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Abstract: It is often the odometry accumulative error without bound after long-range movement that decreases the precision of
global localization for wheeled mobile robots. Therefore, an efficient approach to odometry error modeling is proposed regarding
gentle drive type mobile robots. The approximate functional expressions, between process input of odometry and non-systematic error
as well as systematic error, are derived based on odometry error propagation law. Further, the odometry error model is applied to
the global localization to compensate the accumulative error during long-time navigation. In addition, Because a lot of candidate
poses of robots are generated in the process of monocular visual localization, particle swarm optimization is applied to acquire the
optimal pose for mobile robots during global localization. The experimentsdenote that in spite of sacrificing a little computation
time, the proposed method decreases odometry accumulative errors,and improves the global localization precision during autonomous
navigation efficiently.

Keywords: Scale invariant feature transform, Global localization, Odometry errormodeling, Non-systematic error covariance,
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1 Introduction

Global localization denotes that the robot is placed at
some location in a certain environment, after the
environment map has been built. The robot extracts the
features of environment images and matches them with
3D landmarks in the database, further calculates the
current pose in the world coordination. However, in the
beginning of global localization, it is the odometer sensor
that is used to obtain the global pose of robots, the larger
accumulative error often occurs after long-time navigtion,
even gives rise to false localization [1]. The vision
measurement cannot help odometer increase global
localization precision fundamentally. Therefore, an
efficient odometry error modelling should be built to
improve the localization precision. In addition, a
candidate pose of robot will be produced if 8 SIFT
features matches with the landmarks in the database. So
more candidate poses will be produced when the features
matching with the landmarks exceed 8. The localization
problems are transferred to solve optimization problem to

get the higher localization accuracy. In the current study,
there are lots of solutions for global localization. The
gradient descent is linear convergence. Convergence is
very slow while approaching the optimal solution[2]. it is
difficult to acquire the optimal pose of robots during
real-time navigation. The BP neural network looks for the
minimum of the error energy function in weight space
using the method of gradient descent[3]. The error energy
function shifts along the smallest gradient direction. Once
the error energy function gets in local minimum in
optimal searching, BP method cannot get out of local
minimum autonomously and arrive at the global
minimum. Genetic algorithm is a novel optimization
method with the characteristic of global optimization
because it regulates population in a probability way[4].
But local optimal search ability is insufficient, and the
premature phenomena often happen in the beginning of
iterative process. The particle filter(PF) is often used to
optimize the global pose of robots[5]. However, it needs
lots of particles to calculate the posterior probability so
that to improve the algorithm complexity. In addition, the
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Fig. 1: The localization and navigation for ERSP robot

resampling process often decreases the efficiency and
diversity of samples. So the particle degeneracy and
sample impoverishment are main problems that PF
method is used to acquire pose of robots. PSO (Particle
swarm optimization) is an efficient optimization method
with the characteristic of global optimization[6]. It can
get out of lots of local extremums and acquire the global
optimum, and is applicable to the optimal problem that is
provided with high-dimensional variable, precision
appropriate. Therefore, PSO algorithm is often used to
acquire the most effective pose of robots to achieve the
requirement of real-time. In this paper, an efficient
odometer error model is built with respect to odometry
error transform rules during autonomous navigation
firstly. The accumulative errors are obtained and mapped
to the input end of control system in real-time so that the
localization precision is greatly improved during
long-time navigation. In addition, the vision measurement
will be used to help odometer locate robot itself. The
SIFT features of images are extracted and matched with
landmarks in the database to improve the odometry
localization, when the odometry accumulative error drift
occurs. Furthermore, PSO algorithm is used to optimize
the candidates of robot poses to improve the localization
accuracy.

2 Odometry Model

To construct a platform with high performing odometry, it
is important to carefully think about the kinematics of
robots. There are different odometry kinematics model for
different drive types of mobile robots. In the following, a
new odometry model is proposed for differential drive
robots and synchronous drive mobile robots. It is assumed
that the motion path is circular arcs. The path from the
poseskto the posesk+1 can be considered as a section of
arc with radius r. In the world coordination, the
coordinate of arc center is(xarc

k ,yarc
k ), and the pose of

robot is (x(w),y(w),ψ).In robot coordinates, the robot

pose is(xR,yR,θ),ψ = θ + φ ,whereψ is the arc angle of
arc motion, θ is the orientation angle in robot
coordinates, and the steer angle,φ is the intersection angle
between the front wheel and center axis, which is used to
control robot turn in the motion. Introduce∆ψ as the
heading change of motion from one step to the next.

ψk+1 = ψk +∆ψk

According to kinematic principle, the relations between
the any two poses(xk,yk)and(xk+1,yk+1) can be described
as the followings:

{

xk = xarc
k + rcos(ψk −π/2) = xarc

k + rsinψk
yk = yarc

k + rsin(ψk −π/2) = yarc
k − rcosψk

and
{

xk+1 = xarc
k + rcos(ψk+1−π/2) = xarc

k + rsinψk+1
yk+1 = yarc

k + rsin(ψk+1−π/2) = yarc
k − rcosψk+1

Let uk = (Dk,∆ψk) be the input to odometry model,
whereDk is the distance traveled along the curve and∆ψk
is the change in motion direction. Supposing when the
ration direction is clockwise,rk is negative. Otherwise,rk
is positive.

rk =
Dk

∆ψk
(1)

So the robot pose for timek+1, sk+1, can be presented as
some nonlinear function of the pose for timek, sk , the
process input,uk, and the noise,wk

sk+1 = f (sk,uk,wk,∆ψk) =





xk +
Dk
ψk
(sin(ψk +∆ψk)− sinψk)

yk −
Dk
ψk
(cos(ψk +∆ψk)− cosψk)

ψk +∆ψk





2.1 Odometry Non-systematic Error Modeling

The non-systematic error refers to the uncertain error and
is often characterized by the error mean and the error
covariance. In most cases, the error mean is zero after
calibration and is often ignored. Therefore, the research
on non-systematic error co-variance has become the main
aspect of research on non-systematic error.

Definition 1. The partial differential of functionf (sk,uk)
is defined as follows

∆sk f = ∆sk,∆uk f = ∆uk

Definition 2. In the context,c and s have been used to

denote cosine and sine in the following equation
respectively.

Definition 3. The covariance matrix of non-systematic
error,Qk, can be made up of the sum ofQi

k, whenN → ∞.
Definition 4. The covariance matrix for the odometry
input uk, ∑k can be assumed to be diagonal matrix

∑
k

=

(

δ 2
Dk

0
0 δ 2

∆ψk

)
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whereδ 2
Dk

is the variance in distance traveled,δ 2
∆ψk

is the
variance in motion direction traveled. If the distance
traveled is associated with motion direction in the
odometry model, many parameters are introduced and the
modeling efficiency is degraded. It is even difficult to
reflect the actual motion for mobile robots. The error
caused by the correlation between the parameters is not
discussed here. The variance in distance traveled,δ 2

Dk
is

assumed to only depend on the distance traveled,Dk. The
variance in change in motion direction,δ 2

∆ψk
depends on

both distance traveled,Dk and the change in motion
direction,∆ψk, i.e.

δ 2
Dk

= kD|Dk|= kD|rk∆ψk| (2)

δ 2
∆ψk

= (kψ
ψ + kD

ψ |rk|)|∆ψk|= kψ |∆ψk| (3)

wherekD,kψ ,k
ψ
ψ ,kD

ψ are constants, referring to uncertain
parameters between the ground and the wheels. Pose
estimate,sk+1, is a Markov procedure, which has only a
connection with the pose estimate for timek, and has no
relations with the pose estimate for other time. To deduce
the error covariance of the pose,sk+1, it is assumed that
first order Taylors expansion does not introduce
significant higher order errors. And the pose error for
time k is not correlated with the input error of odometry,
the covariance matrix of pose for timek+1, Pk+1 can be
evaluated as follows on the basis of Definition 1 and
Definition 2 [7][8].

Pk+1 = (▽sk)Pk(▽sk)
T +(▽uk)∑

k

(▽uk)
T

= (▽sk)Pk(▽sk)
T +Qk (4)

where the two Jacobian matrixes above equation are given
as follows according to Equation (1)

▽sk =





1 0 cψk+1− cψk
0 1 sψk+1− sψk
0 0 1



 (5)

▽uk =







1
∆ψk

(sψk+1− sψk)
−rk
∆ψk

(sψk+1− sψk)+ rkcψk+1
−1

∆ψk
(cψk+1− cψk)

rk
∆ψk

(cψk+1− cψk)+ rksψk+1

0 1







(6)

Theorem 1.Suppose that the odometry error for timek is
not correlated with the error introduced by the input of
odometry, the covariance matrix of odometry
non-systematic error for timek can be expressed by some
function of the input of odometry[9][10][11]:
Suppose that the odometry error for timek is not
correlated with the error introduced by the input of
odometry, the covariance matrix of odometry
non-systematic error for timek can be expressed by some
function of the input of odometry:

Qk = g(rk,∆ψk,ψk,ψk+1,Dk,kD,kψ ,k
ψ
ψ ,k

D
ψ)

proof. (1) Circular arc motion

Now divide thek:th step intoN sub-steps,i = 1,. . . ,N, such
ass0

k = sk andsN
k = sk+1 as well asP0

k =Pk andPN
k = Pk+1 .

Because of the above analysis, Equation (4) can be written
as follows

Pk+1 = (▽sN−1
k )PN−1

k (▽sN−1
k )T +(▽uN−1

k )
N−1

∑
k

(▽uN−1
k )T

(7)
By recursively expandingPi

kandsumi
k of Equation (7), the

following equation is gotten.

Pk+1 = (
N−1

∏
i=0

▽si
k)Pk(

N−1

∏
i=0

▽si
k)

T

+
N−1

∑
i=0

[(
N−1

∏
j=i+1

▽s j
k)(▽ui

k)
i

∑
k

(▽ui
k)

T (
N−1

∏
j=i+1

▽s j
k)

T ] (8)

The following equation, regarding to equation (5), can be
obtained.

(
N−1

∏
j=i+1

▽s j
k) =





1 0 cψN−1
k − cψ i+1

k
0 1 sψN−1

k − sψ i+1
k

0 0 1



 (9)

To analyzeQi
k, start with the second term of (8). The path

traveled between the timek and k+1 is split in
infinitesimal small segments, and for each small segment,
When N → ∞, ∆ψ i

k → 0, thus ψN−1
k → ψk+1. The

extended error between the stepN and the stepN-1 also
approaches to zero ,whileN → ∞. Based on the following
equation

lim
ε→0

sin(α + ε)− sin(α) = εcos(α) (10)

lim
ε→0

cos(α + ε)− cos(α) =−εsin(α) (11)

the following relations can be deduced.

lim
N→∞

(▽ui
k)

T (
N−1

∏
j=i+1

▽s j
k)

= lim
N→∞







1
∆ψ i

k
(sψ i+1

k − sψ i
k)

−rk
∆ψ i

k
(sψ i+1

k − sψ i
k)+ rkcψN−1

k
−1

∆ψ i
k
(cψ i+1

k − cψ i
k)

rk
∆ψ i

k
(cψ i+1

k − cψ i
k)+ rksψN−1

k

0 1







T

=





cψ i
k rk(cψk+1− cψ i

k)
sψ i

k rk(sψk+1− sψ i
k)

0 1





T

Using Definition 4 and above equation, the matrixQi
kcan

be rewritten as follows.

Qi
k = lim

N→∞
(

N

∏
j=i+1

▽s j
k)

T (▽ui
k)

i

∑
k

(▽ui
k)

T (
N

∏
j=i+1

▽s j
k)

=





cψ i
k rk(cψk+1− cψ i

k)
sψ i

k rk(sψk+1− sψ i
k)

0 1









δ 2
Di

k
0

0 δ 2
∆ψ i

k









cψ i
k rk(cψk+1− cψ i

k)
sψ i

k rk(sψk+1− sψ i
k)

0 1





T
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Thus the elements of matrixQi
k,11 can be expressed as

follows

Qi
k,11 = δ 2

Di
k
c2ψ i

k +σ2
δψ i

k
r2

k (cψk+1− cψ i
k)

2

Using Definition 3, the elements sum of matrixQi
k can be

rewritten as Riemann integral regarding toψ i
k ,

Qk,11 = lim
N→∞

N−1

∑
i=0

Qi
k,11

=
1
2
(kD|rk|+ r2

k kψ )sign(∆ψk)(∆ψk +
s(2ψk+1)− s(2ψk)

2
)

+r2
k kψ sign(∆ψk)(∆ψkc2ψk+1−2cψk+1(sψk+1−ψk))

In the same manner, the other elements ofQk can be got
as follows:

Qk,12=Qk,21=
−(kD|rk|+ r2kψ )

4
sign(∆ψk)(c(2ψk+1)−c(2ψk))

+r2
k kψ sign(∆ψk)(

1
2

∆ψks(2ψk+1)+ c(2ψk+1)− c(ψk +ψk+1))

Qk,13 = Qk,31 = |rk|kψ (∆ψkcψk+1− sψk+1+ sψk)

Qk,22=
1
2
(kD|rk|+r2

k kψ )sign(∆ψk)(∆ψk−
s(2ψk+1)− s(2ψk)

2
)

+r2
k kψ sign(∆ψk)(∆ψks2ψk+1+2sψk+1(cψk+1− cψk))

Qk,23 = Qk,32 = |rk|kψ (∆ψksψk+1+ cψk+1− cψk)

Qk,33 = kψ |∆ψk|

where sign(∆ψk)=sign(rk) = |rk|/rk 6= 0
(2) Straight Line Motion
Whenrk → ∞,∆ψk → 0,the trajectory of arc motion turns
to straight line for mobile robot, a special case of arc
motion. The variance in motion direction traveled satisfies
the following relation δ 2

∆ψk
= kD

ψ |Dk| = kD
ψ |rk||∆ψk|

.Satisfying the above same conditions andN → ∞, the
followings can be gotten.

ψk+1 = ψ i
k +

N − i
N

∆ψk,Dk →
Dk

N
,∆ψk →

N − i
N

∆ψk (12)

Therefore, given the conditions, such as
(1),(2),(3),(10),(11),(12),Dk = rk∆ψk,Qi

k,11 can now be
rewritten by above equations.

lim
N,rk→∞

Qi
k,11 =

kD|Dk|c2ψk

N
+ kD

ψ |Dk|(Dk)
2s2ψk

(N − i)2

N3

Besides, whenn → ∞, the following derivation can be
used with respect to the limit sums formula of infinitude
function,

n

∑
x=0

x =
n(n+1)

2
≈

n2

2

n

∑
x=0

x =
n(n+1)(2n+1)

6
≈

n3

3

The elements ofQk can now be rewritten by the above
equations , whenN → ∞.

Qk,11 = |Dk|(kDc2ψk +
kD

ψ D2
ks2ψk

3
)

Qk,12 = Qk,21 =
|Dk|s2ψk

2
|Dk|(kD −

kD
ψ D2

k

3
)

Qk,13 = Qk,31 =
−kD

ψ |Dk|Dksψk

2

Qk,22 = |Dk|(kDs2ψk +
kD

ψ D2
kc2ψk

3
)

Qk,23 = Qk,32 =
kD

ψ |Dk|Dkcψk

2

Qk,33 = kD
ψ |Dk|

(3) Rotation on some spot
Whenrk → 0, the curve motion turns into rotation on some
spot. On the basis of the above derivation, the elements of
Qi

k can be rewritten as follows

Qk,11=Qk,12=Qk,21=Qk,13=Qk,31=Qk,23=Qk,32=Qk,22=0

Qk,33 = kψ
ψ |∆ψk|

So the proof of Theorem1 is completed. Through the
above analysis, the non-systematic error can be expressed
as some function with the odometry process input and
some uncertain parameters between the ground and the
wheels. If mapping the uncertain non-systematic error,Qk,
into the process input of odometry,uk. the control system
obtains the compensation by adjusting the non-systematic
error gain,Kk1,effectively.

2.2 Odometry Systematic Error Modeling

Systematic error refers to the inner error caused by
unreasonable inherent structure or low precision of
odometry. In general, the fine difference in wheel radius
leads to slippage so that large odometry accumulative
errors are produced in motion. However, the systematic
error can be obtained online and compensated by error
feedback. In most cases, the systematic error incurred
from unequal radius on drive wheels is placed on much
importance.

Figure2 shows an assumption that a relative slippage
happens when the robot is moving.φ means the steer
angle,and the change in orientation is∆θ . The wheels are
mechanically linked, both in translation and rotation. If
there is some slight difference between the radii of both
drive wheels, it will result in slippage and there is a
friction force, Ff ric, between ground and wheels, which
causes a moment of rotation,M f ric. So the rotational
moment is given by

M f ric = krigid∆θ =−LsinφFf ric =−µmg.Lsinφ ∝−sinφ (13)

where krigid is the rotational rigid factor andµ is the
kinetic friction factor. The friction force,Ff ric, depends
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Fig. 2: The orientation change for slippage

Fig. 3: The distance change for fine difference in wheel radius

on the surface properties. To compensate for the
systematic error caused by friction, the friction force must
be estimated online. When relative slippage occurs
between wheels and the ground, the following relational
expression can be gotten from Equation (13).

∆θ ∝−ηsinφ deg/s(η < 0)

According to the above relations, the approximate sine
relations have been inferred between the steer angle,φ and
the change in orientation,∆θ . It means the orientation
deviation of distance traveled per meter in steer angle
direction, while the robot turns during its motion.
Different parameter,η , depends on different mechanical
structure. As Figure3 shows, the sketch map declares the
relation between the actual path,D and the theoretical
path,D(R) for mobile robot. It is supposed that the robot
move the distanceD(R) along the upright direction ofAB
line, and arrives at pointA. The slight difference between
drive wheel radii drives the robot away from the straight
line, AO. So the robot arrives at pointB along the arc
path,OB,obviously the relation,D > D(R),is satisfied. The
diagonal line,AC,which starts from point,A, takes the
place of the actual path,OB,approximately. Therefore, the
relation between AO and CO approximates direct
proportion.

D = βD(R) (β > 1)

IF mapping the distance deviation,∆D,and angle
deviation,∆θ into the process input of odometry,D > D(R)

and φ , the control system obtains the compensation by

Fig. 4: The flow diagram of the global localization block

adjusting the systematic error gain,Kk2, effectively.
Therefore, the method of systematic error feedback online
reduces the inherent odometry accumulative error and
improves the localization accuracy.

3 Global Localization Algorithm based on
Particle Swarm Optimization

According to the definition of global localization, the
environment map is built before global localization. With
the matched 3D landmarks, the robot pose in the world
coordination is calculated. The global localization process
is expressed as follows:

(1)The SIFT features of an current image is extracted in
the current position,

(2)Extract, match the features with the landmarks in the
database, and obtain the sets of landmarks. Each
landmark corresponds with certain images in the
mapping.

(3)The image, which is matched with most of landmarks,
is the nearest frame

(4)Calculate the robot pose with respect to the matched
features between the current image and the nearest
frame

The vision sensor takes pictures for the same object in
different position and direction, extracts and recognizes
the SIFT features to calculate the current pose in the
space corresponding with the landmarks. Therefore,
global localization needs to ascertain the position and
orientation of robot by vision sensor. The whole global
localization is given as Figure 4.

3.1 Related Research

(1) SIFT algorithm
The features extraction and matching is the premise and
basis of vision localization, object recognization and

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


568 J. Yang, J. Yang: Improved Approach to Global Localization based on...

tracking, etc, which does not only satisfy the traits of
scale invariance, affine transformation invariance, but also
adapts to the real-time of image processing. Lowe
proposed a feature extraction method named SIFT(Scale
Invariant Feature Transform) extraction[12][13][14]. The
method denotes some extrema of a difference of Gaussian
function are gotten from the image, which is transformed,
rotated, and scaled for many times. The extrema are
named as SIFT features. The SIFT features are invariant
to image scale and rotation, and can provide robust
matching across a substantial range of affine distortion,
addition of noise, change in viewpoint, and change in
illumination.
Therefore, the scale space of an image is defined as a
function, L(x,y,σ), which is produced from the
convolution of a variable-scale Gaussian,G(x,y,σ), with
an input image,I(x,y): The Gaussian kernel and its
derivatives are the only possible smoothing kernels for
scale space analysis.

L(x,y,σ) = G(x,y,σ)∗ I(x,y)

where ∗ is the convolution operation inx and y, and
G(x,y,σ) = 1

2πσ2 e(x
2+y2)/2σ2

.
To efficiently detect the stable locations of matched
features in scale space, SIFT method uses (Lowe, 1999)
scale-space extrema in the difference-of-Gaussian
function convolved with the image,D(x,y,σ), which can
be computed from the difference of two nearby scales
separated by a constant multiplicative factork:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y)

= L(x,y,kσ)−L(x,y,σ)

(2) PSO algorithm
Particle swarm optimization (PSO)[15] [16] is a
stochastic optimization technique developed by Dr.
Eberhart and Dr. Kennedy in 1995, who were inspired by
social behavior of bird flocking or fish schooling. In PSO,
the potential solutions, called particles, fly through the
problem space by following the current optimum
particles. Each particle keeps track of its coordinates in
the problem space which are associated with the best
solution (fitness) it has achieved so far. (The fitness value
is also stored.) The “best” value that is tracked by the
particle swarm optimizer is the best value, obtained so far
by any particle in the neighbors of the particle. This
location is calledpBest. When a particle takes all the
population as its topological neighbors, the best value is a
global best and is calledgBest. The particle swarm
optimization concept consists of, at each time step,
changing the velocity of (accelerating) each particle
toward its pBest and gBest locations (local version of
PSO). Acceleration is weighted by a random term, with
separate random numbers being generated for
acceleration towardpBest andgBest locations.

vid(k+1) = w·vid(k)+ c1∗ r1•[Pid(k)− xid(k)]
+ c2∗ r2•[gid(k)− xid(k)]

xid(k+1) = a•xid(k)+b•vid(k+1)

where i = 1,2,N,N is particle number,d = 1,2, ,D,d is
the dimension in solution space. The symbol• denotes
element-by-element vector multiplication. At iterationk,
the velocityvid(k) is updated based on its current value
affected by a momentum factorw and on a term which
attracts the particle towards previously found best
positions: its own previous best positionPid(k) and
globally best position in the whole swarmgid(k). The
factor of acceleration is given by the coefficientsc1 and
c2, which determines the longest step forpBest andgBest
respectively. The particle positionxid(k) is updated using
its current value and the newly computed velocity
vid(k + 1), affected by coefficient weightsa and b
respectively. It is shown later thata and b can be set to
unity without loss of generality. Randomness useful for
good state space exploration is introduced via the vectors
of random numbersr1 and r2. They are usually selected
as uniform random numbers in the range[0,1].Generally,
the relations betweenvidmax and xidmax,is given as
follows: vidmax = k•xidmax,0.1 6 k 6 0.2. If the current
valuevid or xid surpasses the extreme, it will be set as the
new extreme in the region. When the iterations reach the
largest or particles exploitation has been to a stable
position, the convergence happens.w, nonnegative, is
named as inertia factor. The largerw is, the faster the
global convergence will be, otherwise, local convergence
is more obvious. Supposing thatwmax and wmin are the
maximum and minimum weighted coefficient, run is the
iterations, andrunMax is the total iterations.

w = wmax − run∗
wmax −wmin

runMax

3.2 Pose Determination based on Monocular
Vision Measurement

(1) Position determination
To ascertain the orientation of robots in the world space
at current time, match the features from the current image
with the landmarks in the database, calculate the essential
matrix,E, with the orientation angle,θ , which satisfies the
epipolar geometry. Further, obtain the orientation angle by
trying feasible value[17][18][19].

Theorem 2. (Xi,Yi,Zi) and (X j,Yj,Z j) are the projection
of the 3D point,M(X ,Y,Z) in the coordinates of camerai
and cameraj, with which the landmarks in the database
(XT

i ,Y T
i ,ZT

i ) and (XT
j ,Y

T
j ,Z

T
j ) are matched. Supposing

there are 4 matched points(k > 4), essential matrix

E =





0 e1 0
e2 0 e3
0 e4 0



 ,e1,e2,e3,e4 are the constants, so the

current orientation angle in the world space can be
expressed as follows:
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(1)k ∈ (4,8),θ = tan−1
(

e1e3−e2e4
e1e2+e3e4

)

(2)k ∈ (8,+∞),θ =
C2

k

∑
n=1

(

θn −
1

C2
k

C2
k

∑
n=1

θn

)2

=
k
∑

j=i+1
i=1

tan−1 BC−AD
AC+BD

where

A = XT
i −XT

j ,B = ZT
i −ZT

j ,C = Xi −X j,D = Zi −Z j

Proof.

(1)Supposing thatX1 = [X1,Y1,Z1]
T andX2 = [X2,Y2,Z2]

T

are the projection of the 3D point,P(X ,Y,Z) in the
coordinate of camera1 and camera2,I1 = [x1,y1,1]T

and I2 = [x2,y2,1]T are the pixel images and matches
with X1 andX2 respectively.I1 is matched withI2

λ1x1 = x1,λ2x2 = x2

If R and T express the transformation and rotation
matrices in the camera coordinate 1 and coordinate 2
respectively, the following relations can be given

X2 = RX1+T

According to the above equations, the follows are
gotten

λ2x2 = Rλ1x1+T

Computing the cross product of the above equation with
Matrix, T

λ2T × x2 = λ1T ×Rx1

Computing the dot product of the above equation with
Matrix,xT

2 , and eliminating λ1/λ2 to obtain the
following equation

xT
2 (T ×R)x1 = 0

Where E = T ′R is essential matrix,T ′ is the
antisymmetric matrices ofT .
Suppose that the robot transforms in the planex-z, and
camera revolves on the axley, namingty = 0, T ,R, and
E can be obtained as follows:

T′ =





0 −tz ty
tz 0 −tx
−ty tx 0



 ,R =





cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ





E =





0 −tz 0
tz cosθ + tx sinθ 0 tzsinθ − tx cosθ

0 tx 0





=





0 e1 0
e2 0 e3
0 e4 0





when the matched points satisfiesk ∈ (4,8), e1,e2,e3,e4
can be gotten by trying feasible value. Moreover, four

equations are obtained with respect to the expression of
E, we eliminatetx, tz, and obtain the following equation

θ = tan−1
(

e1e3− e2e4

e1e2+ e3e4

)

(2)When the tentative matches satisfiesk ∈ (8,+∞), two
tentative matches are selected from the matched list to
calculate the alignment parameters,(x,z,θ) randomly.

X = Xi −X
′

i cosθ −Z
′

i sinθ

Z = Zi −Z
′

i cosθ −X
′

i sinθ

Where(XT
i ,Y T

i ,ZT
i ) is 3D landmark in the database and

(Xi,Yi,Zi) is the 3D coordinate of the current frame in
camera coordinates. With two tentative matches,i and
j, the following equations are given

Acosθ +Bsinθ =C (14)

Bcosθ −Asinθ = D (15)

where

A = XT
i −XT

j ,B = ZT
i −ZT

j ,C = Xi −X j,D = Zi −Z j

If the two tentative matches are correct, the distance
between the two landmarks is invariant for this
Euclidean transformation, the following constraint is
applied to each sample selection:A2 +B2 ≈ C2 +D2.
That eliminates many samples containing wrong
matches from further consideration efficiently. Solving
(14) and (15), the equations are obtained.

θ = tan−1
(

BC−AD
AC+BD

)

When the tentative matches satisfiesk > 8, the higher
precision is gotten after taking the least-squares ofθ .

θ =
C2

k

∑
n=1

(

θn −
1

C2
k

C2
k

∑
n=1

θn

)2

=
k
∑

j=i+1
i=1

tan−1 BC−AD
AC+BD

(2) Orientation Determination
Supposing camera satisfies the epipolar line model, the
origin of the world space is the origin of camera
coordination when the robot is at the initial position.
Namely, axlez is the optical axis of camera, the axisy is
vertical downward, the axis,XY Z all satisfy right-hand
rule. If the orientation ,θ is known, the translation in the
world space can be gotten
Theorem 3.There is a 3D point in the space,P(X ,Y,Z),

whose pixel coordinate is(u,v) at some time.M is the
projection matrix,mi j is the elements ofM, satisfying
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i ∈ 1,2,3, j ∈ 1,2,3,4, fx, fy,u0,v0 is the intrinsic
parameters. When the orientation,θ is known, the
translations inx-z plane in the world space can be gotten.

(

x
z

)

=−

(

cosθ −sinθ
sinθ cosθ

)

A−1B

where

A =

(

− fx u−u0
0 v− v0

)

B=

(

(m11−um31)X +(m12−um32)Y +(m13−um33)Z
(m21− vm31)X +(m22− vm32)Y +(m23− vm33)Z

)

Proof. Supposing there is a certain 3D pointP(X ,Y,Z),

whose homogeneous equation is(X ,Y,Z,1)T . And
(u,v,1)T is the homogeneous equation of the projection
image for pointP. According to the projection matrix, the
following relations are given.

zc





u
v
1



 = M1M2







X
Y
Z
1






= M







X
Y
Z
1







=





m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34











X
Y
Z
1






(16)

M is the projection matrix,mi j is the elements ofM,
satisfying i ∈ {1,2,3,4}, M1 is the camera intrinsic
matrix, which is related to the inner structure.M2 is the
camera extrinsic matrix, which is determined by the
orientation in the camera space relative to the world
space. With respect to perspective projection theory and
the relations between camera coordination and world
coordination, M1,M2 can be expressed as follows
respectively.

M1 =





fx 0 u0 0
0 fy v0 0
0 0 1 0





M2 =

(

R t
0T 1

)

=







cosθ 0 sinθ tx
0 1 0 0

−sinθ 0 cosθ tz
0 0 0 1







where fx, fy,u0,v0 is the known intrinsic parameter,R and
t is rotation and transform matrix of camera coordination
relative to the world coordination. With Equation (16),
eliminate Zc to get the following equations
X(m11−um31)+Y (m12−um32)+Z(m13−um33) = um34−m14

X(m21− vm31)+Y (m22− vm32) + Z(m23− vm33) = vm34−m24

Substitute the elements,mi j into the above equation
(

− fx u−u0
0 v− v0

)(

tx
tz

)

=

(

(m11−um31)X +(m12−um32)Y +(m13−um33)Z
(m21− vm31)X +(m22− vm32)Y +(m23− vm33)Z

)

Fig. 5: The pose uncertainty for vision measurement

Supposing

A =

(

− fx u−u0
0 v− v0

)

B=

(

(m11−um31)X +(m12−um32)Y +(m13−um33)Z
(m21− vm31)X +(m22− vm32)Y +(m23− vm33)Z

)

Then
(

tx
tz

)

= A−1B

The above matrix is the translation matrix in the camera
space relative to the world space,tx , tz is the translation,
after rotation first and translation later. With respect to the
relations between two spaces, the translation,[x,z]T of
robot relative to the original in world coordination is
given as follows:
(

X
Z

)

=

(

cosθ −sinθ
sinθ cosθ

)(

t−x
t−z

)

=−

(

cosθ −sinθ
sinθ cosθ

)

A−1B

For improving the stability ofx,z, two or more two features
are used to expand matrixA andB to obtain the solutionx,
z.

3.3 Pose uncertainty analysis

The Sensors are used to acquire the data of global
localization. But the errors also occur when collecting
outside data by sensors. Therefore, before the pose
uncertainty is described, the pose measurement should be
estimated by camera sensor.Theorem 4. Suppose there
are n images in the space, whose positions are known
relative to each other, they can be expressed by pinhole
mode. There is a 3D pointP = (x,y,z)T in the space,
whose pixel projection inith image ismi = (ui,vi)

T . The
relation,sm̃i = MiP̃, is satisfied as follows:

ui =
M11Xi +M12Yi +M13Zi +M14

M31Xi +M32Yi +M33Zi +M34

vi =
M21Xi +M22Yi +M23Zi +M24

M31Xi +M32Yi +M33Zi +M34
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Proof. with the relationsm̃i =MiP̃ , the following equation
is gotten.

s





ui
vi
1



=





M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34











X
Y
Z
1







After eliminating s, the following equation can be
written as below

{

ui =
M11Xi+M12Yi+M13Zi+M14
M31Xi+M32Yi+M33Zi+M34

vi =
M21Xi+M22Yi+M23Zi+M24
M31Xi+M32Yi+M33Zi+M34

Definition 5. there are some 3D points(X1,Y1,Z1),

(X2,Y2,Z2),. . .,(Xn,Yn,Zn) when observing from a image.
(ui,vi) is the pixel coordinates for the 3D points.Mii,
i = 1,2,n is the camera projection matrix,di is the
distance between the current position and the object. The
uncertainty of robot pose is represented as [20]:

f itness =
1
n

n

∑
i=1

[

(

ui −
M11Xi +M12Yi +M13Zi +M14

M31Xi +M32Yi +M33Zi +M34

)2

+

(

vi −
M21Xi +M22Yi +M23Zi +M24

M31Xi +M32Yi +M33Zi +M34

)2
]1/2

The above function can be used to express the projection
matrix, M, when (ui,vi) and (Xi,Yi,Zi) is all known.
Namely, the uncertainty of robot pose can be expressed as
the above equation when the robot can observe theith
landmarks. In addition, the function is often used as the
level of localization precision, and is considered as the
fitness of pose optimization for mobile robot as well.

4 Experiment and Analysis

4.1 SIFT Extraction and Matching for
Monocular Vision

The visual localization can help revise odometry
localization accuracy in real-time and improves stability
of control system. So SIFT extraction and matching has
influence on robots localization. In this paper, four
classical experiments of SIFT algorithm are conducted.
As is shown in Figure6(a,b), SIFT extraction and
matching is shown for the two images at a distance of 1
meters. The matched features number is 32, and the time
is 160ms. In the same manner, Figure6(c → h) shows the
other features of SIFT features such as affine invariance,
transform invariance, rotation perspective invariance. The
matching features number is 42,40,51. The time is
190ms,180ms, 212ms respectively. The robust traits of
SIFTfeatures can ensure quick and accurate extraction
and matching of SIFT features with landmarks in the map

Fig. 6: Typical characteristic of SIFT features

database for mobile robot during autonomous navigation,
and then, gets the vision measurement of robot pose in the
world space. The vision measurement accuracy can reach
to more than 76% when the position error in XZ direction
is smaller than 50cm. The accuracy can help robot shake
off kidnapping quickly, and ensure the robustness of
navigation.

4.2 Odometry Error Modeling

In order to identify the odometry error modeling in
real-time is applicable and efficient, some localization
experiments have been done for mobile robots in indoor
environments.

As is shown in Figure 8(a), the typical robot is the
differential drive mobile robot, Pioneer3-DX. This robot
is equipped with a web camera, mounted on the top, and
an array of IR sensors and bump sensors, which are used
to measure the distance of obstacle and build occupancy
grid map. As the experiment scene of Figure7 shows, the
robot is driven to navigate autonomously in the room using
a joystick. After building the initial environment map, it
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Fig. 7: Global localization Scene

Fig. 8: Global localization and Navigation.

begins exploiting around the area according to the built
map for about 20min. Figure 8(b) gives the true occupancy
map related to the environment in Figure 7. The path of
odometry, the red line, is not the same as the robot path,
the green line. It is because that the non-systematic error
results in the increasing of accumulative errors, and then
gives rise to the odometry error drift.

(1) Odometry Non-systematic Error Modeling
Figure 9 gives the comparison data of pose error, before
and after, odometry non-systematic error modeling. The
pose error is smaller at the beginning of navigation. With
the increase of movement distance, the pose error of
measurement is growing. When the robot moves to the
group of obstacles nearWall a at the time of No.800
second, the collision and sideslip appears. Also the
kidnapping happens. The pose error of robot is growing
more significant. At this time, the pose error has made a
great leap forward. The global localization is conducted
by its own vision system, taking the place of odometer.
The vision localization can help to reduce odometry
accumulative error efficiently, which is caused by
navigation for a long time. The landmark and
environmental map is built at the same time. After
simultaneous localization and mapping for about 100

Fig. 9: The position error and angle error, before and after,
odometry non-systematic error modeling

seconds, the kidnapping is over. The robot reuses
odometer for localization instead of vision, and enters
into autonomous navigation. At this time, the pose error is
growing smaller and fluctuates steadily. It has shown both
the accuracy of position error and angle error are all
improved remarkably from Figure9. The position error
mean is 139.93mm, reduced by 83.52%, and the angle
error mean is 2.25, reduced by 76.86%. Therefore, the
odometry non-systematic error feedback in real-time can
reduce the localization error efficiently and improve the
accuracy of localization during autonomous navigation
for mobile robots. Therefore, it proved that odometry
non-systematic error can be obtained in real-time and
compensated online at the feedback control end
efficiently.

(2) Odometry Systematic Error Modeling
Table1 shows the data that the robot is driven forward
about 10 meters for differential drive robot, Pioneer3-DX.
θStart is the initial angle of movement.

And φ and ∆θ are the steer angle and angle error.
Then the true distance,D, and the measurement value,
D(R), are used to obtain the scaling factor,β = D/D(R).
The mean of scaling factor isβ ≈ 1.0013. And the data in
the same environment for synchronous drive robot,
HIT-3SDR, satisfiesβ ≈ 1.0027. Therefore, the distance
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Table 1: The error of distance and angle with different starting
angle along the same direction

θ D D(R) D/D(R) φ ∆θ
/deg /mm /mm /% /deg /deg
7.9 9825.4 9815.6 1.000998 82.1 −2.3
40.5 9887.6 9874.3 1.001467 49.5 −1.4
78.8 9858.4 9836.2 1.001347 14.2 -0.3
103.4 9734.6 9726.9 1.002257 −18.4 0.8
133.0 9785.5 9773.7 1.000792 −43.0 1.2
163.3 9778.9 9767.8 1.001207 −73.3 1.8
192.3 9956.5 9946.8 1.001136 −102.3 1.9
212.6 9946.9 9931.5 1.000975 −122.6 2.1
249.7 9978.9 9968.3 1.001551 −159.7 0.8
305.5 9875.4 9856.7 1.001063 −215.5 −0.5
340.5 9830.1 9815.7 1.001897 −250.5 −1.8

Fig. 10: The relations between∆θ andφ

deviation caused by tiny differentia of radii exists in both
synchronous drive and differential drive mobile robots
generally. The systematic error has certain correction with
the process input of odometry, and can be compensated at
the feedback control end. As also seen in Figure10, there
is the sampling curve and fitting curve in the same
environment for different driving type mobile robots. The
deep continuous line and discontinuous line present the
sampling curve and fitting curve for Pioneer3-DX and the
tint lines shows the data for HIT3-SDR. So the relation
betweenφ and∆θ for Pioneer3-DX can be given as the
expression:∆θ ≈ −2.23sinφ(deg/s). The relation for
HIT3-SDR is obtained as:∆θ ≈ −3.78sinφ(deg/s).
Therefore, the angle error, generated from the difference
in wheel radius, has the approximate sine functional
relations with the steer angle. The angle error,∆θ , caused
by tiny differentia of radius exists in both synchronous
drive and differential drive mobile robots generally and
can also be compensated by the change of the odometry
process input,φ , in real-time.

Fig. 11: Three-dimensional Reconstruction and Global
localization.

4.3 Global Localization based on PSO
Algorithm

For the scenes of Figure7, some experiments for global
localization and mapping have been conducted in the
indoor environment with four walls. The mobile robot
moves around along a rectangle path. The PTZ camera
takes pictures for the objects in front of every wall, and
the SIFT features of the images are extracted. If the SIFT
features will be matched with the landmarks in the
database successfully, the features are represented in
three-dimensional space. When the robot moves around
along the four walls of the room, the 3D reconstruction of
all matched SIFT features will be completed
autonomously. As Figure11. shows 3D reconstruction,
mapping, and global localization in the scenes as Figure7.
Figure11(a) gives the 3D reconstruction features in the
space in front ofWall a. The robot has known the 3D
coordinates of the SIFT features beforeWall a. On that
basis, the global pose in the whole environment will be
derived by odometer and camera. In Figure11(b)that
ambient blue point denotes the 3D reconstruction points
for the matched features. And the rectangle red line is the
moving path for mobile robot, those scattered red points
in the rectangle are the initial global pose population,G.
In which the bigger black point is the optimal global
pose,P, and R means the true pose of robot in the
environment. In the optimizing process using PSO, the
correlative parameters are given as follows:
N = 30,D = 2,d ∈ [−100,100],θ ∈ [−π,π],k =
0.1,vidmax = 10,wmax = 0.9,wmin = 0.4,a = 1,c1 = c2 =
2,R(78.73,2.27,0), After iteration k=65, the convergent
appears. The final running result is as follows:
gBest(65)=P(12)(70.43,75.62,0),f itness(0.258,0)=2.1918,
w=0.872,t=125.345ms.

The experiment shows the translation error is smaller
than 15cm, orientation error is smaller than 5. Therefore,
the global localization method can meet the demand of
the real-time of autonomous navigation for mobile robots.
The global localization tests were completed in 40
different locations of the environment of Figure7 using
PSO algorithm. Figure12 gives the data by using three
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algorithms, such as before and after PSO algorithm, PF
algorithm. The orientation angle is zero for the former 20
times. Namely, the orientation of robot movement is
parallel to the map-building. The orientation angle grows
increasingly in the later 20 times. Figure12(a)shows the
translation errors for three localization algorithm. The
translation error of PSOGL is less than 12cm in the
former 20 times, the error is larger in the later 20 times.
And the translation error increased with the increase of
the orientation angle. But the largest error is less than
20cm. However, the translation error of GL is far more
than PSOGL algorithm. The translation error of PF is less
than GL, and more than PSOGL. Because the particle
degeneracy and sample impoverishment decreases the
localization accuracy. The average translation error of
PSOGL decreased by 38.6% than GL, less than PF by
20.12%. Figure12(b)shows the orientation error for three
global localization algorithms. From the data, some
conclusion is known clearly. Similar to the translation
error, the orientation error for PSOGL is less than 5 in the
former 20 times, the average of which is less than 4. In
the later 20 times, the error grows with the increase of
orientation angle. But the orientation error is less than 15
in the later 20 times, most of which is less than 10. The
statistics data shows the orientation error of PSOGL
decreased by 57.21% than GL, and decreased by 26.34%
than PF. The above data shows the localization accuracy
is higher in the former 20 times because it is parallel for
the moving direction of robot and the orientation of
map-building. The localization error of two algorithms
grows with the increase of orientation angle. It is because
the matched features between the images to be located
and landmarks decreased with the increase of direction
deviation. Factors like the growth of the wrong ratio of
features matching may decrease the localization
precision. However, the localization error (translation
error and orientation error) for PSOGL is lower than GL
and PF.

4.4 Global Localization Time Analysis

The real-time of global localization should be considered
except for the localization accuracy too. Figure13 gives
the localization time for three global localization
algorithms.PSOGL algorithm needs more time than GL
algorithm, and less than PF algorithm. It is because that
PSOGL algorithm needs some time to eliminate the
odometry accumulative error, matches with landmarks,
and computes the fitness to get best pose by PSO
algorithm. So the average localization time increased by
12.48% than GL algorithm. Compared with PF algorithm,
PSOGL keeps the global searching strategy for the whole
population, and avoids the intricate individual operation.
The algorithm takes simple speed model, and uses special
memory to search the current best solution dynamically.
However, PF algorithm needs more time to update its
particle weight with respect to the small amount of

Fig. 12: Translation error and orientation error

Fig. 13: The global localization time

particles, 30. Therefore, the whole localization time for
PSOGL is less than PF by 32.29%,but the localization
accuracy increased efficiently.

In the localization experiments, the average
orientation error for PSOGL decreased by 57.21% than
GL, and by 26.34% than PF. The translation error for
PSOGL decreased by 38.62% than GL, and by 20.12%
than PF. Though the whole localization process sacrifices
a little time cost, which increased by 12.48%, a higher
localization precision is achieved. The translation error
and the orientation error decreased by 38.62% and
57.21% respectively. In terms of the return on investment
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in economics, it is quite necessary to adopt PSOGL
algorithm with odometry error modeling.

5 Conclusion

In this paper, a general approach for odometry error
modeling is proposed by the existing questions of global
localization for mobile robots. The modelling is used
online to reduce non-systematic error and systematic
error of odometry during long-range motion. In addition,
a calculation method of robot pose in the world space is
proposed and proved for monocular visual localizatation.
Further, the optimal pose is gotten from lots of candidate
poses that match with landmarks successfully by using
PSO algorithm. The experiments denote that the
improved algorithm improves the pose precision greatly.
If the physics constraints of robot body are considered,
the algorithm with odometry error feedback in real-time
can be applied to other drive type mobile robots, such as
all-wheel-drive or autonomous vehicle. More research in
this area is still in need of work in the future.
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