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Abstract: It is often the odometry accumulative error without bound after lomgeamovement that decreases the precision of
global localization for wheeled mobile robots. Therefore, an efficippr@ach to odometry error modeling is proposed regarding
gentle drive type mobile robots. The approximate functional expressi@mtween process input of odometry and non-systematic error
as well as systematic error, are derived based on odometry eopagmtion law. Further, the odometry error model is applied to
the global localization to compensate the accumulative error during loregfiemigation. In addition, Because a lot of candidate
poses of robots are generated in the process of monocular visubtddicm, particle swarm optimization is applied to acquire the
optimal pose for mobile robots during global localization. The experimdat®te that in spite of sacrificing a little computation
time, the proposed method decreases odometry accumulative andisaproves the global localization precision during autonomous
navigation efficiently.

Keywords: Scale invariant feature transform, Global localization, Odometry emodeling, Non-systematic error covariance,
Simultaneous localization and mapping, 3D reconstruction, Particle swatrmipation

1 Introduction get the higher localization accuracy. In the current study,
there are lots of solutions for global localization. The

Global localization denotes that the robot is placed atdradient descent is linear convergence. Convergence is
some location in a certain environment, after the Very slow while approaching the optimal solutiahlit is
environment map has been built. The robot extracts thdlifficult to acquire the optimal pose of robots during
features of environment images and matches them witf€@l-time navigation. The BP neural network looks for the
3D landmarks in the database, further calculates théninimum of the error energy function in weight space
current pose in the world coordination. However, in the USing the method of gradient descét[The error energy
beginning of global localization, it is the odometer sensorfunction shifts along the smallest gradient direction. ©nc
that is used to obtain the global pose of robots, the largeth€ error energy function gets in local minimum in
accumulative error often occurs after long-time navigtion ©Ptimal searching, BP method cannot get out of local
even gives rise to false localizatiorl]] The vision ~ Minimum autonomously and arrive at the global
measurement cannot help odometer increase globdPinimum. Genetic algorithm is a novel optimization
localization precision fundamentally. Therefore, anmethod with the characteristic of global optimization
efficient odometry error modelling should be built to because it regulates population in a probability wiy[
improve the localization precision. In addition, a But local optimal search ability is insufficient, and the
candidate pose of robot will be produced if 8 SIFT premature phenomena often happen in the beginning of
features matches with the landmarks in the database. Séerative process. The particle filter(PF) is often used to
more candidate poses will be produced when the feature§Ptimize the global pose of robo[ However, it needs
matching with the landmarks exceed 8. The localization!0ts oOf particles to calculate the posterior probability so
problems are transferred to solve optimization problem tothat to improve the algorithm complexity. In addition, the
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™ 57) pose i$xR yR 6),4 = 6 + p,wherey is the arc angle of
v~ arc motion, 6 is the orientation angle in robot
coordinates, and the steer anglés the intersection angle
between the front wheel and center axis, which is used to
control robot turn in the motion. Introducdy as the
heading change of motion from one step to the next.

Y1 = P+ A4k

According to kinematic principle, the relations between
the any two poseé, yk)and xx+1, Yk+1) can be described
as the followings:

{Xk:Xﬁ"CHCOS(LPk m/2) =

arc 4 rsing

Fig. 1: The localization and navigation for ERSP robot ya' ¢ — rcosyi

Yk = YR ¢+ rsin(y — 11/2)
and

{ X1 = Xg C+1COS(Phy1 — T1/2) = X ° + rsingicq
resampling process often decreases the efficiency and Yir1 = ¥y ©FrSin(Phg 1 — 11/2) = Vi — reosieg 1
diversity of samples. So the particle degeneracy an
sample impoverishment are main problems that P
method is used to acquire pose of robots. PSO (Particl
swarm optimization) is an efficient optimization method
with the characteristic of global optimizatid@)[ It can
get out of lots of local extremums and acquire the global Dy

optimum, and is applicable to the optimal problem that is k= 20 1)
provided with high-dimensional variable, precision .

appropriate. Therefore, PSO algorithm is often used toSo the rob(_)t pose for_tlmle+1,sk+1, can be_presented as
acquire the most effective pose of robots to achieve the?0Me nqnllnear function Of. the pose for tirkes, , the
requirement of real-time. In this paper, an efficient process inputi, and the noisey

odometer error model is built with respect to odometry X B (S + Ath) — sings)

error transform rules during autonomous navigation g, — f(s,u,w,Agk) = (ykﬁw’,t(cos(wkwwk)coswk))

firstly. The accumulative errors are obtained and mapped U+ AUk

to the input end of control system in real-time so that the

localization precision is greatly improved during

long-time navigation. In addition, the vision measurement2.1 Odometry Non-systematic Error Modeling

will be used to help odometer locate robot itself. The

SIFT features of images are extracted and matched witfThe non-systematic error refers to the uncertain error and
landmarks in the database to improve the odometryis often characterized by the error mean and the error
localization, when the odometry accumulative error drift covariance. In most cases, the error mean is zero after
occurs. Furthermore, PSO algorithm is used to optimizecalibration and is often ignored. Therefore, the research
the candidates of robot poses to improve the localizatioron non-systematic error co-variance has become the main
accuracy. aspect of research on non-systematic error.

Definition 1. The partial differential of functiorf (s, uk)
is defined as follows

et ux = (D, Ayxg) be the input to odometry model,
whereDy is the distance traveled along the curve dnfi
% the change in motion direction. Supposing when the
ration direction is clockwisery is negative. Otherwisey
is positive.

2 Odometry Model Ds f = Ase, By f = Aug

To construct a platform with high performing odometry, it pefinition 2. In the contextc ands have been used to
is important to carefully think about the kinematics of denote cosine and sine in the following equation

robots. There are different odometry kinematics model forrespectively
different drive types of mobile robots. In the following, a T ’ ) ) )
new odometry model is proposed for differential drive Definition 3. The covariance matrix of non-systematic
robots and synchronous drive mobile robots. It is assume@0r Q« can be made up of the sum@f, whenN — co.
that the motion path is circular arcs. The path from theDefinition 4. The covariance matrix for the odometry
posesto the poses 1 can be considered as a section of inputu, Sk can be assumed to be diagonal matrix

arc with radiusr. In the world coordination, the )
coordinate of arc center i6¢'¢,y¥°), and the pose of Z: (5Dk 0 )

robot is (x(w),y(w),).In robot coordinates, the robot 0 5A2wk

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 2, 563-576 (2014)Wwww.naturalspublishing.com/Journals.asp NS 2 565

Where6|§k is the variance in distance travele’ii,wk isthe  proof. (1) Circular arc motion

;/raanzlnecde .'2 ;nsost:)%natzlcrjecu'?ﬁ tr:gt'e(l?\d. d'IIe::rt]'?)ndl'Sr:art]ﬁ: Now divide thek:th step inta\ sub-stepd,=1,... N, such
vV ! ! wi : irection | ass) = g andsy = 5,1 as well aP? = B andPN = A1 .

odometry model, many parameters are introduced and th%ecause of the above analysis, Equation (4) can be written
modeling efficiency is degraded. It is even difficult to

. . as follows
reflect the actual motion for mobile robots. The error
caused by the correlation between the parameters is not N1 T NEETL =
discussed here. The variance in distance trave¥§dis Ao = (v DR HOST ) VW) Z (VU™
assumed to only depend on the distance travédedThe )

variance in change in motion directioﬁjwk depends on By recursively expandingli(;jlmjsumik of Equation (7), the
both distance traveledDy and the change in motion following equation is gotten.
direction,Ayx, i.e.

N-1  N-1
3, = ko|Di| = ko A yx| (2) P = (ill VSIK)H‘(LL Vs
N-1 N-1 i ON-1
Sy, = (ki + KD Ir) A = ky|Agx] ©) + ZO (] vso(wul) Z(VUL)T(_ [ vsw'l  ®
i=0 j=it1 j=i+1

W D i i . . . .
wherekp, ky, ki, kg are constants, referring to uncertain  The following equation, regarding to equation (5), can be
parameters between the ground and the wheels. Posshtained.

estimate s, 1, is a Markov procedure, which has only a

connection with the pose estimate for tikgeand has no N-1 10cydt—cyt
relations with the pose estimate for other time. To deduce ( vs)=|(01 s -1 —swl'jl 9)
the error covariance of the posg, 1, it is assumed that j=i+1 001

first order Taylors expansion does not introduce .
significant higher order errors. And the pose error for To analyzeQl, start with the second term of (8). The path
time k is not correlated with the input error of odometry, traveled between the time& and k+1 is split in

the covariance matrix of pose for time 1, R..1 can be infinitesimal small segments, and for each small segment,
evaluated as follows on the basis of Definition 1 andwhen N — oo, Ay — 0, thus YNt = Piy1. The

Definition 2 [7][8]. extended error between the stspand the stefN-1 also
approaches to zero ,whilé — . Based on the followin
Pt = (VSOR(VS) T + (V) Z(VUK)T egﬁaﬁon ® g
= (V3R(VS)T + @ iim,sin(a +¢) —sin(ar) = ecos(a) (10)
where the two Jacobian matrixes above equation are given
as follows according to Equation (1) Iimocos(a +&)—cos(a) = —esin(a) (11)
£—
1 0 cer1 — i the following relations can be deduced.
V= | 0 1stii1— Sk (5)
001 ) - N-1 .
dim (7u)"(T] Vs
a0 (SWier1 —SUh) g (S — Sie) + Tl 1 =
VU= | ik (Chi1— CPik) A% (CPhs 1 — Clk) + TkSY : L . -
éwk( k+1 k) fwk( k+1 k) koWk+1 | ﬁ{(sq‘ﬁl{‘rl o SW(_) ﬁ({(swwl o SW;LI) +rkC¢’|L\l 1
© = dm | gt el g U g syt
0 1

Theorem 1.Suppose that the odometry error for tikes i i\ T

not correlated with the error introduced by the input of B ka rk(cw'“lfcwlk)

odometry, the covariance matrix of odometry - gwk rlk(sw” 1 S

non-systematic error for timecan be expressed by some .
function of the input of odometr@][ 10][ 11]: Using Definition 4 and above equation, the matgican
Suppose that the odometry error for tinkeis not  be rewritten as follows.

correlated with the error introduced by the input of . i .

odometry, the covariance matrix of odometry Q= lim ([ vs)" (VU ¥ (vu) ([T vsh)
non-systematic error for timiecan be expressed by some =+ =+

function of the input of odometry: ;
Cl.U='< fk(CLllkﬂ—C'Ill;'() 551( 0 CU/E'( rk(kaH—Cwl;'()
Q= g(rk,ALM@ Wi, Y1, Di, ko, kl[l7 kllﬁ’ kB) = g‘»"k ’lk(SUJk+1—SUJk) 0 6A2wl‘< ka rlk(SL.UkH—S#/k)
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Thus the elements of matri®, ,, can be expressed as The elements o€ can now be rewritten by the above

follows
Q11 = 83 W+ 05 T (CUh1 — Cf)?

Using Definition 3, the elements sum of mat@ can be
rewritten as Riemann integral regardingta

N-1
= lim !
Q.11 AT 2 Q11

= %(lefkl +r2ky)Sign(A W) (A + w)

12k Sign(A W) (AYC® s 1 — 21 (SWhs 1 — Y))

In the same manner, the other element®pftan be got
as follows:

—(kp|ri| +r?ky)
4

Qu12=Qk21= sign(A g (c(2¢k 1) — (24k))

. 1
+r§k¢5|gn(A ‘l—’k)(éﬂ UhS(2¢k+1) + C(2Phr1) — (W + Wit1))

Q13 = Q31 = [1klKy (AYkChi1 — i1+ Sk)
 S(24r1) —s(24x) )
2
+rEkySION(A Y (AYS P 1+ 2P 1 (CP 11 — CYK))
Q23 = Q32 = [1k[Ky (AYkSPicr1+ 1 — CYk)
Qk33 = ky A Yk

where signd yi)=sign(rx) = r|/rk # 0
(2) Straight Line Motion

1 .
Q2= E(kD\rkl +12ky)Sign(A i) (A

Whenry — o, Ay — 0,the trajectory of arc motion turns
to straight line for mobile robot, a special case of arc
motion. The variance in motion direction traveled satisfies

the following relation Sy = kE,“.Dk| = K Ir/|Ayxl
.Satisfying the above same conditions add— o, the
followings can be gotten.

N Dy N—i
W1 = Y+ Tﬂlﬂm Dk — — AUk — TALIJK (12)

N )
Therefore, given the conditions, such
(1),(2).(3).(10),(11),(12R = reAQ, 15 can now be
rewritten by above equations. '
N—i)?2
+kB\Dk|(Dk)252lﬂk( )

N3

Besides, whem — o, the following derivation can be
used with respect to the limit sums formula of infinitude

equations , whehl — co,

kD D224y
Qu11 = |Dil(koC®yx + %)
D.|s2 kDDZ
Qui2=Qx21= MTLM(DH(kD - %)
—kD| Dy |Dysy
B ki |Dx|Drsi
Qk13= Qua1= —
K2 D2c2y,
Q22 = Dkl (koS Wi+ ~—5—)
kD | Dy Dictic
Q23=Qx32= %
Quas = kj|Dx|

(3) Rotation on some spot
Whenry — 0, the curve motion turns into rotation on some

spot. On the basis of the above derivation, the elements of
Q. can be rewritten as follows

Qk,11=Qk 12=Qk 21 = Qk 13= Qk 31 = Q.23 = Qk;32=Qk22=0

Qaz = ki |Ayx

So the proof of Theoreml is completed. Through the
above analysis, the non-systematic error can be expressed
as some function with the odometry process input and
some uncertain parameters between the ground and the
wheels. If mapping the uncertain non-systematic eigr,
into the process input of odometyy, the control system
obtains the compensation by adjusting the non-systematic
error gainky1,effectively.

2.2 Odometry Systematic Error Modeling

Systematic error refers to the inner error caused by
unreasonable inherent structure or low precision of
odometry. In general, the fine difference in wheel radius
leads to slippage so that large odometry accumulative
errors are produced in motion. However, the systematic
error can be obtained online and compensated by error
feedback. In most cases, the systematic error incurred

as from unequal radius on drive wheels is placed on much

importance.

Figure2 shows an assumption that a relative slippage
happens when the robot is moving. means the steer
angle,and the change in orientatiori§. The wheels are
mechanically linked, both in translation and rotation. If
there is some slight difference between the radii of both
drive wheels, it will result in slippage and there is a
friction force, F¢ic, between ground and wheels, which
causes a moment of rotatioMsic. So the rotational

function, =
n nn+1) moment is given by
X= ~ = . . .
e 2 2 Mtric = KrigidA 8 = —LsingFtrjc = —pumg.Lsing o —sing (13)
n x— nn+1)(2n+1) nj where k;igig is the rotational rigid factor angi is the
& 6 ~ 3 kinetic friction factor. The friction forceFsic, depends
@© 2014 NSP
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Fig. 4: The flow diagram of the global localization block
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adjusting the systematic error gailky,, effectively.
Therefore, the method of systematic error feedback online
reduces the inherent odometry accumulative error and
Hypothetical path OC improves the localization accuracy.

Theoretical path R

Fig. 3: The distance change for fine difference in wheel radius 3 Global Localization Algorithm based on
Particle Swarm Optimization

According to the definition of global localization, the

systematic error caused by friction, the friction force mus the matched 3D landmarks, the robot pose in the world
be estimated online. When relative slippage occurscoordination is calculated. The global localization psxce
between wheels and the ground, the following relationalis expressed as follows:

expression can be gotten from Equation (13). (1)The SIFT features of an current image is extracted in
AQ o —nsing  deg/s(n <0) the current position,

. . ] ~ (2)Extract, match the features with the landmarks in the
According to the above relations, the approximate sine "gatabase, and obtain the sets of landmarks. Each
relations have been inferred between the steer apghe landmark corresponds with certain images in the
the change in orientatioAf. It means the orientation mapping.

deviation of distance traveled per meter in steer angl§ayrhe jmage, which is matched with most of landmarks
direction, while the robot turns during its motion. is the nearéstframe '

Different parameten,, depends on different mechanical .
structure. As Figure3 shows, the sketch map declares thg4)fcé Zﬁﬂaastebteht(\jverce)aoih%oiir\:gm ri;s; e: t ;g dth,[f] emr?te(;hrzgt
relation between the actual path, and the theoretical frame 9

path, DR for mobile robot. It is supposed that the robot
move the distanc®® along the upright direction oAB  The vision sensor takes pictures for the same object in
line, and arrives at poin. The slight difference between different position and direction, extracts and recognizes
drive wheel radii drives the robot away from the straight the SIFT features to calculate the current pose in the
line, AO. So the robot arrives at poird along the arc space corresponding with the landmarks. Therefore,
path©B,obviously the relatio) > D(® is satisfied. The global localization needs to ascertain the position and
diagonal lineAC,which starts from poinf, takes the orientation of robot by vision sensor. The whole global
place of the actual pat@B,approximately. Therefore, the localization is given as Figure 4.

relation between AO and CO approximates direct

proportion.

D=pDR  (B>1) 3.1 Related Research

IF mapping the distance deviatidtD,and angle (1) SIFT algorithm
deviationA 6 into the process input of odomety;> DR The features extraction and matching is the premise and
and ¢, the control system obtains the compensation bybasis of vision localization, object recognization and
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tracking, etc, which does not only satisfy the traits of wherei = 1,2,N,N is particle numberd = 1,2, .D,d is
scale invariance, affine transformation invariance, kst al the dimension in solution space. The symbdenotes
adapts to the real-time of image processing. Loweelement-by-element vector multiplication. At iterati&n
proposed a feature extraction method named SIFT(Scalthe velocityviq(k) is updated based on its current value
Invariant Feature Transform) extractidd][13][14]. The  affected by a momentum factev and on a term which
method denotes some extrema of a difference of Gaussiaattracts the particle towards previously found best
function are gotten from the image, which is transformed,positions: its own previous best positioRg(k) and
rotated, and scaled for many times. The extrema arglobally best position in the whole swargyg(k). The
named as SIFT features. The SIFT features are invariarfiactor of acceleration is given by the coefficierntsand

to image scale and rotation, and can provide robust,, which determines the longest step filBest andgBest
matching across a substantial range of affine distortionrespectively. The particle positiofy (k) is updated using
addition of noise, change in viewpoint, and change inits current value and the newly computed velocity
illumination. vig(k + 1), affected by coefficient weightss and b
Therefore, the scale space of an image is defined as egespectively. It is shown later thatandb can be set to
function, L(x,y,0), which is produced from the unity without loss of generality. Randomness useful for
convolution of a variable-scale Gaussi&ix,y, o), with good state space exploration is introduced via the vectors
an input image,l(x,y): The Gaussian kernel and its of random numbers; andr,. They are usually selected
derivatives are the only possible smoothing kernels foras uniform random numbers in the rani@el].Generally,

scale space analysis. the relations betweenvigmax and Xgmaex,iS given as
B follows: Vigmax = keXigmax,0.1 < k < 0.2. If the current
L(xy,0) =Gxy,0) *1(xy) valueviq or Xiq surpasses the extreme, it will be set as the
where * is the convolution operation ix andy, and new extreme in the region. When the iterations reach the
G(xy,0) = 5 g0¢+y?) /202 largest or particles exploitation has been to a stable
97 .

2 .. . .

To efficientlz);wdetect the stable locations of matched Position, the convergence happens. nonnegative, is
features in scale space, SIFT method uses (Lowe, 199d)amed as inertia factor. The largeris, the faster the
scale-space extrema in the difference-of-Gaussiarglobal convergence will be, otherwise, local convergence
function convolved with the imag&)(x,y, o), which can IS more obvious. Supposing thakx and wmin are the

be computed from the difference of two nearby scalesTaximum and minimum weighted coefficient, run is the
separated by a constant multiplicative fadtor iterations, andunMax is the total iterations.

Wmax — Win

D(X7 Y, J) = (G(Xa Y, kU) - G(Xv Y, G)) x| (Xv y) .
= L(X,yJ(O')—L(X,y,O') W= Winax — run+ runMax

(2) PSO algorithm

Particle swarm optimization (PSQf] [16] is a

stochastic optimization technique developed by Dr. L.

Eberhart and Dr. Kennedy in 1995, who were inspired by3-2 Pose Determination based on Monocular
social behavior of bird flocking or fish schooling. In PSO, Vision Measurement

the potential solutions, called particles, fly through the

problem space by following the current optimum

particles. Each particle keeps track of its coordinates in 1) position determination

the problem space which are associated with the bestq ascertain the orientation of robots in the world space

solution (fitness) it has achieved so far. (The fitness valugyt current time, match the features from the current image
is also stored.) The “best” value that is tracked by theyth the landmarks in the database, calculate the essential
particle swarm optimizer is the best value, obtained so famatrix E, with the orientation angle§, which satisfies the

by any particle in the neighbors of the particle. This gpinolar geometry. Further, obtain the orientation angle b
location is calledpBest. When a particle takes all the {rying feasible valuef7][18][19].

population as its topological neighbors, the best value is a

global best and is calledjBest. The particle swarm Theorem 2.(X,Yi,Z) and(X;,Yj,Z;) are the projection
optimization concept consists of, at each time step,of the 3D pointM(X,Y,Z) in the coordinates of camera
changing the velocity of (accelerating) each particleand camerg, with which the landmarks in the database
toward its pBest and gBest locations (local version of (X, ¥%T,ZT) and (X[,Y[,Z]) are matched. Supposing
PSO). Acceleration is weighted by a random term, withthere are 4 matched pointk > 4), essential matrix

separate random numbers being generated for 0e 0
acceleration towargBest andgBest locations. E=|e 06 | e,e, 656 are the constants, so the
Vid(K+1) = Wvig (k) + 1 * r10[Ra (k) — Xa(K)] 0e&o) ,
+ Coxr20[Gig(K) — Xig(K)] current orientation angle in the world space can be
Xig(K+ 1) = aexiq(K) + bevig(k+ 1) expressed as follows:
@© 2014 NSP
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(Dke(%SLB:JaW4<2$;Zg)

o o
(2ke (8,4x),0 =3 Bn—c—ll% Zlen
n=

n=1

where
A=X"-XB=2Z"-Z] C=X-X;,D=2-Z

Proof.

(1)Supposing that, = [X1,Y1,Z1]" andX; = [Xo, Y2, Z5]"
are the projection of the 3D poinB(X,Y,Z) in the
coordinate of cameral and cameta2:s [xl,yl,l]T
andl, = [x,y»,1]" are the pixel images and matches
with X3 andX, respectivelyl; is matched witH,

A1Xgy = X1, A% = X2

If R and T express the transformation and rotation

matrices in the camera coordinate 1 and coordinate 2

respectively, the following relations can be given
Xo=RX1+T

According to the above equations, the follows are
gotten
AXo =RA1 X1 +T

Computing the cross product of the above equation with

Matrix, T
/\2T X Xo = /\1T x RXq

Computing the dot product of the above equation with
Matrix,x} , and eliminating A1/A2> to obtain the
following equation

X (TxR)x =0

Where E = T'R is essential matrix, T’ is the
antisymmetric matrices oF.

Suppose that the robot transforms in the plazeand

equations are obtained with respect to the expression of
E, we eliminatéey, t;, and obtain the following equation

6 =tan ! <e1e3 — e2e4>
€162 + €364

(2)When the tentative matches satisfies (8, +), two

tentative matches are selected from the matched list to
calculate the alignment parametéxsz, 8) randomly.

X=X in/ cosOfZi'sinG

Z=12 —Zi/ cosf —Xi’ sin@

Where(X",YT,ZT) is 3D landmark in the database and
(X,Yi,Z) is the 3D coordinate of the current frame in
camera coordinates. With two tentative matchemd

j, the following equations are given

Acosf +Bsinf =C (14)

Bcosf —Asin@ =D (15)

where
A=X'-X[.B=Z'-Z] .C=X-X;,D=2-Z

If the two tentative matches are correct, the distance
between the two landmarks is invariant for this
Euclidean transformation, the following constraint is
applied to each sample selectiok? + B2 ~ C? + D?.
That eliminates many samples containing wrong
matches from further consideration efficiently. Solving
(14) and (15), the equations are obtained.

6= tanﬁl M
AC+BD

When the tentative matches satisfies 8, the higher
precision is gotten after taking the least-square8.of

e L%
6: z en—ggnzlen

camera revolves on the axyenamingty = 0, T,R, and n=1 )
E can be obtained as follows: _ tan1 BC—AD
.}H ACTBD
0 —t; ty cosf 0 sin@ iJ:l
!/
= B[ tO (;[X R= —s(i)ne (1)coose (2) Orientation Determination
v Supposing camera satisfies the epipolar line model, the
0 _t, 0 origin_ of_ the world space is_ the orig_in_ _of camera
E — (t,cos0+t,sin0 0 t,sN0—t,coso coordination when the robot is at the initial position.
0 t 0 Namely, axlez is the optlca_l axis of camera, t_he ayiss
vertical downward, the axisXYZ all satisfy right-hand
0e 0 rule. If the orientation P is known, the translation in the
= %2 £4 %3 world space can be gotten

Theorem 3.There is a 3D point in the space(X,Y,Z2),

when the matched points satisfles (4,8),el,e2,e3e4  whose pixel coordinate igu,v) at some timeM is the
can be gotten by trying feasible value. Moreover, four projection matrix,m; is the elements oM, satisfying
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i € 1,23, j € 1,234, fyfuvo is the intrinsic
parameters. When the orientatio®, is known, the reconstruction point
translations irx-z plane in the world space can be gotten. N

1
| AT f AT Z). Foararion pon
X\ _ (cos® —sinB A1l ' : -
z) sin@ cosO

AX,Y.7)
where E 5 (u,,V,)
A (fx u— uo> @",v") = \

0 v—vp u',v")

fitness

g ( (M1 —Uumgg)X + (Mz — UMe2)Y -+ (My3 — Umgz) Z
(Mp1 —vmgy) X + (Mp2 — ViMg2) Y + (Mpg — VM) Z

Proof. Supposing there is a certain 3D pol(tX,Y,Z),

whose homogeneous equation {X,Y,Z,1)". And
(u,v,1)T is the homogeneous equation of the projection

Fig. 5: The pose uncertainty for vision measurement

image for point?. According to the projection matrix, the Supposing
following relations are given. A=~ fx U—up
0 v—vp
u X X
2lv] = v [ Y] =m Y g_ ( (Mi1—umgy)X 4 (My2 — Umg2)Y + (M3 — Umgz) Z
1] ez Tz (Mg — vmg) X + (Mp2 — vMg2) Y + (Mpz — vMg3)Z
1 1 Then
X t) _ a1
M1 M2 M3 Mg Y )= A ‘B
= | M1 M2 Mpz Mg | | (16) . . .
M31 Mgz M3 Maa 1 The above matrix is the translation matrix in the camera

space relative to the world spadg, t; is the translation,
after rotation first and translation later. With respectie t
relations between two spaces, the translatigrg]’ of
robot relative to the original in world coordination is
given as follows:

M is the projection matrixjnj is the elements oM,
satisfying i € {1,2,3,4}, M; is the camera intrinsic
matrix, which is related to the inner structuid; is the
camera extrinsic matrix, which is determined by the
orientation in the camera space relative to the world /y cosf —sinB\ [ty cosf —sin@\ , 1
space. With respect to perspective projection theory anc<z> = ( Sing cosd ) (t—z) =- ( sin@ cosf )A B
the relations between camera coordination and world

coordination, My,Mz can be expressed as follows Forimproving the stability ok,z two or more two features

respectively. are used to expand matmxandB to obtain the solutiom,
fy Oup O Z
My = 0 fy Vo O
0010

_ 3.3 Pose uncertainty analysis
cosf 0 sinB ty

My — ( F\T’ t> _ 0 100 The Sensors are used to acquire the data of global
01 —sinB 0 cosf t, localization. But the errors also occur when collecting
0 001 outside data by sensors. Therefore, before the pose

where f,,,,uo.\o is the known intrinsic parameteR and unqertainty is described, the pose measurement should be
t is rotation and transform matrix of camera coordination estimated by camera sensdheorem 4. Suppose there
relative to the world coordination. With Equation (16), are n images in the space, whose positions are known
eliminate Z. to get the following equations relative to each other, they can be expressed by pinhole
X (M1 — umg1) +Y (M2 — UMg2) + Z(My3 — UMgs) = UMga — Myg mode. There is a 3D poir® = (x,y,2)" in the space,
X(mpy — vimgy) + Y (Mpp — ViMgp) + Z(Mp3 — VIMg3) = ViMg4 — Mpy whose pixel projection ifth image ism = (u;,vi)" . The

Substitute the elementsy; into the above equation relation,s = M;P, is satisfied as follows:
—fyu—ug) [ty _ MuaXi +MaaYi + MisZi +Mig
0 v-w/ \t ' Ma1Xi +MaoY; + MsaZi + Mag
_ ((mn —UMg1) X + (M2 — UMg2)Y + (M3 — Ums3)2> - M21Xi + MaaYi + M2sZi + Mag
(M1 —VMa1)X + (Mp2 — VIMG2) Y + (M — VMe3)Z ' Ma1X + MaoY; + M3sZ; + Mag
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Proof. with the relatiorsy = M;P , the following equation
is gotten.

X

Ui M11 M12 M13 Myg Y

s| Vi | = [ M2z M2z Moz Moy 7
1 M31 M3z M3z Mzy 1

After eliminating s, the following equation can be
written as below

U = MuaXi+Mio¥i+MiaZi+Miq
Vi

M31X+M3o¥i+MasZi+Mzg
. Mo+ M3oYi+ M5z + Mg
M31X+Mz2Yi+Mg3Z; +Mzg

Definition 5. there are some 3D point$Xy,Y1,Z1),
(X2,Y2,23),...,(Xn, Yn, Zn) when observing from a image.
(u,Vvi) is the pixel coordinates for the 3D pointi;;,

i = 1,2,n is the camera projection matrixd; is the
distance between the current position and the object. The
uncertainty of robot pose is represented2:[

Al

. 1N M11X = MioY: - M1aZ M 2 T
fitness — © (Ui ~ MuaXi + MY + MysZi + 14) ——
n& M31X; + Ms2Y; + MazZi + Mag =

al'

1/2

N (v- ~ MaaXi +M2Yi + MpsZ; + |V|24) ?
' Ma1Xi +MzaoY; +MzasZ +Mag

The above function can be used to express the projection
matrix, M, when (ui,v;) and (X,Y;,Z) is all known.
Namely, the uncertainty of robot pose can be expressed as Fig. 6: Typical characteristic of SIFT features
the above equation when the robot can observeittine
landmarks. In addition, the function is often used as the
level of localization precision, and is considered as the
fitness of pose optimization for mobile robot as well.

h. Rotation perspective

database for mobile robot during autonomous navigation,
and then, gets the vision measurement of robot pose in the
world space. The vision measurement accuracy can reach

4 Experiment and Analysis to more than 76% when the position error in XZ direction

] ] is smaller than 50cm. The accuracy can help robot shake
4.1 SFT Extraction and Matching for off kidnapping quickly, and ensure the robustness of
Monocular Vision navigation.

The visual localization can help revise odometry

localization accuracy in real-time and improves stability 4.2 Odometry Error Modeling

of control system. So SIFT extraction and matching has

influence on robots localization. In this paper, four In order to identify the odometry error modeling in
classical experiments of SIFT algorithm are conductedreal-time is applicable and efficient, some localization
As is shown in Figure@,b), SIFT extraction and experiments have been done for mobile robots in indoor
matching is shown for the two images at a distance of lenvironments.

meters. The matched features number is 32, and the time As is shown in Figure &), the typical robot is the

is 160ms. In the same manner, Figureé: h) shows the  differential drive mobile robot, Pioneer3-DX. This robot
other features of SIFT features such as affine invarianceis equipped with a web camera, mounted on the top, and
transform invariance, rotation perspective invariandee T an array of IR sensors and bump sensors, which are used
matching features number is 42,40,51. The time isto measure the distance of obstacle and build occupancy
190ms,180ms, 212ms respectively. The robust traits ofyrid map. As the experiment scene of Figure7 shows, the
SIFTfeatures can ensure quick and accurate extractionobot is driven to navigate autonomously in the room using
and matching of SIFT features with landmarks in the mapa joystick. After building the initial environment map, it
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Fig. 9: The position error and angle error, before and after,
odometry non-systematic error modeling

(a) Ersp robot (b) occupancy map

Fig. 8: Global localization and Navigation.

seconds, the kidnapping is over. The robot reuses
odometer for localization instead of vision, and enters

begins exploiting around the area according to the builtNtC @utonomous navigation. At this time, the pose error is
map for about 20min. Figure(B) gives the true occupancy growing smaller and f_IL_Jctuates steadily. It has shown both
map related to the environment in Figure 7. The path ofth€ accuracy of position error and angle error are all
odometry, the red line, is not the same as the robot pathiMProved remarkably from Figure9. The position error
the green line. It is because that the non-systematic errdf'€an is 139.93mm, reduced by 83.52%, and the angle

results in the increasing of accumulative errors, and therE"or mean is 2.25, reduced by 76.86%. Therefore, the
gives rise to the odometry error drift. odometry non-systematic error feedback in real-time can

(1) Odometry Non-systematic Error Modeling reduce the localization error efficiently and improve the

Figure 9 gives the comparison data of pose error, befor ccuracy of localization during_ autonomous navigation
and after, odometry non-systematic error modeling. The o' mobile rqbots. Therefore, it pfo"ed. that oqometry
pose error is smaller at the beginning of navigation. With non-systema(;uc erl(or can bﬁ ob]’c[alndebd 'E real-tlmle ang
the increase of movement distance, the pose error Of;(f)f_m_penlsate oniine at the feedback control en
measurement is growing. When the robot moves to the® iciently.
group of obstacles neaiall a at the time of No.800 . )
second, the collision and sideslip appears. Also the (2) Odometry Systematic Error Modeling -

more Significant. At this time, the pose error has made @.bout. 10 meterS fOI‘ d|fferent|a.| nge rObOt, Pioneer3-DX.
great leap forward. The global localization is conducted faart is the initial angle of movement.

by its own vision system, taking the place of odometer. And ¢ and A6 are the steer angle and angle error.
The vision localization can help to reduce odometry Then the true distancd), and the measurement value,
accumulative error efficiently, which is caused by D®), are used to obtain the scaling factfr= D/D®.
navigation for a long time. The landmark and The mean of scaling factor $~ 1.0013. And the data in
environmental map is built at the same time. After the same environment for synchronous drive robot,
simultaneous localization and mapping for about 100HIT-3SDR, satisfieg3 ~ 1.0027. Therefore, the distance
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Table 1: The error of distance and angle with different starting
angle along the same direction

0 D D® [ D/DWR ® A6 4 ) 0
/deg | /mm | /mm /% /deg | /deg s e 5
7.9 | 98254 | 98156 | 1.000998| 821 | —2.3 4T $ 5
405 | 98876 | 98743 | 1.001467| 495 | —1.4 B T

78.8 | 98584 | 9836.2 | 1.001347| 142 -0.3
1034 | 97346 | 97269 | 1.002257| —184 0.8 B e e e
1330 | 97855 | 97737 | 1.000792| —43.0 12 im0 P P e R
1633 | 97789 | 97678 | 1.001207| —73.3 18

1923 | 99565 | 99468 | 1.001136 | —1023 19 {a) 3D SIFT of Wall a (b} 3D Reconstruction
2126 | 99469 | 99315 | 1.000975| —1226 | 2.1 Fig. 11: Three-dimensional Reconstruction and Global
2497 | 99789 | 99683 | 1.001551| —1597 | 0.8 localization.

3055 | 98754 | 98567 | 1.001063| —2155 | —0.5
3405 | 98301 | 98157 | 1.001897| —2505 | —1.8

4.3 Global Localization based on PSO
Algorithm

For the scenes of Figure7, some experiments for global
localization and mapping have been conducted in the
indoor environment with four walls. The mobile robot
moves around along a rectangle path. The PTZ camera
takes pictures for the objects in front of every wall, and
the SIFT features of the images are extracted. If the SIFT
features will be matched with the landmarks in the
database successfully, the features are represented in
three-dimensional space. When the robot moves around
pre] along the four walls of the room, the 3D reconstruction of
" I I S NS SR = all matched SIFT features will be completed
B g . autonomously. As Figurell. shows 3D reconstruction,
) i mapping, and global localization in the scenes as Figure?.
Fig. 10: The relations between 8 andg Figurell(a) gives the 3D reconstruction features in the
space in front ofwall a. The robot has known the 3D
coordinates of the SIFT features befdkall a. On that
basis, the global pose in the whole environment will be
derived by odometer and camera. In Figurell(b)that
ambient blue point denotes the 3D reconstruction points
deviation caused by tiny differentia of radii exists in both for the matched features. And the rectangle red line is the
synchronous drive and differential drive mobile robots moving path for mobile robot, those scattered red points
generally. The systematic error has certain correctioh wit in the rectangle are the initial global pose populati®n,
the process input of odometry, and can be compensated & which the bigger black point is the optimal global
the feedback control end. As also seen in FigurelO, therposeP, and R means the true pose of robot in the
is the sampling curve and fitting curve in the sameenvironment. In the optimizing process using PSO, the
environment for different driving type mobile robots. The correlative  parameters are given as follows:
deep continuous line and discontinuous line present thd&l = 30D = 2,d € [-100,100,8 € [-mm,k =
sampling curve and fitting curve for Pioneer3-DX and the 0.1, Vigmax = 10, Wmax = 0.9, Wnin = 0.4,a=1,cp = C, =
tint lines shows the data for HIT3-SDR. So the relation 2,R(78.73,2.27,0), After iteration k=65, the convergent
betweeng and A6 for Pioneer3-DX can be given as the appears. The final running result is as follows:
expression:Af8 ~ —2.23sing(deg/s). The relation for  gBest(65)=P(12)(70.43,75.62,0fjtness(0.258,0)=2.1918,
HIT3-SDR is obtained asAf8 ~ —3.78sing(deg/s). w=0.872,t=125.345ms.
Therefore, the angle error, generated from the difference The experiment shows the translation error is smaller
in wheel radius, has the approximate sine functionalthan 15cm, orientation error is smaller than 5. Therefore,
relations with the steer angle. The angle erkér, caused the global localization method can meet the demand of
by tiny differentia of radius exists in both synchronous the real-time of autonomous navigation for mobile robots.
drive and differential drive mobile robots generally and The global localization tests were completed in 40
can also be compensated by the change of the odometnjifferent locations of the environment of Figure7 using
process input, in real-time. PSO algorithm. Figurel2 gives the data by using three

The change in orientation & & [deg]
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300

algorithms, such as before and after PSO algorithm, PF —2— psooL|
algorithm. The orientation angle is zero for the former 20 i
times. Namely, the orientation of robot movement is I
parallel to the map-building. The orientation angle grows
increasingly in the later 20 times. Figurel2(a)shows the
translation errors for three localization algorithm. The
translation error of PSOGL is less than 12cm in the

former 20 times, the error is larger in the later 20 times.

™~
&
3

N
=
S

i

Ma&@@-‘\ﬂ%ﬁ

@
=

Translation error in XZ direction [mm]

And the translation error increased with the increase of 00 A W

the orientation angle. But the largest error is less than

20cm. However, the translation error of GL is far more e
than PSOGL algorithm. The translation error of PF is less . (a)f““'“if" i

than GL, and more than PSOGL. Because the particle —i— PSOGL

degeneracy and sample impoverishment decreases the g S

localization accuracy. The average translation error of
PSOGL decreased by 38.6% than GL, less than PF by
20.12%. Figurel2(b)shows the orientation error for three
global localization algorithms. From the data, some
conclusion is known clearly. Similar to the translation

error, the orientation error for PSOGL is less than 5 in the

Orientation error [deg]

former 20 times, the average of which is less than 4. In A m,““f& 4} @Eﬂj

the later 20 times, the error grows with the increase of NYE M AA/ Ag-

orientation angle. But the orientation error is less than 15 e
in the later 20 times, most of which is less than 10. The () Localization number [

statistics data shows the orientation error of PSOGL
decreased by 57.21% than GL, and decreased by 26.34%
than PF. The above data shows the localization accuracy
is higher in the former 20 times because it is parallel for
the moving direction of robot and the orientation of
map-building. The localization error of two algorithms
grows with the increase of orientation angle. It is because
the matched features between the images to be located
and landmarks decreased with the increase of direction
deviation. Factors like the growth of the wrong ratio of
features matching may decrease the localization
precision. However, the localization error (translation
error and orientation error) for PSOGL is lower than GL
and PF.

Fig. 12: Translation error and orientation error
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4.4 Global Localization Time Analysis
Fig. 13: The global localization time

The real-time of global localization should be considered

except for the localization accuracy too. Figurel3 gives

the localization time for three global localization

algorithms.PSOGL algorithm needs more time than GL

algorithm, and less than PF algorithm. It is because thaparticles, 30. Therefore, the whole localization time for

PSOGL algorithm needs some time to eliminate thePSOGL is less than PF by 32.29%,but the localization
odometry accumulative error, matches with landmarks,accuracy increased efficiently.

and computes the fitness to get best pose by PSO In the localization experiments, the average

algorithm. So the average localization time increased byorientation error for PSOGL decreased by 57.21% than
12.48% than GL algorithm. Compared with PF algorithm, GL, and by 26.34% than PF. The translation error for

PSOGL keeps the global searching strategy for the whold*SOGL decreased by 38.62% than GL, and by 20.12%
population, and avoids the intricate individual operation than PF. Though the whole localization process sacrifices
The algorithm takes simple speed model, and uses special little time cost, which increased by 12.48%, a higher
memory to search the current best solution dynamicallylocalization precision is achieved. The translation error
However, PF algorithm needs more time to update itsand the orientation error decreased by 38.62% and
particle weight with respect to the small amount of 57.21% respectively. In terms of the return on investment
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in economics, it is quite necessary to adopt PSOGL [7] Agostino Martinelli,Nicola Tomatis,Roland Siegwart.
algorithm with odometry error modeling. Simultaneous localization and odometry self calibration for
mobile robot. Autonomous Robot82, 75-85 (2007).
[8] S. J. Julier. The stability of covariance inflation methods for
: SLAM. In Proceedings of the 2003 IEEE IROS Conference,
5 Conclusion Las Vegas NV, USA, 2749-2754 (2003).

hi | hof d [9] Patric Jensfelt, Henrik I. Christensen. Pose Tracking Using
In this paper, a general approach for odometry error Laser Scanning and Minimalistic Environmental Models.

mod?'mg IS proposeq by the existing questions _Of global |EEE Transactions on Robotics and Automatiai, 138-
localization for mobile robots. The modelling is used 147 (2001).

online to reduce non-systematic error and systemati¢10] YANG Jing-Dong,YANG Jing-Hui, HONG Bing-Rong.
error of odometry during long-range motion. In addition, An Efficient Approach to Odometric Error Modeling for
a calculation method of robot pose in the world space is  Mobile Robots. ACTA AUTOMATIC ASINICA, 35, 168-
proposed and proved for monocular visual localizatation. 173 (2009).

Further, the optimal pose is gotten from lots of candidate[11] Martinelli, A. A possible strategy to evaluate the
poses that match with landmarks successfully by using  odometry error of a mobile robot. Intelligent Robots and
PSO algorithm. The experiments denote that the  Systems, 2001. Proceedings. 2001 IEEE/RSJ International
improved algorithm improves the pose precision greatly. ~ Conference or4, 1946-1951 (2001).

If the physics constraints of robot body are considered[12]D. G., Lowe. Districtive Image Features from Scale-
the algorithm with odometry error feedback in real-time ~ Invariant Keypoints. International Journal of Computer
can be applied to other drive type mobile robots, such as __ Vision, 60, 91-110 (2004).

all-wheel-drive or autonomous vehicle. More research inl13] Lowe, D. G., Object recognition from local scale-invariant
this area is still in need of work in the future features. In International Conference on Computer Vision,

Corfu, Greece, 1150-1157 (1999).
[14] Jim Mutch and David G. Lowe. Object class recognition
and localization using sparse features with limited receptive
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