Appl. Math. Inf. Sci. Lett6, No. 2, 53-58 (2018) %N =S¥\ 53

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amisl/060201

Hermite—Hadamard Type Inequalities for Harmonically
Convex Functions on n-Coordinates

Jesis Medina Vilorig and Miguel Vivas Cortez*

1 Departamento de Matematica, Universidad Centroccidieigandro Alvarado (UCLA), Barquisimeto, Venezuela
2 pontificia Universidad Catolica del Ecuador (PUCE), Famlide Ciencias Exactas y Naturales, Escuela de Cienciisa§iy
Matematica. Sede Quito, Ecuador.

Received: 9 Aug. 2017, Revised: 26 Jan. 2018, Accepted: 120418
Published online: 1 May 2018

Abstract: We introduce the notion of harmonically convex functionsnecoordinates and present some examples and properties of
them. We also establish some Hermite-Hadamard type inigégadbor the class of harmonically convex functions mroordinates
which generalizes previous results.
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1 Introduction holds, for all xy € l and t € [0, 1].

Convex functions are important and provide a basis for
constructing literature on mathematical inequalities. A

function f : | — R, wherel is an interval inR is called The following result is immediate from the above

convex if definition.
f(tX—F(l—t)Y) Stf(X)—F(l—t)f(y), Proposition 1([9]) Let | C (0700) be a real function
wheret € [0,1] andx,y € |. interval and f: 1 — R is a function.

A large number of inequalities are obtained by means ; ; ; ;
of convex functions see 2[3.4.7,10. A classical (a)If f is convex and nondecreasing function, then f is

. . ) ! . harmonically convex.
inequality for convex functions is the Hermite—Hadamard i y ) ) ,
inequality, this is given as follows: (b)If f is harmonically convex and nonincreasing

function, then f is convex.

f (ib) < b—ia/:f(x)dxg fE@)+fb)

2 2 The following result of the Hermite-Hadamard type for
wheref :1 — Risaconvexfunctionandbecl witha<b  harmonically convex functions holds.
(see [L1)).
In this article we are dealing with a recent notion of Theorem 1([9]). Let f: 1 C R\ {0} — R be a

generalized convexity, this notion was introduced by I. harmonically convex function andlae | with a < b. If
Iscan in P], Iscan gave the following definition of f € L[a,b]then the following inequalities hold
harmonically convex functions:

f(a)+ f(b)

2ab ab [P f(x)
Definition 1([9]). Let | be an interval inR\ {0}. A f atb < b—a/ 2 dx< >
function f: 1 — R is said to beharmonically convexn | a
if the inequality

(2)

In [14] authors gave the inequalities of
Xy Hermite-Hadamard type for rectangle in plane by
f (tx+(1—t)y) <tiy) + (A -1f(x), (1) defining harmonically convex functions on coordinates.
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Definition 2. Let us consider the bidimensional interval Now we define two sets that will play an important role
= [a,b] x [c,d] in (0,) x (0,») witha<band c<d.  inthis work:
Afunction f: A — R is said to be harmonically convex on &(n) == {6 € NJ: 0 < 1and|@|is ever},

A if the following inequality: o(n) == {6 €N 6 < 1 and|6)] is odd}
= Do < .

XZ yw
(tz+(1—t)X7tW+(1—t)y) tf(xy)+(1-t)f(zw),

holds, for all(x,y), (z,w) € A and te [0,1].

Motivated by L,5], we give the following definition

Definition 4. Given f: A" — R we define the
n—dimensional Vitali permutation of f sobre an n-

- : . , , dimensional intervalx,y] C A", by
Definition 3. Let us consider the bidimensional interval

A = [a,b] x [c,d] in (0,) x (0,00) with a< b and c< d. /n(f.,[x,y])::gg f(Ox+(1-0y))+ 5 f(6x+(1-6y)).
A function f: A — R is said to be harmonically convex <& feom

on the co-ordinates if the partial mappingg: fa, b] — R, Note that in the case whem = 2, we get
fY(u) = f(uvy) fX : [C,d] — R, fx(V) = f(X,V) are éb(z) = {(070)7(17 1)} and ﬁ(z) = {(Oa 1)7(170)}1
harmonically convex where defined for alky[c,d] and therefore

x € [a,b]. Fo(,1xy]) = f(x1,%2) + F (X1, y2) + f(y1,¥2) + f(y1.%2).
The following inequalities of Hermite-Hadamard type In [8] Ghulam Farid and Atig ur Rehman gave
hold. generalization of the work of S. S. Dragomir (s&&g]) by

Theorem 2. Suppose that f A — R is harmonically defining convex functions on-coordinates as follow:
convex on the co-ordinates oA. Then one has the Definition5. Let (x3,...,X,) € A". A mapping

inequalities: f: A" — R is called convex on n—coordinates if the
(230 2d ; functions £, where
arb crd G £l ) = f(X,...,X—1,t,X41,...,%), are convex on

[ai,bj] fori=1,...,n

% { ab /b f (x,f%) i cd /d f (%7)/) dy]

<
— _ 2 _ 2 . .y
b-aja  x d-cle X The following result of the Fejer—Hadamard’s
abed d f(x y inequality for convex on functions-coordinates holds.
= (b—a)(d—c) / / dxdy Theorem 3([8]). Let(xy,...,xn) €A"and f: A" - R
ab b f(xc) ab b f(x,d) be a convex mapping on n—coordinates. Also, let
< ) {b a/ xé dx+ b a/ 2 dx gi : [@,hi] — R be an integrable and symmetric function
—ara i + by .
cd d f(a7y)d cd (b7y)d about® o foreachi=1,...,n. Then we have
+d—C/c y? y+d—c/c y? y} n
1 k+1 Q1+ by
_ Hao+f(ad)+f(bo)+f(bd) G— o) Kk(xJdx
< 2 .
be b
The above inequalities sharp. z / k/ “ f"+l (Xir1) Ok 1 (K1) Ok (i) Iy 1%
Gka+l Qi1
: : N1 byl + XL (b
We started with some notations and definitions that < G—/ o (Brt) 5 ( kH)gk(Xk)ka :
will be use throughout the rest of this paper, some of them k=1 ko
were introduced by the authors ih, 5, 6]. where b
As usually,N (resp.Ng) dgnqtes the set qf all ppsitive Gk:/ kgk(xk)d)(k7
integers (resp. non-negative integers), typical poinRbf a
are denoted as X = (X;,X2,...,%n) and Wwithk=1,...,n. These inequalities are sharp.
Ry = {xeR":x >0 i=1..n} I

a= (ag,a,...,an), b= (by,by,...,by) € R" we use the .
notaiiona< b to Bjenote(thaa; <b fczr eachi=1,...n 2 Mainresults
and similarly are defined=b,a<banda>b. If a<b,
the set A" := [a,b] = [{L,[a,bi] will be called a
n—dimensional closed interval. Furthermore, for
a = (ai,...,an) € Ng andx = (Xg,X2,..., %) € R" will
use the notations

Motivated by B,13,14], we introduce a new concept of
n—coordinated convex functions which is called
harmonically convex functions on the—coordinates.
Under this new concept, we present the
Hermite—Hadamard inequalities for these new classes of
lal:=a1+...+an and ax:= (01Xq,...,0nXn). functions.
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Definition 6. Leta,be R ; such thaia < b, then we will

say that a function f A" — R is harmonically convex on

A" if the following inequality

( X1Y1 XnYn ) @
ayi+(@A—a)x’ T ayn+(1—-a)xq

S Gf(xlw-~7Xn)+(1_a)f()’17~~-7yn)7
holds, for all(xs,...,%n), (Y1,-..,¥n) € A" anda € [0, 1].

We introduce the generalization of the work done by

A. Set and I. Iscan (seel4]), by defining harmonically
convex functions om—coordinates as follow:

Definition 7. A function f: A" Cc R? — R is called
harmonically convex on n-coordinates if the functio;bns f
where { (1) = f(x1,%,.... % 1,t,X:1,...,X)), are
harmonically convex ofs;, b fori=1,...,n.

Example 1. Let us consider a functiori : [1,3]" — R
defined as:

1
(Xl' . 'Xn)p

then f

f(xlv"'vxn) -

with p > 1,
n-coordinates.

is harmonically convex on

Proof. In effect, letx,y € [1,3], a € [0,1] and for each
i=1,...,n,we have

(e (e ay)

_ 1
 xex Xy P
10 X1 ax+ (1—a)y i+1°"Xn
_ [ax+(1—a)y]P
TP p p p
Xl"'xifl'xp'yp'XiJrl"'Xn
axP+(1—a)yP
S PP xpup P P
X1"'Xi71'x -yl 'Xi+1"'xn
B axP N (1-a)yP
XE...Xﬁl.xp.yp.xiﬂl...xﬁ XJ‘?...)(i‘il.xP.yP.xiﬂl...xﬁ
B a N (1-a)
XE...Xﬁl.yp.xﬁLl...xﬁ XE...Xﬁl.xp.xiﬂl...xﬁ

=afl (y)+(1—a)fl (0.

Thus f} is harmonically convex function oft,3], for
eachi = 1,...,n. Hence f is harmonically convex on
n-coordinates.

From definition 7 have the following important
consequence.

Proposition 2. Let f:C R — R afunction and jn (t)=
f(Xe, %2, ..., %-1,t,X4+1,..-,%n), for some i=1,...,n, we
have that

(a) If f)‘(n is convex and nondecreasing function for
i =1...,n, then f is harmonically convex on
n-coordinates.

(b) If fi is harmonically convex and nonincreasing

function for i= 1,....n, then f is convex on
n-coordinates.

Proof. Itis immediate using the propositidn

The following theorem holds:

Theorem 4. Every harmonically convex function
f . A" ¢ Rl — R is harmonically convex on
n-coordinates.

Proof. Suppose thaff is harmonically convex om\".

Consider f, @ [a,b] — R, defined as
fi, (1) = f(x1, %2, ..., X—1,t,Xi11,...,%). Then for all
a € [0,1] andu,v € [a;, bi], we have

i (Goriizay)

flx Xi Lx- X
Ly s Ai-1y GU+<170)V7 i+1s--054n
_ X2 uv X2
axg+(1—a)x au+(1—a)’ "’
< af(Xe,..., X1,V Xi41,---, Xn) + (L—a)f(xq,..
=afl (V+1-a)fl (),

The converse of the previous theorem is not generally true,
we give the following counter example:

Example 2. Consider the function

f:]2,5] x [3,5] x [4,5] — [0,40] defined as:
f(Xl,Xz,Xg) = (Xl — 2)(X2 — 3)(X3 — 4),

then f is harmonically convex on 3-coordinates but it is
not harmonically convex of2, 5] x [3,5] x [4,5].

In effect, letfy, : [2,5] — [0, +0], defined as:
fe,(t) = (t—2)(x2—3)(x3—4), then
d .
a1‘X13(t) = (X2 — 3)(x3 — 4) > 0, with (X2, X3) € [3,5] x [4,5],
and
d?
e fy, (t) =0.
Thus,fxl3 is a convex and nondecreasing function 5.
Similarly it is proved thatfZ and f3 are convex and
nondecreasing functions dB,5] and [4,5] respectively.
Hence by the theore® we getf is harmonically convex
on 3-coordinates.

Now let's see thatf is not harmonically convex on
[2,5] x [3,5] x [4,5].
Indeed, for(2,5,5),(3,5,4) € [2,5] x [3,5] x [4,5] and
a € (0,1), we have
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. 2.3 5.5 5.4 i+l< 23i+1bi+1) < Giibig /bH1 fin“(ml)d)q )
2a+(1-a)3'5a+(1—a)5'5a + (1—a)d “ \au+bi/) =~ bu-—anla, 2,
—f 6 5 20 f>i<n+1(ai+1)+f>i<n+l(bi+1)
3—a’ 4+a = 2 .
(55 2)s a4 )
~ \3-a 4+a Now by integrating orja;, bj], we obtain
20 4—4a  16a(1-a) -0
3—-a 4+a  B-a)d+a) 7 b fi+1<234+1bi+1)
b /" %\ @1tbig dx ©)
q b —a Ja X
an
a|a|+1b|b|+1 / /‘*1 f'“ X|+1 o 091 gy g
~ (bi—a)(biy1—a1) an (XiXiy1) *
af(3,54)+(1-a)f(25,5) - aibi /b' fi (@) + l‘x'nl(b.+1)0|xi
=0a(3-2)(5-3)(4—4)+(1-a)(2—-2)(5—-3)(5—-4) =0. ~ 2(bi—a&) Ja xi2 '
This foralla € (0,1), we have Again applying the inequality of Hermite-Hadamard,
we get
¢ 2.3 7 5.5 | 5.4 f(X17---7 2'aibi'7 2‘ai+1bi‘+1 7-~-7Xn) R
20+ (1-0a)3'5a+(1—a)5 50+ (1—a)d a+bi g1 +bipg
_ i 23101 ¢
>af(3,54)+(1—-a)f(2,55), _ ab /‘bi fir (%lﬁ) o
— b — o 2 ’
therefore shows thaf is not harmonically convex on bi—a Ja gl
[2,5] x [3,5] x [4,5]. foreachi € {1,...,n— 1} and also
. The following_inequalities of Hermite-Hadamard type aibi /bi f)i(nle(ai+l)+f)i(n+l(bi+l)d)q -
integral inequalities hold. 20 —a) Ja X2
Theorem5. Let f: A" ¢ R? — R is harmonically — _ 1| _abi /’bi fifl(awl)dxﬁ aibi /’bi fifl(biu)dxi
convex function on n-coordinates oA". Then the 2| bi—a Ja x? b —& Ja X
following inequalities are hold, 1 {f(xl7...7aa7aa+17...7xn)+ F(X0 o BB, %)
nt 2aibj 23 1big o2 2
f{xg,. . %1, T .., 5 b
i; (1 L& bi1—an Xn) ®) +1‘(x17...7a,7b,+17...7xn)—£ (X, .-, 05, bigg, . )}
n1 b f)i(n+1 2ai+1bi‘+1 1
S I;L/a‘ <a)|(;;+ l+1>dxi = Z[f(xl>'~'>ai7ai+l>'~'>xn)+f(xl7~'~7bi>ai+l7~'~7xn)
- n-1 a|b|a|+lbl+l /b|/b|+1 f|+l XIJrl X| 1d)q +f(x:.L7"'7ai7bi+l7”~7Xn)+f(xlv'"7bi7bi+l7"'7xn)]
- i; (b —a)(biy1 —ai+1) a (6Xig1)2 foreachi € {1,...,n—1}.
—1 - h: b fi+l(a. i+1(p.
< '§ _ab /b' fy ~(3+1) +2an (b'“)d)q Using the inequalities7) and @) in (6) and taking
& bi—a Ja 2 summation from 1t — 1, we have¥).
-1
< 10 [F(X0,- 280,841, %) + F (X1, B34, Xn) Theorem6. Let f: A" ¢ Rl — R is harmonically
45 convex function on n-coordinates oA". Then the
+F(XL, .58, 0001, %)+ F(Xg,.. ., b0, b, . X)) following inequalities are hold,
2a1b 2a, 1bp-1  2anb
Proof. Since f : A" — R is harmonically convex on f(b 11 ,...,ba" 1ot ,ban L ) (9)
n-coordinates, we have that the following functions 1-a n-1—8n-1 DOn—an
fy, o [@,bi] = R, fi (1) = f(xq,...,% 1,t,X41,...,%) IS n ab, bn £ (Xn)
harmonically convex ona;, by] for all x, € [an,bn]. Then = | | /a / ) ——%n..dx
by the inequality {) of Hermite-Hadamard type for = (Mizax)

harmonically convex
[ai+17 bi-‘rl]a we get

i +1
function f>'<n

1
%/ﬂ(fa[&b])'

on interval

IN
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Proof. Sincef] is harmonically convex ofan, by, then

by the inequality ) of Hermite-Hadamard type for

harmonically convex functioriy! on interval[a,, by}, we
get

N ( 2anbn ) _ _anbn /-bn fX”n(xn)an< 2 (an) + f2. (bn)
"\an+bn/ ~ bh—an/a, X3 B 2 ’
Integrating this inequality ofa,_1,bn_1], we obtain

bn fn 26‘nbn
an-_1bn_1 / 1 Xn<an Bn>d)‘n—1

10
bh-1—an-1 Ja,4 X2 (10)
an_18nbn_1bn b” L [bn fn
d d
~ (bn—1—an—1)(bn—an / / X100
ap_1bn_1 /P2 ffn( )+ fe (bn)
< n dxn_1.
~ bh_1—an1 /an—l 22 -1
By the inequality 7), we get
2a5_1bh_1  2anbn >
fxy,..., , 11
(l 8n 1+bn 1 @+ by an
2anbp
< an_1bn_1 /b" 1 Xn (an+bn)
= bho1—an—1Jay s X2
Now from (8), we have
_1bn_ bo-1 £ (an) + f) (b,
an—-1Pn-1 / xn( )2 xn( n)an,l (12)
2(bn-1—an-1) X1
1
< ? [f(Xl,... 7an717an)+ f(xlw"abnflaan)
+f(xl, e ,an_l,bn) + f(Xl, ey bn_l,bn)] .
From (10)-(12), we obtain
2a,_1bh_1  2anbn )
fxy,..., , 13
(1 81+ bn_1 an+ b (13)
< an—1bn_1anbn /b” 1/b” fn (%n) % 10%
(bn—1—an_1)(bn— (Xn— 1Xn
1
S 22 [f(X17 . 7an—17an) + f(X17 . '7bn—17an)
+f(X17 e aan—lvbn) + f(X17 R bn—lvbn)] .

Integrating the inequalitied 8) above ora,_2,bn_2],

f<X1 2an 1by 1 2anby )
@ 2bn 2 /bnfz " an1tbn’ @i +hy
bh-2—an2

2 X2 (14)
an-2 Xn-2

n b b
abi /nZ/nl/
dx,_2d%, 1d
(.,—.2 ) Jan ananxn))ﬁwzxnl)‘n

1 anabyo /bn*Z 1
22 by p—an 2
+f(xq,...

IN

IN

[f(X1,...,@n-1,8) + f(Xq,...,bh-1,80)

a2 %o
san-1,bn) + f(xq,...

-,bnflybn)]d)ﬁfz.
By the inequality 7), we get
f( 280 2bn 2 280 1bn 1 2anbn)
X1yeeny

an-2+bn 2 a-1+by 1" an+bn
f ( 2an_1bn-1  2anbn )
b. X1,y
< 8n-2bno / -2
= br2—an-2Ja,, G

(15)

an-1+bn 1’ an+bn

anfz.

Again by the inequalityg), we have

1 ay b2 /'b"*Z 1

[f(4,-- 8n-1,80) + f(xe,-.. .bn-1,80)  (16)

22y 2, a2 X,
+ (X, s8n-1,bn) + (X, ... bno1, bn) ] dXa 2.
1
< ?[f<X1-,~~~-,an72-,anflyan)+f(xl-nu-,bnfz-,an—lyan)
+f(X1,...,80-2,bn-1,80) + F(X1,...,bn2,bn_1,80)
+f(X1,..,80-2,80-1,bn) + F(X1,...,bn 2,80 1,bn)
+ (X1, 8n-2,bn1,bn) + F (X, ,bn2, b1, bn)].

Using the inequalitiesl)-(16)

f (Xl 2a«n—lbnfl 2a«nbn )
an-2bn2 /bn—z """ @ 1+bha’antbn/
bh2—an 2

Z X2 17)
-2 Xn-2
n

< ” _aib /bn Z/bn 1/bn g0y 1
7|n2 an XnZanxn -2 @1

< ? [f(Xt; @ 2,801,80) + F(Xg, ..., bn 2,80 1,80)
+f(X1,...,80-2,bn-1,80) + F(X1,...,bn2,bn_1,80)
+F(Xt,- -5 8n-2,80-1,00) + F (X0, .., bn-2,80-1,bn)
+f(xly~~~yan72ybn—1-,bn> + f<le"' -,bnfzybn—lybn)y

Doing this procedure successively we obtain the desired

inequalities.

Theorem7. Let f: A" c R — R is harmonically

convex function on n-coordinates oA". Then the
following inequalities holds:
n i bi .
o 84, (0 + h(0)] s (18)
&1 0 —ai Ja
M)+ FO) 4SS [ (o) + £l (a
<3 H@+10]+35 3 [t )+ (@)
Proof. Sincef : A" C R} — R is harmonically convex
function on n-coordinates, thenfy : [a,b] — R is
harmonically convex function on[a. bi], for each
i = 1...,n. From the right |nequal|ty of
Hermite—Hadamard type), for eachi = 1,...,n, we get
ab v fh (@) + ()
m/a' fa, (X )dx < f (19)
i (b
_ f@+ (b)) 20)
2
and
aby b @)+ fy (b)
m/@ fp, (X)dx < — (21)
fi (a)+f(b
_ bn(au)z-i- () 22)
Adding the inequalities1(9) and 1), we obtain
b b . .
L/ [£3,(x) + Ty, (x)] dx (23)
bi —a Jq
< S1H@)+ 1))+ [, (b) + T, ()]
wherei = 1,...,n. Taking sum from 1 to, we have 18).
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A particular case of the inequalitie§)( (9) and (8) is
indicated in the following result,

Corollary 1. LetA?:=[a,b] x [c,d]and f: A2 R bea
harmonically convex function c&-coordinates. The()
is valid.

[LO] M. A. Noor, K. I. Noor, and Awan M. U, Integral
inequalities for coordinated harmonically convex funngo
Complex Var. Elliptic Equ. 60 (2015), 776-786.

[11] J. Pecaric and F. Proschagonvex functions, partial
orderings, and statistical applicationsAcademic Press,
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Proof. Puttingn = 2 in the theorem$, 6 and 7, and
takinga; = a, by = b, a, = ¢, andb, = d, we obtain the
required result.

3 Conclusions

The principal contribution of this paper has been the
introduction of a new class of function of generalized
convexity on coordinates, we present some examples and
properties. We have shown that these class contain some
previously known classes as special cases as well as
Hermite—Hadamard's inequalities type for these
functions. We expect that the ideas and techniques used in
this paper may inspire interested readers to explore some
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