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Abstract: This paper introduces a new four-parameter distributiotivated mainly by dealing with series-parallel or paraBeties
systems is introduced. Moments, conditional moments, rdegiations, moment generating function, probability virégl moments,
quantile, Lorenz and Bonferroni curves of the new distitdouincluding are presented a. Entropy measures are giviceestimation of
its parameters is studied. A real data application is diesdrio show its superior performance versus some knowimiiéatnodels.
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1 Introduction

This research aims at introducing a new four-parameteintite distribution with physical motivations. The proposed
distribution gives preferred fits over a large number of tmewn lifetime distributions, including those with four
parameters.

Our second motivation is based on a practical situationyevhecompany has two factories. The productions of the two
factories are assembled together before going to the mar@mtever, the production manager will interested in
analyzing the characteristics of each production line s#ply. The problem here is that one factory consists of
machines in sequence (connected in series) with a repiadteach individual machine, while the other factory is a
collection of machines connected in tandem as subsystediharsubsystems are connected in parallel. So, this system
that can handle a mix of series-parallel or parallel-sec@sfiguration, i.e., Min MaxX; or Max Min X;. Then, the
cumulative distribution function oX, sayG(x), can be derived as follows:

1.1 Distribution of series-parallel system (Mini Max)

Nadarajah et al.g] introduced a two-parameter distribution which represegeneral model by taking the probability
density function of the cumulative distribution functioffailure times to be given by () andF(), respectively. Its cdf is
given by

exp(—A +AF(x)) —e A

S = T e 7 mexp AT AF )

1)
forx > 0,A > 0 and O< 1T < 1. the corresponding probability density function is,

— — _A -
o0 A(L n)i(l e M) f(x)exp(—A +A F(>2())7 (2)
(1—e? —m+ mexp(—A +AF(x)))
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The Weibull distribution is a widely used statistical modi@ studying fatigue and endurance life in engineering
devices and materials. So we chose it as a base distribdticandom variableX is said to have a Weibull distribution
with parametea, B.if its probability density is defined as,

f(x) = aBo e~ P¥% x> 0,a >0,8> 0. (3)

The corresponding cumulative distribution function (adf)

F(x)=1—e B x>0,a>0,8>0. (4)

Assume that the failure times of the units for the i th systeayZ; 1), Z 2), - -, Zm) , are independent and identical

weibull random variables with the scale and shape PararfieterLetY; denote the failure time of the ith system. Let
X denote the time to failure of the first of tiNefunctioning systems. We can wri¥éé= min(Y1,Y>,,Y,). The conditional
cumulative distribution function oX givenN is,

exp(—)\ e‘<5x)a) —e A

G(x) = 5
X = Tmeh = mexp(—Ae B9 ®)
forx> 0,0 > 0,8 > 0,A > 0and0 < T < 1. The corresponding probability density function is,
Aap?(1-m(1-e )X Vexp(—(Bx)7 —Ae FX")
9(x) = : (6)

(1—e? —nj1—exp(—A e*<l3x>“)])2

forx> 0,0 > 0,8 > 0,A > 0and0 < 11 < 1. we shall refer to the distribution given b$)(and ) as the geometric
weibull Poisson (GWP).

1.2 Distribution of Parallel-Series System (Max Mini)

Suppose the machine is made of M series units, so that theimeawfil fail if one of the units fail. Assume thatlis
a truncated Poisson random variable independeviimiaddition, the failure times of the units for the i th systesay

(,m) are independent and identical weibull random variableb e scale and shape Paramgien.
LetY enote the fa|Iure time of the ith system. Rédlenote the time to failure of the last of thdunctioning systems.
We can writeX = maxX?(Y1,Ys,,Y,). Then, the cumulative distribution function ¥f sayG(x), can be derived as follows:
the conditional cumulative distribution function of X givél is,

~ (A-mPr(Y <x)
G =T rprv=x) - @)
and
PI’(Y < X) =Pr [(Z(i,l)aZ(LZ)v ... vZ(LM)) < X}
expA) —exp()\ e‘<5x)a)
N e —1 ’
o)

(1—m[1—exp(~A +AeB9") —e|

G(x) = 8
Y = e T rexp( A Ae BT ®
forx>0,a0 > 0,8 >0,A > 0and O< rr< 1. the corresponding probability density function is,
AaB(1—m(1— e—A)x<a—1>exp(—(ﬁx)“ —A +Ae—<BX>")
9(x) = : 9)

(1-e? —mfl—exp(—A +Ae(BY)))?
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We shall refer to the distribution given bg)(and @) as the geometric weibull Poisson (GWP1). The parameieasd

11, control the shape. The paramef@rcontrols the scale.

Ghitany et al. ] investigated the properties of the zero-truncated Paoidsndley distribution. There exist some
parametric models which are obtained in a compounding oimmiway with decreasing failure rate (DFR) such as the
exponential geometric (EG) distribution (Adamidis and kas, P]), modified Weibull geometric distribution (Wang and
Elbatal, [L2]), the extended exponential geometric (EEG) distributiais also been introduced by Adamidis et &])([
which is an extension of the EG model with DFR and increasailgrfe rate (IFR) functions. Silva et all]] defined the
generalized exponential geometric (GEG) distribution ahdwed that its failure rate function can be increasing,
decreasing or unimodal. A Weibull geometric (WG) extensibthe GE distribution was proposed by Barreto-Souza et
al. for modeling monotone or unimodal failure rates. Mahdi@nd Shiran (f]) introduced the exponentiated Weibull
geometric distribution. Nadarajah et 8].proposed a geometric exponential Poisson distributidBR{zand provided a
comprehensive account of its mathematical propertiesfdihee rate function associated wit)(is given by

Aap(1-e )X Yexp(— (B —Ae(X7)
(1—exp—Ae (B¥)) (1—e A —nf1— exp( Ae(BYT)])’
Also, the reversed failure rate function

AaBo(1-m)(1—e )Xo exp( (B~ re(P97)
(exp—Ae (BY*) —e ) (1—er—m1— exp(—)\ e (BN)])”
Figure 1 (a) and (b) provide some plots of A&/ Pdensity curves for different values of the parametefis a andp.

(10)

h(x) =

th(x) =

A=l.a=5
— p=05.m=02
— =06, =04 ||
— 3=0.7 =06
— [=0.8, =08

Probability density funchon
Probability density function

(@) (b)

Fig. 1. Plots of theGW Pdensity function for some parameter values.

Figure 2 does the same for the associated hazard rate funstiowing that it is quite flexible for modelling survival
data.
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Fig. 2: Plots of theGW Phazard rate function for some parameter values.

Figure 2 illustrates possible shapes df0)( for selected parameter values. The shape appears moceltgni
increasing for a and p sufficiently small. The shape appearstonically decreasing = landg3sufficiently small. The
shape appears upside down bathtub for fgghdA sufficiently small.

The rest of the paper is organized as follows: In Sectione€2derive an expansion to the pdf and the cdf functions. In
Section.3, gives the quantile function for the new modeBéetion 4, some properties of the new distribution are given
Bonferroni and Lorenz Curves and mean deviations are disclis Section 5. In Section 6, we introduce the method of

likelihood estimation as point estimation of the unknowngpaeters. . In Section 7, contains measures of uncertéinty.
Section 8, we fit the distribution to a real data set to exarntiaed to suitability it with nested and non-nested models.

2 Expansion for the pdf and the cdf Functions

In this section we give another expression for the pdf anattiéunctions using the Maclaurin and Binomial expansions
for simplifying the pdf and the cdf forms.

2.1 Expansion for the pdf Function

From @), using the expansions

1-g0=5 (F)-d <t 1)
and " i
e—x: > (_”X) , (12)
Using (11), we can write §) as
~AaB(l-m(1—eMx @ Vexp(—(Bx)?) & (-2 T k (B
g(x) = (e Z ( k) [m} exp[—)\(k+ 1)e : (13)

Applying (12) to (13) for the termexp[—)\ (k+ 1)e‘<5x>°'} ,(13)can be written as:
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ar_ _ aAyy(a-1) _ ay o /s _1)i ko _
qy = 2P E=TEE SR 5 (V) S | qmai | Mt Diexal- i) 14)

(1-e- ")2 k=0

(14)can be written as:

—1)

AaBtA-mA-e MR o (OSE T o N e a
- (e’ —n? | {u—eA—m} Al 1) exp(—(j + 1)(B)%) (15)

The pdf of GW Pdistribution can then be represented as:

a(x)

90 = 3 A texp(—(j + 1)(BX). (16)

k,j=0
WhereA j is a constant term given by:

= (1) 2B m(1-e )L k+ 1))

k (1—e?—m) 2

2.2 Expansion for the cdf Function

Applying the expansion inl(l) to (5), the cdf function of th&sW Pdistribution can be written as:

% (_1> ™ {exp[—)\(k+ 1)e*<3x>a} —exp{—)\ — k)\e*“”‘)“H |

(1—97)‘ - n_)k+1

3 Quantile Function

The quantile function is obtained by inverting the cumwiatdistribution §), where the p-th quantilg, of the GWP
model is the real solution of the following equation:

Xp = {;—jm l_Tl'” (p(l—n)lt(;p— p)e‘Aﬂ } (17)

An expansion for the medidifollows by takingp = 0.5.

Y e 1-mte :
Xo5 = Ba h 2 1 .
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4 Statistical Properties

In this section, moments, conditional moments, Moment Gaitey Function of th&sW Pdistribution.

4.1 Moments

Thert" non-central moments or (moments about the origin) of@WéPunder using equatiori6) is given by:

= 0/ X ,Z A Lexp(—(j +1)(BX)%) dx

then

T (18)

4.2 Conditional and Reversed Conditional —Moments

For lifetime models, it is useful to know the conditional memts defined &(x' [x > t)

E(X'|x>t) = m/xrg(x)dx,

using equation8) the conditional moments is,

1 > 0 (=

S )
EX|x>t)= [1—G(t)] k,JX:O ) aBa+(j 1)

whererl;(a) = [x® le~*dxis the upper incomplete gamma function.
t

Reversed conditional moments defined &8 K <t)

t
E(x<t) = [G—%t)]/xrg(x)dx
0

using equation8) the conditional moments is,
+
r (%Y

GO 20 ™ ape(j 1)

SE

E(X'|x<t) =

t
wherel (a,t) = [x¥ le *dxs the lower incomplete gamma function.
0
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4.3 The Moment Generating Function

The moment generating functio(t), can be easily obtained as:

[ee]

Mu(t) = [ *gx)dx

0
/ & 5 A exp(—(j +1)(BY)dx
k,J=0

then, the moment generating function of tBé/ Pdistribution is given by,

o Ak t,—(IJrG)
27 a-+i( ad
kJI—OaB (J+1)a

where

8

E@) =y EX)

4.4 Probability Weighted Moments

The PW Msare expectations of certain functions of a random variabtethey can be defined for any random variable
whose ordinary moments exist. TP/ M method can generally be used for estimating parametersisfribdtion whose
inverse form cannot be expressed explicitly. Thg) th PW Mof following theGW Rlistribution, sayts, , is formally
defined by

00

Ter = E[X'G(X)¥] = / X' G(x)°g(x)dx
0

roy = PPN 7) FXet exp(—Ae (%) —e )| exp| e o }dx, (19)
(1-et—m " [1+ Tr[lezp(i\\e(ﬁx)a)]}

Using the expansions iig), (12), and Binomial, and applying irl@) we get

ror = k;ijimk; j O/ XTa=lexp{— (] + 1) (BX)?] dx

where o | | |
v ()~ a@—et)a—me e InpAltkrit 1)l
: (1—er—m*H )

By using gamma function we get
,— r+a)

Tsyr = ki .
= 25 M

If s=0,70; = E(X") = 1/ givenin (18).

5 Lorenz Curves, Bonferroni and Mean Deviations

In this section, we present Lorenz curves, Bonferroni aedhtlean deviation about the mean, the mean deviation about
the median. Bonferroni and Lorenz curves are income ingquieasures that are also useful and applicable in othes area
including reliability, demography, medicine and insuranc

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

488 NS 2 M. Mansour, E. Abd Elrazik: A new distribution to analyze agtical...

5.1 Lorenz Curves and Bonferroni

The Lorenz curvek(G)and BonferronB(G)are defined by
X
1
LE) = [ttt
0

0 I—(G+1 X)

a

L(G) = | .
o paBeti(j+1)%’

X
wherel (a,x) = [t3le dtis the lower incomplete gamma function and
0

BC) - 150 0/ tg(dt,

: (229
BG) = 3 A a
© mz:o UG apati(j+1) %

5.2 The Mean Deviation

In statistics, mean deviation about the mean and mean davaliout the median measure the amount of scatter in a
population. For random variable with pgfx) , distribution functionG(x) , mean and Median , the mean deviation about
the mean and mean deviation about the median, are defined by,

810 = | Ix— plg9dx
0
u

31() = 2uG(H) - 2 [ xglx)dx.
0
and

5204 = [ Ix—Mlg(x
0

respectively, ifX is GW Prandom variable then,

o0 ,—C{_{»l7
Ak (G u)

&1 (X) =2uG(u) -2 J R
Eo papati(j+1)%

and
: r(e2m)

a

62()():“_2 g a .
o paperi(j 1)

6 Measures of Uncertainty

In this section, we present Shannon entropg,[as well as Renyi entropyd] for the GW Pdistribution. The concept of
entropy plays a vital role in information theory. The enyay a random variable is defined in terms of its probability
distribution and is a good measure of randomness or unogytai
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6.1 Shannon Entropy

Shannon entropyl[d], is defined byH[g(x)] = E[—In?[g(x)]]. Thus, we have

H [g(X)] =—In )\GBC{(].— n)(l—zeA)] - (a+1)EInX+B"Ex" +/\Ee,<ﬁx)a
(1—8_)‘ — r[)
rrexp(_/\e*(BXY’)
+ 2EIn {1+ (1—e*)\ — rr) . 0
Note that,
EIn(1+x%) = .
n qu q (21)
using @1)
Eln|1+ rrexp( d ) i (—mIE {exp(_)\qe;ﬁX)“ﬂ
(1— e A — 2 q (1_ o n)
e _v_ ¢ (—1)atstigarsd giaga
N q; sZo i; s‘i!q175(1_eﬂ\ _n)q
and
einx=— 3 g1 i i( ) 1)9ExX
= a &
i IE x'
then
H [Q(X)] =—In [A aBG(l— T[)(l_ze_/\)‘| . (G+1)E|nX+BaEXa+)\Ee_(BX)a
(1—6*A — )

o q+s+|nq/\s§B|aE)da

Z) Z\ dilgt-s(1-e? —m)? " 22)

Now, we obtain Shannon entropy for t&&V Pdistribution as follows:

a1 _ A .
Hlg(x)] = —In [’\aﬁ(l(l ’I)(l )ze )] —(a+LEInx+BEX +AEe PV
s s e
q i o
eI (vl
klzo qul aq i; I IJGBCH_'(J-F].)%
a 1 S, (CYBEr(i+y
+B k; Aka aBZa(j + 1)2 +A k’N:OAkJ i!aBa(i+1)(j+1)(i+l)
© o o q+S+|n(J)\SSIBIC{ ) (+1)
2q 16= le"'ql s(1-e—m)° Z Vg ali+n(+nFD”
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6.2 Renyi Entropy

Renyi entropy 9] is an extension of Shannon entropy. Renyi entropy is defiode

Ir(r) = %In [/gr(x)dx] ,r>0,r#1,
0

where

nexp(—)\ e‘(‘”‘)a)

() = [”ﬁt?ﬁ;fﬂ X Dexp[ 1(Bx ~ Are=(5°] {1+

can be write 24) as:

fo [AaBi(l—m)(1—e?) Ce o T
g(x)_[ (1—e?—m)? ] kZ ( K )(1—6)‘—7T)k

X j'
Theg' (x) of GW Pdistribution can then be represented as:

GO = 3 BiX@ e B0
k,j=0 '

whereBy j is a constant term given by

(1-e?—n)

Bij = [)\aﬁa(l—")(l_e_'\)lr <—2r> = DAtk

(1—e?—m)? k et —mf il
Then . )
/gr(x)dx: i BKJ-/x'<“—1)e—(r+1')(ﬁ><)"dx
0 (S
o r r(or—al)+1)
- Z Bk*j rla—1)+1

6.3 s-Entropy

The s-entropy for th&W Pdistribution is defined by

Is(r) = :11 [1—/gr(x)dx] ,$>0,s#1
0

Now, using the same procedure that was used to derive Equ2iin

|

—2r

(23)

(24)

(25)

(26)

(27)
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o

1 [oe]
Is(r) = v ll_k,JzoDk’j - S(aal)H] ,$>0,s# 1

UBS("_1>+1(S—|— J)

r (S(G*l)“rl)

whereDy j is a constant term given by

Dy = [)\aﬁa(l—n)(l—e—/\)r<_23) = ~ (_1)1)\J(S+k)j'

(1-e?—m)? k e —m* !

7 Parameter Estimation

In this section, the maximum likelihood estimation is useastimate the unknown parameters. KetXo,..., X, be a
sample of size n from &W Pdistribution. Then the likelihood function)(is given by:

AMa"BN(L— mP(1— e APy x (@ Yexp(— BT 5y — A 3T e (P
- 7 (28)
ﬂizl(l—e— — 11— exp(—Ae-(Bx)?)])?

Hence, the log-likelihood functior,, becomes:

L=nInA +nina+aninB + nln(l—e")+iixi<°’1) + <_B"iixi“ ) iiewxi)“)
n aved
- Zi;In (1—e A n{l—exp(—)\e (Bx) )D . (29)

Therefore, the MLEs oA, B, o andr must satisfy the following equations:

n n e —mexp(—(Bx) —Ae (B¥)*
oA A er-1 £ (1—e? —m[1—exp(—Ae PI)])
oL n 2Ama B lexp( (ﬁxi)a_)\e%ﬁxo")

a-1 a-1 B —
35 B +a[3 lel +Aap I;x e (P0" Z 1—e?—n[l—exp(—Ae BN (1)

96 =g tnnB *ii’“a_l'”’“ - éﬁﬁ XTI A ée“m"wm“ In(Bx)
n exp(—(Bx)? —Ae F9") (Bx)?In(Bx)

B Zn)\i: (1-e?—m[1—exp(—Ae-B))]) ~ (32)
and
— 1—exp(—Ae B0
JL n ) _ ( _) — 33)
on (1—m) (1—e? —m[1—exp(—Ae P))])

The maximum likelihood estimatdt = ()\,B, a,fr)of 8 = (A, B, a,m) is obtained by solving the nonlinar system of
equations30) through @3). It is usually more convenient to use nonlinear optimmaglgorithms such as quasi-Newton
algorithm to numerically maximize the log-likelihood furam.
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Table 1: MLEs the measureAIC, AlC:, BIC,andK Stest to failure time data for the models

Model | Parameter | —LogL | AIC AlCc BIC KS
Estimates
GWP | A =0.990 | 234.12 | 476.24 | 477.12 483.88 0.14
3 =0.030
a =200
fr=0.099
GEP | A =0.0301 | 241.28 | 488.57 | 489.10 494.31 0.147
B =2.00
fr=0.099
EMW | 6 =0.0186 | 238.81 | 481.30| 482.19 488.95 0.161

AW 6 =0.0002 | 237.75 | 483.51| 484.40 491.16 0.15

Mw 6=182 241.02 | 488.05| 488.57 493.79 0.17

W B =578 240.979| 485.95| 486.2145| 489.7832| 0.1729

8 Application

In this section, we use a real data set to to see how the newlmamdlks in practice. compare the fits of the GWP
distribution with others models. In each case, the paramate estimated by maximum likelihood as described in Secti
7, using the R code.

In order to compare the two distribution models, we congidigria like KS (Kolmogorov Smirnov),-2L, AIC (Akaike
information criterion), BIC and AICC (corrected Akaike armation criterion) for the data set. The better distribati
corresponds to smaller KS,-2L, AIC and AICC values:

AIC = —2L + 2k,
2kn
A|CC =-2L+ m_,

and
BIC = —2L +klog(n),

whereL denotes the log-likelihood function evaluated at the maximikelihood estimates, k is the number of
parameters, and n is the sample size, wiedenotes the log-likelihood function evaluated at the maxmiikelihood
estimatesk is the number of parameters, ands the sample size. The data set represents failure time date&Gs
reported in Aarset ([]).

These results indicate that tV P model has the lowest AIC and AICC and BIC values amang thalfitiedels.
The values of these statistics indicate that@w Pmodel provides the best fit to this data.
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Fig. 3: (a) Estimated densities of the GWP, GEP, EMW, MW, AW and Wriligtions for the data set. (b) Estimated cdf
function from the fitted the GWP, GEP, EMW, MW, AW and W distritons and the empirical cdf for the data set.

As we can see from Table$)(, our model with smallest values of AIC, AICC, BIC and K-Sttetstic best fits the
data. Figures3) shows the empirical distribution compared to the rival eleénd 8 compares the fitted densities against
the data.

9 Concluding remarks

There has been a great interest among statisticians angépesearchers in constructing flexible lifetime models to
facilitate better modelling of survival data. Consequgralsignificant progress has been made towards the geriatiz

of some well-known lifetime models and their successfulligpfion to problems in several areas. In this paper, we
introduce a new four-parameter distribution. We refer ® rtlew model as the GWP distribution and study some of its
mathematical and statistical properties. We provide tHgetpd cdf and the hazard rate function of the new model, eipli
expressions for the moments. The model parameters areadstirny maximum likelihood. The new model is compared
with nested and non-nested models and provides consistegtter fit than other classical lifetime models.
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