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Abstract: We show that the interaction between a movable mirror with a quantized figlthteeacts with a two-level atom may be
simplified via a transformation that involves Susskind-Glogower opesd8&0). By using this transformation it is easy to show that
we can cast the Hamiltonian, after a unitary transformation, into a Hamiltdhans equivalent to the ion-laser Hamiltonian. We
would like to stress that the transformation in terms of SGO already simplifi@sgh the Hamiltonian in the sense that, in an exact
way, it “eliminates” one of the three-subsystems, namely the quantiddd fie

Keywords: Optomechanical interactions, small rotations

1. Introduction autocorrelation function for the mirror state in this form
14]. Therefore, the passage of atoms through such
stems, could give us information, not only about the
o states of the mirror or field, but also about their
This is due to the fact that for such a system we caferaction. This is, the passage of a two-level atom
produce non-classical = states3],[ particularly the  yhrough a cavity with a movable mirror may give us
macroscopic superposition of at least two coherent state§pcormation about the entanglement between mirror and
I.e. Schodinger cat-states. The concept of SUPerpositionkie|y The purpose of this contribution is not to study this
of states plays a fundamental role in understanding the,ossibility, however, but to show how the total system
foundations of quantum mechanics, this is why the e simplified, by several rotations that can produce a
generation of non-classical states, such as squeezes stalgqa||  known Hamiltonian namely the ion-laser
[4], and the particularly important limit of extreme Hamiltonian, in such a way that knowledge form the

squeezing, i.e. Fock or number stat8f; has been widely  (ochniques used in this interaction may be borrowed to
studied in several systems. It is known that a non-linear,

; . e produce solutions in the total atom-field-mirror system.
interaction can generate Sdédinger cat-states. The

non-linear interaction used to generate such states is the

one produced by a Kerr mediur8, [] that corresponds to

a quadratic Hamiltonian in the number field opera®ir [ 2. Interaction between the cavity and the

Our main motivation to make the field-mirror system mirror

interact with an atom is to look for the possibility to

extract information about the mirror state by later ) ) L
measuring atomic properties, as it is well known that The interaction between an electromagnetl_c field and a
several quasiprobability reconstruction techniqugd@ ~ Movable mirror (treated quantum mechanically) has a
for the quantized field11] or the vibrational motion of an ~ '€levant Hamiltonian given byg[ (we seth = 1)

ion [12,13], rely on the measurement of atomic

properties. It would be possible also to reconstruct the Him = wa'a+vb'b—ga'a(b' +b), (1)

Recently, special attention has been devoted to a syste
consisting of a cavity field and a movable mirrdr, 2.
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wherea anda' are the annihilation and creation operators where

for the cavity field, respectively. The field frequencyus Q A + =
b andb' are the annihilation and creation operators for theHy = (VN +X(A-1)(b+b') AV ) ) . (9

A J A i

mirror oscillating at a frequency and AVA VN+Xn(b+b
AlthoughV'V = 1—10)(0|, that makesM™™ # 1, i.e.

g= w [ h ) M a nonunitary matrix, it is not difficult to show that
LV 2mv’
HX = MHSMT, (10)
with L andm the length of the cavity and the mass of the

movable mirror. allowing us to write the evolution operator as

U (t) = e Ht = Me viMT, (11)

3. Mirror-Field-Atom interaction We then have achieved the following: it has been

) _ eliminated from Hamiltonian9) the noncommuting field
If we pass a two-level atom through a cavity with a gperators, such that this Hamiltonian may be viewed as a
movable mirror as the one described by equatn\e  two-subsystems  Hamiltonian, instead of the
have have to add the free Hamiltonian for the atom andree-subsystems one with which we started, i.e.

the interaction with the quantized field, so we obtdi][  Hamiltonian #). Therefore realizing a relevant

wo T T i simplification as the field operators (just number
Hatm = ?aﬁ)\ (ags +a'o-) +wa'a+vb'b operators) may be treated from now on as classical
- gaTa(bTer), 3) numbers. Therefore, we have effectively and exactly

eliminated one sub-system, namely the field, from the
whereA is the atom-field interaction constani is the  initial problem.

atomic transition frequency and (o) is the lowering We now transform the Hamiltoniary with
(raising) operator for the atom, witlw,0_] = 20;. We X a
will pass from this notation to matrix notation at 9 = (Db [F(n=1)] Ox R > (12)
convenience. In matrix form the Pauli matrices read 0 Dy (£A) )7
with
. AlbT—
= (é_ol>, 0<28>, 0+<8é>. Dp(ef) = e ~0), (13)

(4) such that = 2THy 2 is written as
We consider the on-resonant interaction between the N T _
field an the atom, i.eco = ap, and pass to an interaction g [ VN- =L AVADy(x/V) (14)
picture, taking advantage that the operator AVAD!(x/v) vR-— X
w(a'a+ 20,/2) commutes with all the other operators Y
involved in the Hamiltonian, to obtain that may be further written as

H=vR+xA(b+b")+A (a0, +alo ). (6) 4 _ VR 4+ X0-1/2) AVADy (x/v)
AVADf(x/v) VN - XO022)

The quantitiesn= a'a and N = b'b are the number

operators for the field and mirror, respectively. We will + F()12x2, (15)
use the Susskind-Glogower operatd§][ with F(A) = )2(—:(2ﬁ2 —2+1) and by, the 2x 2 unity
1 L1 matrix.
V=———3a Vi=a ——, (6) The above Hamiltonian is equivalent to ion-laser
v+l v+l interaction Hamiltonian
that satisfy the commutation relatidw,V1] = |0)(0] to vihi+$ QD(in)
transform the above Hamiltonian with the following Hion = (Qﬁt(iﬁ) Vtﬁ5> (16)
2

matrix operator17]
except for the ternt(fA)1p.2, that represents an overall
M — <V O> M — (VJr O) @ phase. In the above Hamiltoniaw; is the (ion) trap
~\01)" ~\01) frequency,d is the detuning between the laser field and
the ion transition frequencies an®@ is the Rabi
such that we can rewrite the interaction Hamiltonian as  frequency. The number operatorépresent the harmonic
oscillator Hamiltonian (the ion free oscillation) of thenio
H=MHyM' (8) and D is the displacement operator in the vibrational
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variables. Both Hamiltonians are equivalent simply by 3 = coA VA4 dg (vﬁ — Xz(ﬁgl/z))
identifying

and
V=W,
N — A, .
2X2(ﬁv*1/2) N 1 [34:(;1)\\m++d1 (vﬁ,M .
AMA—Q, Now, by using the well-known fact that
D_g (B)bDy(B) = a+ B [19], it is easy to show that
and displaced number states satisfy the recursion relation
Dp(X/v) — D(in). N[B:k) = (1B +K)B;k) +BVK+1|Bik+1)

Hamiltonian (L5) being similar to (5), means that both, + BT VKIBk-1). (1)
mirror-atom-field and ion-laser interactions are Substituting then equationd¥) and @1) into equation
equivalent, and therefore methods of solution and(18) gives the following eigenstate conditions:
generations of non-classical states from one interaction

may be borrowed by the other interaction. dy=0; co= M C o= XV
) V ) A \/ﬁ
| _ o XAA-1/2)
4. Exact eigenstates E=v+ % ’ (22)

which hold howeveonly if the parameterd . v, x satisfy

Let us return now to the Hamiltonian in equatidrb). We the additional constraint

can construct amnsatzthat allows the determination of
exact eigenstates of this system, provided certain reigitio \ 2 5
are satisfied between the parameters andA . In order AVA 2= 14 X“(h—1/2) (23)
to motivate our general solution, let us consider first the Y v2 '
possibility of finding a state of the form (we consider

simply the mirror and atom states as the field state simplyunder these conditions the state

multiplies the eigenstate)

) = l&) (col0)+c1]1) +19) |9) (17) ) =) (mo>+x‘ﬂ1>>+g>—x>. (24)
= (%0 5m) V. A
= : ,

is an (unnormalised) eigenstate Bf with eigenvalue
for each eigenstate of the mirror o thifn) = X2(A-1/2) iti ;
¢ perathitn) = njn). | X(0-1/2) "cqngition @3) means that thansatzn eq.
We have used in the above equation a notation where thg; 7) does not always succeed, as only two of the three
a}omlc elements are written out.expllcnly (e.ge>.: parametersAv/fA,v,x can be chosen independently.
(5))- Let us now see whether the eigenvalue equation  Nevertheless, the existence of solutions satisfying
. equation 17) leads us naturally to seek for other solutions
Hly)=E|y), (18)  using similar or slightly generalisezigenstates

can be satisfied. Equatioh?) shows that it is requirefp)
be of the form

|@) =Dy (X) (do[0) +dt 1)) = do|—x) + 01 |-x: 1),
R (29) One can easily generalize EG4] to obtain a more general
where|—x) is a coherent state ari3;k) =D (B)|k) isa  eigenstate foH. It can be written as
displaced number stat&§]. We thus require

4.1. More general eigenstates

Hly) = (20) AVREML -
(B110) + B2 |1)) W) =57 5 e+ 3 cl-xnllo).
((B3|_X>+B4_X,1>)> ’ n= n—
with where

=t —dy;0<n<m
X2(A-1/2) . Ch=1¢ B0
(Blzcofww\ﬁob) X3zzVN+1dyn=m+1

~ 2(A—
B2 =AVAd + ¢y (v + M) and thed, coefficients satisfy
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