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Abstract: A newsboy model in which a vendor has a limited budget to procure the required items is 
developed. It is assumed that the manufacturer will either sell the items to the vendor outright or offer the 
items to the vendor with return policy. In the latter case, the manufacturer buys back from the vendor the 
unsold items at the end of the selling season. This study considers one item with budget constraints. The 
vendor has the option of purchasing the goods outright, obtaining the goods with return policy, or a 

combination of both. By using Kuhn-Tucker Conditions and inductive method, our analysis proposes an 
optimal inventory policy theorem. The purpose of this study is to investigate how the vendor should 
replenish the items with return policy under limited budget and changing prices. We show that there exists 
a set of conditions under which the vendor’s optimal strategy will change based on the amount of available 
budget for product procurement. If the purchase price with return policy is greater than the price of 
outright purchase and the vendor has a small amount of available budget, only outright purchase will be 
optimal. However, if the budget reaches a certain threshold amount, mixed strategies where items are 
obtained by outright purchase and with return policy are used. We also show that when the purchase price 
with return policy is not greater than the outright purchase, the vendor will only obtain the items with 
return policy. 
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1  Introduction 

This study investigates a single period problem 
in which a vendor has the option of purchasing the 

item outright and/or obtaining the item through a 

return-policy agreement with the manufacturer. The 
vendor has limited budget. A return policy allows a 

vendor to return the unsold products for a full or 

partial refund. This will entice the vendor to order a 
larger quantity, resulting in an increase in the joint 

profit. Some products like the catalogue or style 

goods are examples where return policies are used 
[1,2]. The “catalogue goods” are sold to customers 

through catalogue advertisement with fixed price 

during a particular selling season. 
Pasternack [3] modeled a return policy and 

derived a global optimization in a single period 

with uncertain demand. He demonstrated that a 
return policy where a manufacturer offers the 

vendors partial credits for all unsold products could 
achieve channel coordination. Padmanabhan and 

Png [4] illustrated that the useful return policy can 

increase a manufacturer’s profit and increase the 
vendor competition.  

Emmons and Gilbert [1] studied the effect of 

return policy on both the manufacturer and the 
vendor. Such policy is to maximize the 

manufacturer’s profit by inducing the vendor to 

place larger order when demand is uncertain.  
The importance of the single period problem 

increases due to the shortening of the product life 

cycle in recent years. Many extensions of the single 
period problem have been studied [5]. Two major 

extensions are the unconstrained, single-item 

single-period problem, and the constrained, multi-
item single-period problem. Hadley and Whitin [6] 
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derived a constrained multi-item problem in a 

single period. Jucker and Rosenblatt [7] considered 
an unconstrained model with three types of quantity 

discounts: all-units quantity discount, incremental 

quantity discounts and Carload-lot discounts. 
Gerchak and Parlar [8] developed an unconstrained 

model in which the vendor decides the price and 

order. Lau and Lau [9] modeled a newsboy 
problem with price-dependent distribution demand. 

Khouja [10] developed a newsboy model in which 

multiple discounts are used to sell excess inventory. 
Khouja and Mehrez [11] extended Khouja’s model 

[10] to the multi-item case. This model dealt with a 

newsboy selling many items under a budget 
constraint. Lau and Lau [12] derived a capacitated 

multiple-product single period inventory model. 

Pasternack [13] developed a capacitated single-item 
newsboy model with revenue sharing. Vlachos and 

Dekker [14] derived order quantity for single 

period products with return policy. Arcelus et al. 
[15] evaluated manufacturer’s buyback policy 

under price-dependent stochastic demand. Chiu et 

al. [16] addressed returns supply contract for 
coordinating supply chains with price-dependent 

demands. 

This study considers one item with budget 
constraints. The vendor has the option of 

purchasing the goods outright, obtaining the goods 

with return policy, or a combination of both. By 
using Kuhn-Tucker Conditions, our analysis 

proposes an optimal inventory policy theorem. We 

discuss the conditions for obtaining goods through 
outright purchase, return-policy purchase, or a 

combinatory purchase of both. 

In Section 2 we present a general model and a 
theorem for three cases. In Section 3 four numerical 

examples are given to illustrate the theorem. The 
first three examples demonstrate the various 

optimal strategies with changing budget. The last 

example demonstrates the strategies when the 
purchase price through return policy changes for a 

fixed limited budget. The concluding remark is 

given in the last section. 
 

2  Mathematical Modeling and Analysis 

The mathematical model is developed based on the 
following assumptions: 

(a) The demand is uncertain. 

(b) An item with single order period, short selling 

season and long production lead-time is considered 

(an example of this type of product is the catalogue 

or style product). 

(c) A vendor has the option of purchasing the item 

outright and/or obtaining the item through a return-

policy agreement with the manufacturer. 

(d) The products purchased through return policy begin 
selling only after the outright purchase items are 

sold out. 

  

The decision variables are: 

    Q1            vendor’s lot size obtained from the 

manufacturer through outright purchase 

    Q2            vendor’s lot size obtained from the 

manufacturer through return policy 
 

The known parameters are: 

   f(x)  probability density function of uncertain 

demand x  

  F(x) cumulative distribution function of the 

probability density function f(x) 

   C1   vendor’s purchase price through outright 

purchase 
    C2  vendor’s purchase price through return policy 

    P     unit retail price 

    S     vendor’s shortage cost per unit if the item is 

out of stock 

    R     vendor’s return price per unit if the item is 

unsold 

    T    total amount of funds the vendor has for 

obtaining the item through either outright 
purchase or return policy, or both. 

    EP   vendor’s expected profit 

 

The vendor’s expected profit can be expressed as 
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The first two terms in the right side of (1) are the 

expected sales revenue. The second two terms are the 

return revenue for the unsold units. The last three terms 

are the expected shortage cost and the purchase costs. 
The problem faced by the vendor is a nonlinear 

programming with constraints as follows: 

 

               EPMaximize  

                 Subject to: 

                 TQCQC  2211
 

                01 Q  

                02 Q  

 

Looking at the partial second derivatives for EP, one has: 
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Hence, if 0 RSP , EP is concave. 

 

The following Kuhn-Tucker conditions are required for 

optimality: 

1. 0)( 22111  QCQCTu  

2. 012 Qu  

3. 023 Qu  
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5. 0))(()1( 21312  RSPQQFuuCSP  

6. 0,0,0,0,0 21321  QQuuu  

 

Three cases of solution are discussed. The first case is 

0,0 21  QQ . The second case is 0,0 21  QQ . 

The last case is 0,0 21  QQ . 

 

Case 1: 0,0 21  QQ  ( 02 u ,

1

1
C

T
Q  ) 

From Kuhn-Tucker conditions 4 and 5, one has 

 

0))(()1( 111  SPQFuCSP           (5) 

 
and 
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From (5), it is 
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Substituting (7) into (6), one has 
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If 
12 CC  , then                                                                         

0)( 1131  RCQFuC   (Contradiction)                                                                          

     (12) 

 

If 
12 CC  , then 
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One can see that conditions (8) and (13) must be 

satisfied simultaneously for the case of 0,0 21  QQ . 

 

Case 2: 0,0 21  QQ  ( 03 u ,

2

2
C

T
Q  ) 

Derived from Kuhn-Tucker conditions 4 and 5, one has 
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From (15), if 
21 CC  , one has 
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From (16) and (18), one can see that conditions 
21 CC   

and 
RSP

CSP

C

T
F
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
 2

2

)(  must be satisfied 

simultaneously for the case of 0,0 21  QQ . 

 

Case3: 0,0 21  QQ  

( 02 u , 03 u , TQCQC  2211
) 

 

From Kuhn-Tucker conditions 4 and 5, one has 

 
        0)())(()1( 12111  RQFRSPQQFuCSP  

 (19) 
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0))(()1( 2112  RSPQQFuCSP  (20) 

 
The optimal solution of Q1 and Q2 must satisfy (19), (20) 

and TQCQC  2211
 simultaneously. 

 

If the solution of Q1 is positive, after substituting 

211 /)( CQCT   into Q2, the first derivatives of EP with 

respect to Q1 is greater than zero when Q1 = 0, that is 
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If 12 CC  , one has 
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If the solution of Q2 is positive, then, after substituting 

122 /)( CQCT   into Q1, the first derivatives of EP with 

respect to Q2 is greater than zero when Q2 =0, that is 
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Solution for Q1 > 0 and Q2 > 0 is located at the 

intersection of (23) and {(25) or (27)}. One can find that 

the two conditions 
12 CC  and 
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The theorems resulted from the above discussion can be 

stated as follows: 

 

For 
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Theorem (iii) 01 Q  and 02 Q  if 
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3  Numerical Example 

The preceding theorems are illustrated by the following 

examples: 
 

Example 1 

This example illustrates Theorem (i). Suppose f(x)= 

U(0,600), P = 20, S = 10, R = 6, C1 = 12 and C2 = 18, 

when the available fund is unlimited, the solutions are 

Q1 = 360, Q2 = 0 and 43202211  QCQC  (see Appendix 

A). 
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5143T  and 4320T  respectively. The intersection of 

5143T and 4320T is 4320T . Therefore, when 

4320T , the solution is 01 Q  (i.e., 
11 /CTQ  ) and 

02 Q . Numerical data for Theorem (i) are given in 

Table 1 and illustrated in Fig. 1. 

 
 

Example 2 

This example illustrates Theorem (i) and (iii). Suppose 

f(x)= U(0,600), P = 20, S = 10, R = 6, C1 = 12 and C2 = 

15, when the available fund is unlimited (see Appendix 

A), the solutions are Q1 = 300, Q2 = 75 and 

47252211  QCQC .  
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4000T  and 4320T  respectively. Therefore, 

when 4000T , the solution is 01 Q  (i.e., 

1

1
C

T
Q  ) 

and 02 Q ; when 47254000 T , the solution is 

01 Q and 02 Q . In the case when 4600T , the 

solution of Q1 and Q2 is 306 and 62 respectively. It is 

noted that when 
21 CC   and the available fund is small 

( 4000T ), the optimal strategy is to buy Q1 only; when 

the available fund is abundant ( 47254000 T ), it is 

better to buy both Q1 and Q2. Numerical data for 

Theorem (i) and (iii) are given in Table 2 and illustrated 

in Fig. 2. 

 

Example 3 

This example illustrates Theorem (ii). Suppose f(x)= 

U(0,600), P = 20, S = 10, R = 6, C1 = 12 and C2 = 8, 

when the available fund is unlimited (see Appendix A), 

the solution is Q1 = 0, Q2 = 550 and 44002211  QCQC .  

From 
RSP
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T
F
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2
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Therefore, when 4400T , the solution is Q1= 0 and 

Q2 > 0 (i.e., 
22 /CTQ  ). 

 

Example 4 

This example illustrates the sensitivity analysis of the 
purchase price through return policy when the available 

limited fund is fixed at 4000T . Letting f(x)= U(0,600), 

P = 20, S = 10, R = 6 and C1 = 12, the result of the 

sensitivity analysis is given in Table 3 and illustrated in 

Fig. 3 When 938.62 C , the inventory fund needed 

when the available fund is unlimited is less than 4000. 

Therefore, when C2 is not greater than C1 (i.e., 

12938.6 2 C ), the optimal strategy is to buy Q2 only; 

when C2 increases slightly (i.e., 1512 2 C ), the 

optimal strategy is to buy both Q1 and Q2. However, 

when C2 increases significantly ( 152 C ), it is more 

economical to buy Q1 only. 

      

Table 1: Some numerical data for Theorem (i) with  

C2=18 

T Q1 Q2 Remark  

4320  360 0 Unlimited budget 

4300 358 0 
12 CC  ,  
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(i.e., 5143T ) 

 

 

Figure 1: Vendor’s lot sizes with various budgets when a 

higher price C2=18  

 

Table 2: Some numerical data for Theorem (i) and (iii) 

with C2=15 

T Q1 Q2 Remark 

4725  300 75 Unlimited budget 

4700 301 72 
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2500 208 0 

 

 

Figure 2: Vendor’s lot sizes with various budgets when a 

lower price C2=15 

 

Table 3: Sensitivity analysis of the purchase price with 

return policy when 4000T  

2C  
1Q  

2Q  Remark 

938.6  0 >576 Unlimited budget 

7 0 571 
12 CC  ,  

RSP
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T
F




 2
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 (i.e., 23938.6 2 C ) 

9 0 444 

12 0 333 

12.1 14 317 
12 CC  ,  

13 132 185 

T 
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(i.e., 152 C ) 

16 333 0 

17 333 0 

18 333 0 

 

 

Figure 3: Vendor’s lot sizes with various
2C when 

4000T  

4  Concluding Remark 

This study analyzes the vendor’s replenishment 

strategy in a newsboy model with limited budget. We 

show that there exists a set of conditions under which the 

vendor’s optimal strategy will change based on the 

amount of available budget for product procurement. If 

the purchase price with return policy is greater than the 

price of outright purchase and the vendor has a small 
amount of available budget, only outright purchase will 

be optimal. However, if the budget reaches a certain 

threshold amount, mixed strategies where items are 

obtained by outright purchase and with return policy are 

used. We also show that when the purchase price with 

return policy is not greater than the outright purchase, 

the vendor will only obtain the items with return policy. 

When the available budget is fixed, three conditions 
to obtain the optimal strategies are derived. The first 

condition is when the purchase price with return policy 

is not greater than the price with outright purchase; it is 

better to buy the items with return policy only. The 

second condition is when the purchase price with return 

policy is greater than the price of outright purchase over 

a certain threshold value; it is better to choose outright 

purchase only. The last condition is when the purchase 
price with return policy is between the two conditions, it 

is better to choose a mixture of items with outright 

purchase and return policy. 
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Appendix A 

          EPMaximize  

Subject to: 
                01 Q  

                02 Q  

where EP is stated in (1) 
Solution: 

Equating the first derivatives of EP with respect to Q1 

and Q2, one has 

        0)())(( 1211  RQFRSPQQFCSP  

 (A1) 
and 
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Let the solution of the two simultaneous equations (A1) 
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2 Q , then the optimal solution, denoted 

by (
1Q and

2Q ), is #
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22 QQ  . 

If 0#

1 Q  and 0#

2 Q , then the optimal solution is 

derived by the following steps: 

   (i) Let 01 Q  

   (ii) After substituting 01 Q  into (A2), one has 

)( 21

2
RSP

CSP
FQ




    (A3) 

If 0#

1 Q  and 0#

2 Q , the following steps derive the 

optimal solution: 

   (iii) Let 02 Q   

   (iv) After substituting 02 Q  into (A1), one has 

)( 11

1
SP

CSP
FQ




    (A4) 
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