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1 Introduction

Convex functions are important and provide a basis for
constructing literature on mathematical inequalities. A
function f : I → R, whereI is an interval inR is called
convex if

f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y),

wheret ∈ [0,1] andx,y∈ I .
A large number of inequalities are obtained by means

of convex functions see [2,3,4,7,10]. A classical
inequality for convex functions is the Hermite–Hadamard
inequality, this is given as follows:

f

(

a+b
2

)

≤
1

b−a

∫ b

a
f (x)dx≤

f (a)+ f (b)
2

.

wheref : I →R is a convex function anda,b∈ I with a<b
(see [11]).

In this article we are dealing with a recent notion of
generalized convexity, this notion was introduced by I.
Iscan in [9], Iscan gave the following definition of
harmonically convex functions:

Definition 1([9]). Let I be an interval inR \ {0}. A
function f : I → R is said to beharmonically convexon I
if the inequality

f

(

xy
tx+(1− t)y

)

≤ t f (y)+ (1− t) f (x), (1)

holds, for all x,y∈ I and t∈ [0,1].

The following result is immediate from the above
definition.

Proposition 1([9]). Let I ⊂ (0,∞) be a real function
interval and f : I → R is a function.

(a)If f is convex and nondecreasing function, then f is
harmonically convex.

(b)If f is harmonically convex and nonincreasing
function, then f is convex.

The following result of the Hermite-Hadamard type for
harmonically convex functions holds.

Theorem 1([9]). Let f : I ⊆ R \ {0} → R be a
harmonically convex function and a,b ∈ I with a < b. If
f ∈ L[a,b] then the following inequalities hold

f

(

2ab
a+b

)

≤
ab

b−a

∫ b

a

f (x)
x2 dx≤

f (a)+ f (b)
2

. (2)

In [14] authors gave the inequalities of
Hermite-Hadamard type for rectangle in plane by
defining harmonically convex functions on coordinates.
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Definition 2. Let us consider the bidimensional interval
∆ = [a,b]× [c,d] in (0,∞)× (0,∞) with a< b and c< d.
A function f: ∆ →R is said to be harmonically convex on
∆ if the following inequality:

f

(

xz
tz+(1− t)x

,
yw

tw+(1− t)y

)

≤ t f (x,y)+(1− t) f (z,w),

holds, for all(x,y),(z,w) ∈ ∆ and t∈ [0,1].

Definition 3. Let us consider the bidimensional interval
∆ = [a,b]× [c,d] in (0,∞)× (0,∞) with a< b and c< d.
A function f : ∆ → R is said to be harmonically convex
on the co-ordinates if the partial mappings fy : [a,b]→R,
fy(u) = f (u,y) fx : [c,d] → R, fx(v) = f (x,v) are
harmonically convex where defined for all y∈ [c,d] and
x∈ [a,b].

The following inequalities of Hermite-Hadamard type
hold.

Theorem 2. Suppose that f: ∆ → R is harmonically
convex on the co-ordinates on∆ . Then one has the
inequalities:

f

(

2ab
a+b

,
2cd

c+d

)

(3)

≤
1
2





ab
b−a

∫ b

a

f
(

x, 2cd
c+d

)

x2 dx+
cd

d−c

∫ d

c

f
(

2ab
a+b ,y

)

x2 dy





≤
abcd

(b−a)(d−c)

∫ b

a

∫ d

c

f (x,y)

(xy)2
dxdy

≤
1
4

[

ab
b−a

∫ b

a

f (x,c)

x2 dx+
ab

b−a

∫ b

a

f (x,d)

x2 dx

+
cd

d−c

∫ d

c

f (a,y)

y2 dy+
cd

d−c

∫ d

c

f (b,y)

y2 dy

]

≤
f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)

4
.

The above inequalities sharp.

We started with some notations and definitions that
will be use throughout the rest of this paper, some of them
were introduced by the authors in [1,5,6].
As usually,N (resp.N0) denotes the set of all positive
integers (resp. non-negative integers), typical point ofR

n

are denoted as x = (x1,x2, . . . ,xn) and
R

n
+ := {x ∈ R

n : xi > 0, i = 1, . . . ,n}. If
a = (a1,a2, . . . ,an), b = (b1,b2, . . . ,bn) ∈ R

n we use the
notationa< b to denote thatai < bi for eachi = 1, . . . ,n
and similarly are defineda= b, a≤ b anda≥ b. If a< b,
the set ∆n := [a,b] = ∏n

i=1[ai ,bi ] will be called a
n–dimensional closed interval. Furthermore, for
α = (α1, . . . ,αn) ∈ N

n
0 andx = (x1,x2, . . . ,xn) ∈ R

n will
use the notations

|α| := α1+ . . .+αn and αx := (α1x1, . . . ,αnxn).

Now we define two sets that will play an important role
in this work:

E (n) := {θ ∈N
n
0 : θ ≤ 1 and|θ | is even} ,

O(n) := {θ ∈N
n
0 : θ ≤ 1 and|θ | is odd} .

Motivated by [1,5], we give the following definition

Definition 4. Given f : ∆n → R we define the
n–dimensional Vitali permutation of f sobre an n–
dimensional interval[x,y]⊆ ∆n, by

Jn( f , [x,y]) := ∑
θ∈E (n)

f (θx+(1−θy))+ ∑
θ∈O(n)

f (θx+(1−θy)).

Note that in the case whenn = 2, we get
E (2) = {(0,0),(1,1)} and O(2) = {(0,1),(1,0)},
therefore

J2( f , [x,y])= f (x1,x2)+ f (x1,y2)+ f (y1,y2)+ f (y1,x2).

In [8] Ghulam Farid and Atiq ur Rehman gave
generalization of the work of S. S. Dragomir (see [12]) by
defining convex functions onn–coordinates as follow:

Definition 5. Let (x1, . . . ,xn) ∈ ∆n. A mapping
f : ∆n → R is called convex on n–coordinates if the
functions fixn

, where
f i
xn
(t) := f (x1, . . . ,xi−1, t,xi+1, . . . ,xn), are convex on

[ai,bi ] for i = 1, . . . ,n.

The following result of the Fejér–Hadamard’s
inequality for convex on functionsn–coordinates holds.

Theorem 3([8]). Let (x1, . . . ,xn) ∈ ∆n and f : ∆n → R

be a convex mapping on n–coordinates. Also, let
gi : [ai,bi ] → R be an integrable and symmetric function

about
ai +bi

2
for each i= 1, . . . ,n. Then we have

n

∑
k=1

1
Gk

∫ bk

ak

f k+1
xn

(

ak+1+bk+1

2

)

gk(xk)dxk

≤
n

∑
k=1

1
GkGk+1

∫ bk

ak

∫ bk+1

ak+1

f k+1
xn

(xk+1)gk+1(xk+1)gk(xk)dxk+1dxk

≤
n

∑
k=1

[

1
Gk

∫ bk

ak

f k+1
xn

(ak+1)+ f k+1
xn

(bk+1)

2
gk(xk)dxk

]

,

where

Gk =
∫ bk

ak

gk(xk)dxk,

with k= 1, . . . ,n. These inequalities are sharp.

2 Main results

Motivated by [8,13,14], we introduce a new concept of
n–coordinated convex functions which is called
harmonically convex functions on then–coordinates.
Under this new concept, we present the
Hermite–Hadamard inequalities for these new classes of
functions.
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Definition 6. Leta,b∈R
n
+; such thata< b, then we will

say that a function f: ∆n → R is harmonically convex on
∆n if the following inequality

f

(

x1y1

αy1+(1−α)x1
, . . . ,

xnyn

αyn+(1−α)xn

)

(4)

≤ α f (x1, . . . ,xn)+(1−α) f (y1, . . . ,yn),

holds, for all(x1, . . . ,xn),(y1, . . . ,yn) ∈ ∆n andα ∈ [0,1].

We introduce the generalization of the work done by
A. Set and I. Iscan (see [14]), by defining harmonically
convex functions onn–coordinates as follow:

Definition 7. A function f : ∆n ⊂ R
n
+ → R is called

harmonically convex on n-coordinates if the functions fi
xn

,
where fixn

(t) = f (x1,x2, . . . ,xi−1, t,xi+1, . . . ,xn), are
harmonically convex on[ai ,bi ] for i = 1, . . . ,n.

Example 1. Let us consider a functionf : [1,3]n → R

defined as:

f (x1, . . . ,xn) =
1

(x1 · · ·xn)
p

with p ≥ 1, then f is harmonically convex on
n-coordinates.

Proof. In effect, letx,y ∈ [1,3], α ∈ [0,1] and for each
i = 1, . . . ,n, we have

f i
xn

(

xy
αx+(1−α)y

)

=
1

[

x1 · · ·xi−1 ·
xy

αx+(1−α)y
·xi+1 · · ·xn

]p

=
[αx+(1−α)y]p

xp
1 · · ·x

p
i−1 ·x

p ·yp ·xp
i+1 · · ·x

p
n

≤
αxp+(1−α)yp

xp
1 · · ·x

p
i−1 ·x

p ·yp ·xp
i+1 · · ·x

p
n

=
αxp

xp
1 · · ·x

p
i−1 ·x

p ·yp ·xp
i+1 · · ·x

p
n
+

(1−α)yp

xp
1 · · ·x

p
i−1 ·x

p ·yp ·xp
i+1 · · ·x

p
n

=
α

xp
1 · · ·x

p
i−1 ·y

p ·xp
i+1 · · ·x

p
n
+

(1−α)

xp
1 · · ·x

p
i−1 ·x

p ·xp
i+1 · · ·x

p
n

= α f i
xn
(y)+(1−α) f i

xn
(x).

Thus f i
xn

is harmonically convex function on[1,3], for
each i = 1, . . . ,n. Hence f is harmonically convex on
n-coordinates.

From definition 7 have the following important
consequence.

Proposition 2. Let f :⊂R
n
+ →R a function and fixn

(t) =
f (x1,x2, . . . ,xi−1, t,xi+1, . . . ,xn), for some i= 1, . . . ,n, we
have that

(a) If f i
xn

is convex and nondecreasing function for
i = 1, . . . ,n, then f is harmonically convex on
n-coordinates.

(b) If f i
xn

is harmonically convex and nonincreasing
function for i = 1, . . . ,n, then f is convex on
n-coordinates.

Proof. It is immediate using the proposition1.

The following theorem holds:

Theorem 4. Every harmonically convex function
f : ∆n ⊂ R

n
+ → R is harmonically convex on

n-coordinates.

Proof. Suppose thatf is harmonically convex on∆n.
Consider f i

xn
: [ai ,bi ] → R, defined as

f i
xn
(t) = f (x1,x2, . . . ,xi−1, t,xi+1, . . . ,xn). Then for all

α ∈ [0,1] andu,v∈ [ai,bi ], we have

f i
xn

(

uv
αu+(1−α)v

)

= f

(

x1, . . . ,xi−1,
uv

αu+(1−α)v
,xi+1, . . . ,xn

)

= f

(

x2
1

αx1+(1−α)x1
,

uv
αu+(1−α)v

, . . . ,
x2

n

αxn+(1−α)xn

)

≤ α f (x1, . . . ,xi−1,v,xi+1, . . . ,xn)+(1−α) f (x1, . . . ,xi−1,u,xi+1, . . . ,xn)

= α f i
xn(v)+(1−α) f i

xn(u),

The converse of the previous theorem is not generally true,
we give the following counter example:

Example 2. Consider the function
f : [2,5]× [3,5]× [4,5]→ [0,+∞] defined as:

f (x1,x2,x3) = (x1−2)(x2−3)(x3−4),

then f is harmonically convex on 3-coordinates but it is
not harmonically convex on[2,5]× [3,5]× [4,5].

In effect, let f 1
x3

: [2,5]→ [0,+∞], defined as:
f 1
x3
(t) = (t −2)(x2−3)(x3−4), then

d
dt

f 1
x3
(t) = (x2−3)(x3−4)≥ 0, with (x2,x3) ∈ [3,5]× [4,5],

and

d2

dt2
f 1
x3
(t) = 0.

Thus, f 1
x3

is a convex and nondecreasing function on[2,5].
Similarly it is proved that f 2

x3
and f 3

x3
are convex and

nondecreasing functions on[3,5] and [4,5] respectively.
Hence by the theorem2, we get f is harmonically convex
on 3-coordinates.

Now let’s see thatf is not harmonically convex on
[2,5]× [3,5]× [4,5].
Indeed, for (2,5,5),(3,5,4) ∈ [2,5]× [3,5]× [4,5] and
α ∈ (0,1), we have

c© 2018 NSP
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f

(

2·3
2α +(1−α)3

,
5·5

5α +(1−α)5
,

5·4
5α +(1−α)4

)

= f

(

6
3−α

,5,
20

4+α

)

=

(

6
3−α

−2

)

(5−3)

(

20
4+α

−4

)

=
2α

3−α
·2·

4−4α
4+α

=
16α(1−α)

(3−α)(4+α)
> 0,

and

α f (3,5,4)+(1−α) f (2,5,5)

= α(3−2)(5−3)(4−4)+(1−α)(2−2)(5−3)(5−4) = 0.

This for all α ∈ (0,1), we have

f

(

2 ·3
2α +(1−α)3

,
5 ·5

5α +(1−α)5
,

5 ·4
5α +(1−α)4

)

> α f (3,5,4)+ (1−α) f (2,5,5),

therefore shows thatf is not harmonically convex on
[2,5]× [3,5]× [4,5].

The following inequalities of Hermite-Hadamard type
integral inequalities hold.

Theorem 5. Let f : ∆n ⊂ R
n
+ → R is harmonically

convex function on n-coordinates on∆n. Then the
following inequalities are hold,

n−1

∑
i=1

f

(

x1, . . . ,xi−1,
2aibi

bi −ai
,

2ai+1bi+1

bi+1−ai+1
, . . . ,xn

)

(5)

≤
n−1

∑
i=1

∫ bi

ai

f i+1
xn

(

2ai+1bi+1
ai+1+bi+1

)

x2
i

dxi

≤
n−1

∑
i=1

aibiai+1bi+1

(bi −ai)(bi+1−ai+1)

∫ bi

ai

∫ bi+1

ai+1

f i+1
xn

(xi+1)

(xixi+1)2
dxi+1dxi

≤
n−1

∑
i=1

aibi

bi −ai

∫ bi

ai

f i+1
xn

(ai+1)+ f i+1
xn

(bi+1)

2x2
i

dxi

≤
1
4

n−1

∑
i=1

[ f (x1, . . . ,ai ,ai+1, . . . ,xn)+ f (x1, . . . ,bi ,ai+1, . . . ,xn)

+ f (x1, . . . ,ai ,bi+1, . . . ,xn)+ f (x1, . . . ,bi ,bi+1, . . . ,xn)] .

Proof. Since f : ∆n → R is harmonically convex on
n-coordinates, we have that the following functions
f i
xn

: [ai,bi ] → R, f i
xn
(t) = f (x1, . . . ,xi−1, t,xi+1, . . . ,xn) is

harmonically convex on[ai,bi ] for all xn ∈ [an,bn]. Then
by the inequality (1) of Hermite-Hadamard type for
harmonically convex function f i+1

xn
on interval

[ai+1,bi+1], we get

f i+1
xn

(

2ai+1bi+1

ai+1+bi+1

)

≤
ai+1bi+1

bi+1−ai+1

∫ bi+1

ai+1

f i+1
xn

(xi+1)

x2
i+1

dxi+1

≤
f i+1
xn

(ai+1)+ f i+1
xn

(bi+1)

2
.

Now by integrating on[ai ,bi ], we obtain

aibi

bi −ai

∫ bi

ai

f i+1
xn

(

2ai+1bi+1
ai+1+bi+1

)

x2
i

dxi (6)

≤
aiai+1bibi+1

(bi −ai)(bi+1−ai+1)

∫ bi

ai

∫ bi+1

ai+1

f i+1
xn

(xi+1)

(xixi+1)2
dxi+1dxi

≤
aibi

2(bi −ai)

∫ bi

ai

f i+1
xn

(ai+1)+ f i+1
xn

(bi+1)

x2
i

dxi .

Again applying the inequality of Hermite-Hadamard,
we get

f

(

x1, . . . ,
2aibi

ai +bi
,

2ai+1bi+1

ai+1+bi+1
, . . . ,xn

)

(7)

≤
aibi

bi −ai

∫ bi

ai

f i+1
xn

(

2ai+1bi+1
ai+1+bi+1

)

x2
i

dxi ,

for eachi ∈ {1, . . . ,n−1} and also

aibi

2(bi −ai)

∫ bi

ai

f i+1
xn

(ai+1)+ f i+1
xn

(bi+1)

x2
i

dxi (8)

=
1
2

[

aibi

bi −ai

∫ bi

ai

f i+1
xn

(ai+1)

x2
i

dxi +
aibi

bi −ai

∫ bi

ai

f i+1
xn

(bi+1)

x2
i

dxi

]

≤
1
2

[

f (x1, . . . ,ai ,ai+1, . . . ,xn)+ f (x1, . . . ,bi ,ai+1, . . . ,xn)

2

+
f (x1, . . . ,ai ,bi+1, . . . ,xn)+ f (x1, . . . ,bi ,bi+1, . . . ,xn)

2

]

=
1
4
[ f (x1, . . . ,ai ,ai+1, . . . ,xn)+ f (x1, . . . ,bi ,ai+1, . . . ,xn)

+ f (x1, . . . ,ai ,bi+1, . . . ,xn)+ f (x1, . . . ,bi ,bi+1, . . . ,xn)]

for eachi ∈ {1, . . . ,n−1}.

Using the inequalities (7) and (8) in (6) and taking
summation from 1 ton−1, we have (5).

Theorem 6. Let f : ∆n ⊂ R
n
+ → R is harmonically

convex function on n-coordinates on∆n. Then the
following inequalities are hold,

f

(

2a1b1

b1−a1
, . . . ,

2an−1bn−1

bn−1−an−1
,

2anbn

bn−an

)

(9)

≤

(

n

∏
i=1

aibi

bi −ai

)

∫ b1

a1

. . .

∫ bn

an

f n
xn
(xn)

(∏n
i=1xi)

2 dxn . . .dx1

≤
1
2nJn ( f , [a,b]) .
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Proof. Since f n
xn

is harmonically convex on[an,bn], then
by the inequality (1) of Hermite-Hadamard type for
harmonically convex functionf n

xn
on interval[an,bn], we

get

f n
xn

(

2anbn

an+bn

)

≤
anbn

bn−an

∫ bn

an

f n
xn
(xn)

x2
n

dxn ≤
f n
xn
(an)+ f n

xn
(bn)

2
.

Integrating this inequality on[an−1,bn−1], we obtain

an−1bn−1

bn−1−an−1

∫ bn−1

an−1

f n
xn

(

2anbn
an+bn

)

x2
n−1

dxn−1 (10)

≤
an−1anbn−1bn

(bn−1−an−1)(bn−an)

∫ bn−1

an−1

∫ bn

an

f n
xn
(xn)

(xn−1xn)2
dxn−1dxn

≤
an−1bn−1

bn−1−an−1

∫ bn−1

an−1

f n
xn
(an)+ f n

xn
(bn)

2x2
n−1

dxn−1.

By the inequality (7), we get

f

(

x1, . . . ,
2an−1bn−1

an−1+bn−1
,

2anbn

an+bn

)

(11)

≤
an−1bn−1

bn−1−an−1

∫ bn−1

an−1

f n
xn

(

2anbn
an+bn

)

x2
n−1

dxn−1.

Now from (8), we have

an−1bn−1

2(bn−1−an−1)

∫ bn−1

an−1

f n
xn
(an)+ f n

xn
(bn)

x2
n−1

dxn−1 (12)

≤
1
22 [ f (x1, . . . ,an−1,an)+ f (x1, . . . ,bn−1,an)

+ f (x1, . . . ,an−1,bn)+ f (x1, . . . ,bn−1,bn)] .

From (10)-(12), we obtain

f

(

x1, . . . ,
2an−1bn−1

an−1+bn−1
,

2anbn

an+bn

)

(13)

≤
an−1bn−1anbn

(bn−1−an−1)(bn−an)

∫ bn−1

an−1

∫ bn

an

f n
xn
(xn)

(xn−1xn)2 dxn−1dxn

≤
1
22 [ f (x1, . . . ,an−1,an)+ f (x1, . . . ,bn−1,an)

+ f (x1, . . . ,an−1,bn)+ f (x1, . . . ,bn−1,bn)] .

Integrating the inequalities (13) above on[an−2,bn−2],

an−2bn−2

bn−2−an−2

∫ bn−2

an−2

f

(

x1, . . . ,
2an−1bn−1

an−1+bn−1
,

2anbn

an+bn

)

x2
n−2

dxn−2 (14)

≤

(

n

∏
i=n−2

aibi

bi −ai

)

∫ bn−2

an−2

∫ bn−1

an−1

∫ bn

an

f n
xn(xn)

(xn−2xn−1xn)2
dxn−2dxn−1dxn

≤
1
22

an−2bn−2

bn−2−an−2

∫ bn−2

an−2

1
x2

n−2

[ f (x1, . . . ,an−1,an)+ f (x1, . . . ,bn−1,an)

+ f (x1, . . . ,an−1,bn)+ f (x1, . . . ,bn−1,bn)]dxn−2.

By the inequality (7), we get

f

(

x1, . . . ,
2an−2bn−2

an−2+bn−2
,

2an−1bn−1

an−1+bn−1
,

2anbn

an+bn

)

(15)

≤
an−2bn−2

bn−2−an−2

∫ bn−2

an−2

f

(

x1, . . . ,
2an−1bn−1

an−1+bn−1
,

2anbn

an+bn

)

x2
n−2

dxn−2.

Again by the inequality (8), we have

1
22

an−2bn−2

bn−2−an−2

∫ bn−2

an−2

1
x2

n−2

[ f (x1, . . . ,an−1,an)+ f (x1, . . . ,bn−1,an) (16)

+ f (x1, . . . ,an−1,bn)+ f (x1, . . . ,bn−1,bn)]dxn−2.

≤
1
23 [ f (x1, . . . ,an−2,an−1,an)+ f (x1, . . . ,bn−2,an−1,an)

+ f (x1, . . . ,an−2,bn−1,an)+ f (x1, . . . ,bn−2,bn−1,an)

+ f (x1, . . . ,an−2,an−1,bn)+ f (x1, . . . ,bn−2,an−1,bn)

+ f (x1, . . . ,an−2,bn−1,bn)+ f (x1, . . . ,bn−2,bn−1,bn)] .

Using the inequalities (14)-(16)

an−2bn−2

bn−2−an−2

∫ bn−2

an−2

f

(

x1, . . . ,
2an−1bn−1

an−1+bn−1
,

2anbn

an+bn

)

x2
n−2

dxn−2 (17)

≤

(

n

∏
i=n−2

aibi

bi −ai

)

∫ bn−2

an−2

∫ bn−1

an−1

∫ bn

an

f n
xn(xn)

(xn−2xn−1xn)2 dxn−2dxn−1dxn

≤
1
23 [ f (x1, . . . ,an−2,an−1,an)+ f (x1, . . . ,bn−2,an−1,an)

+ f (x1, . . . ,an−2,bn−1,an)+ f (x1, . . . ,bn−2,bn−1,an)

+ f (x1, . . . ,an−2,an−1,bn)+ f (x1, . . . ,bn−2,an−1,bn)

+ f (x1, . . . ,an−2,bn−1,bn)+ f (x1, . . . ,bn−2,bn−1,bn)] .

Doing this procedure successively we obtain the desired
inequalities.

Theorem 7. Let f : ∆n ⊂ R
n
+ → R is harmonically

convex function on n-coordinates on∆n. Then the
following inequalities holds:

n

∑
i=1

aibi

bi −ai

∫ bi

ai

[

f i
an
(xi)+ f i

bn
(xi)
]

dxi (18)

≤
n
2
[ f (a)+ f (b)]+

1
2

n

∑
i=1

[

f i
an
(bi)+ f i

bn
(ai)
]

.

Proof. Since f : ∆n ⊂ R
n
+ → R is harmonically convex

function on n-coordinates, thenf i
xn

: [ai ,bi ] → R is
harmonically convex function on[ai ,bi ], for each
i = 1, . . . ,n. From the right inequality of
Hermite–Hadamard type (2), for eachi = 1, . . . ,n, we get

aibi

bi −ai

∫ bi

ai

f i
an
(xi)dxi ≤

f i
an
(ai)+ f i

an
(bi)

2
(19)

=
f (a)+ f i

an
(bi)

2
, (20)

and

aibi

bi −ai

∫ bi

ai

f i
bn
(xi)dxi ≤

f i
bn
(ai)+ f i

bn
(bi)

2
(21)

=
f i
bn
(ai)+ f (b)

2
. (22)

Adding the inequalities (19) and (21), we obtain

aibi

bi −ai

∫ bi

ai

[

f i
an
(xi)+ f i

bn
(xi)
]

dxi (23)

≤
1
2
[ f (a)+ f (b)]+

1
2

[

f i
an
(bi)+ f i

bn
(ai)
]

wherei = 1, . . . ,n. Taking sum from 1 ton, we have (18).
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A particular case of the inequalities (5), (9) and (18) is
indicated in the following result,

Corollary 1. Let∆2 := [a,b]× [c,d] and f : ∆2 →R be a
harmonically convex function on2–coordinates. Then(3)
is valid.

Proof. Putting n = 2 in the theorems5, 6 and 7, and
takinga1 = a, b1 = b, a2 = c, andb2 = d, we obtain the
required result.

3 Conclusions

The principal contribution of this paper has been the
introduction of a new class of function of generalized
convexity on coordinates, we present some examples and
properties. We have shown that these class contain some
previously known classes as special cases as well as
Hermite–Hadamard’s inequalities type for these
functions. We expect that the ideas and techniques used in
this paper may inspire interested readers to explore some
new applications of these newly introduced functions in
various fields of pure and applied sciences.
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