480bA4+6373c2A12 (17)

+ 17920cA6+16384. (18)

The comparison of the approximate solution withω is

given in (10) and exact solution [33].
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Fig. 1: a = 10, b = c = 1, A = 0.01

Fig. 2: a = 10, b = c = 1, A = 1

Fig. 3: a = 10, b = c = 1, A = 0.1

Fig. 4: a =0.1, b = c = 1, A = 1

Fig 1,2,3,4 are comparison of the approximate solution
u = Acosωt, where ω is defined by equation (10).
Dashed line approximate solution; continuous line; He’s

variational method (HVM, [33]).

For the caseb = c = 0, equation (6) turns to be the
well-known Duffing equation, and its
frequency-amplitude relationship obtained by the
homotopy perturbation method, the variational iteration

method [25], is ω =
√

1+ 3
4aA2.

5 Conclusion

In this research, we have used Global Error Minimization
(GEM) method for nonlinear oscillators. This method
converts the nonlinear oscillators into an equivalent
optimization problem. Approximate solution obtained by
GEM method is compared with the solution of He’s
variationl approach [33]. All solutions are almost
identical see fig 1,2,3,4. We observe from the results that
this method is very simple, easy to apply. This method
gives a very good accuracy by using first-order
approximation and simplest trial functions. Comparison
made with other known results show that new (GEM)
method provides a simple way of determination the limit
cycles of more complex nonlinear oscillators.
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