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Abstract: In this article, we use ranked set sampling (RSS) to develop a Bayesian analysis based on record statistics values. Maximum

likelihood estimation (MLE) and Bayes estimators are derived for linear exponential distribution from a simple random sample (SRS)

and record ranked set sampling (RRSS) (one- and m-cycle). These estimators are compared via their biases and mean squared error

(MSE). This is done with respect to both symmetric and asymmetric loss function. Two numerical examples are used to illustrate these

results.
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1 Introduction

The idea of RSS has been introduced by McIntyre [1]. RSS is a modification of SRS to provide more structure to the
collected sample items. Suppose that XSRS = (X1:n,X2:n, ...,Xn:n) be a SRS of size n from a continuous population F(x). Let
Xi( j:n) ≡ Xi j, i = 1,2, ...,n, be the jth order statistic from the ith the set sample. The process of RSS can be described as
follows:

X11 X12 . . . X1n → X11

X21 X22 . . . X2n → X22

...
...

. . .
...

...
...

Xn1 Xn2 . . . Xnn → Xnn

︸ ︷︷ ︸ ︸︷︷︸

Judgment Rank RSS

Then, the obtained sample, XRSS = (X11,X22, ...,Xnn), is called a one-cycle RSS. If this method is repeated m times, a
RSS of size mn is obtained. The following are examples of applications for RSS (see Al-saleh et al. [2]): (a) Assume that
the length of bacterial cells in a microscope which can be measured with a micrometer is considered, order of length of
bacterial cells in the same microscopes may be found easily (b) Suppose that estimation of average milk yield per sheep
can be considered, and milk yields of two or three sheep can be easily ranked by the owner of the sheep (c) A medical
doctor specialized in chest diseases can rank three or four patients suffering from lung cancer according to their survival
time.

RSS has been considered by many authors, Balakrishnan and Li [3] determined the best linear unbiased estimators
(BLUEs) based on ORSS and RSS. Helu et al. [4] introduced maximum likelihood estimation using RSS. Kvam and
Tiwari [5] derived generalized maximum likelihood estimator based on RSS. Mohie El-Din et al. [6,7] introduced
Bayesian estimation and prediction for the pareto distribution using RSS. Sadek et al. [8] studied the estimator of the
parameters of exponential distribution based on RSS using asymmetric loss function.
Record values are applied in meteorology, mining and stock market analysis. This type of data has been considered by
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many authors, see for example, Ahmadi and Arghami [9], Ahsanullah [10], Arnold et al. [11] and Panaitescu et al. [12].
A generated record sampling scheme is described as n independent sequences of continuous random variables are deem.
Suppose that RRRSS = (R11,R22, ...,Rnn) be a one-cycle RRSS of size n is described as (see Salehi and Ahmadi [13]):

R11 → R11

R12 R22 → R22

...
...

. . .
...

...
R1n R2n . . . Rnn → Rnn

where Ri j has ith record in jth sequence, i, j = 1,2, . . . ,n, Rii are independent random variables, but not necessarily
ordered. If this method is repeated m times, a RRSS of size mn is obtained.

The probability density function (pdf) and the cumulative distribution function (cdf) of the linear exponential
distribution are given by

f (x;α,β ) = (α +β x)exp

(

−αx−
β

2
x2

)

, x ≥ 0, α,β > 0, (1)

and

F(x;α,β ) = 1− exp

(

−αx−
β

2
x2

)

, x ≥ 0 α,β > 0, (2)

respectively. The linear exponential distribution with parameters α and β will be denoted by LExp(α,β ). Its reliability
and hazard functions at mission time t are given respectively by

R(t;α,β ) = exp

(

−αt −
β

2
t2

)

and h(t,θ ) = α +β t, t > 0, (3)

This model has many applications in reliability analysis and applied statistics. It is easily noted that if α = 0, the
LExp(α,β ) reduces to Rayleigh distribution. Carbone et al. [14] used it to study the survival pattern of patients with
lymphoma. References and more details on this model may be found in Al-Khedhairi [15], Mahmoud et al. [16], Seo and
Yum [17].

Loss function: Asymmetric loss function of the function of parameters φ = φ(α,β ) can be expressed from the assumption
that the minimal loss occur at φ∗ = φ as

L(∆) ∝ exp(c∆)− c∆ − 1, c 6= 0,

where ∆ = (φ∗−φ), φ∗ is an estimator of φ . The posterior expectation of the LINEX loss function is given by

E[L(φ∗−φ)] ∝ exp(cφ∗)Eφ [exp(−cφ)]− c(φ∗−Eφ (φ))− 1, (4)

where Eφ (.) is the posterior expectation of the posterior density of φ . The linear exponential (LINEX) loss function is
obtained by minimizing (4), then

φ∗
BL =−

1

c
ln
{

Eφ [exp(−cφ)]
}
. (5)

Recently, asymmetric loss function considered in Bayesian inference such as Al-Aboud [18], Al-Hossain [19],
Amin [20], Hassan [21], Howladera and Hossainb [22], Kim and Song [23], Ku and Kaya [24], Kundua and
Howladerb [25], Martz and Waller [26], Mohammadi and Pazira [27], Soliman et al. [28,29] and Zellner [30].

In the next section, we present Bayes estimation to estimate the unknown parameters based on one-and m-cycle RRSS
and SRS. The Bayes estimates are obtained using both squared error loss function (SEL) and LINEX loss functions. In
Section 3, we discuss the MLEs of the unknown parameters. In Section 4, we use illustrative examples based on both real
and simulated data sets. A conclusion will be presented in Section 5.

2 Bayes Estimation

In this section, we obtain Bayes estimation based on RRSS and SRS of the unknown parameters of LExp(α,β ). This is
done with respect to both SEL and LINEX loss functions.
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2.1 Bayes estimation based on RRSS

Consider Y1,Y2, . . . ,Yn form one-cycle RRSS, each of them has the LExp(α,β ). Then, the density of Yj is given (Arnold
et al. [11])

g(y j) =
1

( j− 1)!

[
− log(F(y j))

] j−1
f (y j).

The joint pdf of the RRSS of yi, is

f (y) =
n

∏
j=1

g(y j) ∝
n

∏
j=1

[
− log(F(y j))

] j−1
f (y j), (6)

where y = (y1,y2, . . . ,yn).

2.1.1 Bayes estimates based on one-cycle RRSS

From Equations (1) and (2) in (6), the likelihood function is given by

L1(α,β ;y) ∝
n

∏
j=1

(

α +
β

2
y j

) j−1

(α +β y j)exp

(

−α
n

∑
j=1

y j −
β

2

n

∑
j=1

y2
j

)

, (7)

Using the following relations (see Balakrishnan [31] and Kotb and Raqab [32])

n

∏
j=1

j−1

∑
t=0

ht( j) =
0

∑
t1=0

1

∑
t2=0

· · ·
n−1

∑
tn=0

n

∏
j=1

ht j
( j), (8)

and
n

∏
j=1

(α +β y j) =
n

∑
ν=0

αn−νβ νξν , (9)

where

ξν =
n−ν+1

∑
b1=1

yb1

n−ν+2

∑
b2=b1+1

yb2
×·· ·×

n

∑
bν=bν−1+1

ybν ,

the likelihood function in Equation (7) becomes

L1(α,β ;y) ∝ ∑
t

n

∑
ν=0

ct,ν αn+Vt−νβUt+ν exp

(

−α
n

∑
j=1

y j −
β

2

n

∑
j=1

y2
j

)

, (10)

where ∑
t

=
0

∑
t1=0

1

∑
t2=0

· · ·
n−1

∑
tn=0

, t = (t1, · · · , tn), Vt = ∑n
j=1 j− t j − 1, Ut = ∑n

j=1 t j and

ct,ν = ξν

n

∏
j=1

(
j− 1

t j

)(y j

2

)t j

. (11)

For the Bayesian estimation setup, we need a suitable prior parameter distribution. Here, we consider the prior density
suggested by Al-khedhairi [15] as

π(α,β ;δ ) = ηρ exp{−αη −β ρ}, β ,α > 0, (12)

where δ is the vector of prior parameters and η , ρ are known positive constants.
Then, from Equations (10) and (12), the posterior density function of α and β becomes

π∗
1 (α,β |y) = J−1

1,1 ∑
t

n

∑
ν=0

ct,ναn+Vt−νβUt+ν

× exp

(

−α

(

η +
n

∑
j=1

y j

)

−β

(

ρ +
n

∑
j=1

y2
j

2

))

, (13)
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where the normalized constant Jτ1,τ2
= J

0,0
τ1,τ2

and

J
υ1,υ2
τ1,τ2

= ∑
t

n

∑
ν=0

ct,ν
Γ (n+Vt −ν + τ1)

(

υ1 +η +∑n
j=1 y j

)n+Vt−ν+τ1
×

Γ (Ut +ν + τ2)
(

υ2 +ρ +∑n
j=1

y2
j

2

)Ut+ν+τ2
.

Bayesian estimators of α and β under a SEL function are

α̃BS = E(α|y) =
∫ ∞

0

∫ ∞

0
απ∗

1 (α,β |y)dαdβ =
J2,1

J1,1

and β̃BS =
J1,2

J1,1

. (14)

From Equation (5), the Bayesian estimates of α and β based on the LINEX loss function are given by

α̃BL =−
1

c
ln[E(e−cα |y)] =−

1

c
ln

[

J
c,0
1,1

J1,1

]

and β̃BL =−
1

c
ln

[

J
0,c
1,1

J1,1

]

. (15)

2.1.2 Bayes estimates based on m-cycle RRSS

Suppose that yℓ j, j = 1,2, . . . ,n, ℓ = 1,2, . . . ,m are m cycles of upper record data. From Equation (6), the likelihood
function is

L2(α,β ;y) ∝
m

∏
ℓ=1

n

∏
j=1

(

α +
β

2
yℓ j

) j−1
(
α +β yℓ j

)

× exp

(

−α
m

∑
ℓ=1

n

∑
j=1

yℓ j −
β

2

m

∑
ℓ=1

n

∑
j=1

y2
ℓ j

)

. (16)

Using Equations (8) and (9), the likelihood function in Equation (16) is written as

L2(α,β ;y) ∝
m

∏
ℓ=1

∑
tℓ

n

∑
νℓ=0

ctℓ,νℓα
nm+Vt−ν∗

βUt+ν∗

× exp

(

−α
m

∑
ℓ=1

n

∑
j=1

yℓ j −
β

2

m

∑
ℓ=1

n

∑
j=1

y2
ℓ j

)

, (17)

where y = (y11,y12, . . . ,y1n;y21,y22, . . . ,y2n; . . . ;ym1,ym2, . . . ,ymn),

∑
tℓ

=
0

∑
tℓ,1=0

1

∑
tℓ,2=0

· · ·
n−1

∑
tℓ,n=0

, Vt =
m

∑
ℓ=1

n

∑
j=1

j− tℓ, j − 1, Ut =
m

∑
ℓ=1

n

∑
j=1

tℓ, j,

ctℓ,νℓ = ξνℓ

n

∏
j=1

(
j− 1
tℓ, j

)(yℓ j

2

)tℓ, j
,

and

ξνℓ =
n−νℓ+1

∑
b1=1

yℓb1

n−νℓ+2

∑
b2=b1+1

yℓb2
×·· ·×

n

∑
bνℓ

=bνℓ−1+1

yℓbνℓ
.

Using Equations (12) and (17), the posterior density function is

π∗
2 (α,β |y) = K−1

1,1

m

∏
ℓ=1

∑
tℓ

n

∑
νℓ=0

ctℓ,νℓα
nm+Vt−ν∗

βUt+ν∗

× exp

(

−α

(

η +
m

∑
ℓ=1

n

∑
j=1

yℓ j

)

−β

(

ρ +
m

∑
ℓ=1

n

∑
j=1

y2
ℓ j

2

))

, (18)
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where the normalized constant Kτ1,τ2
= K

0,0
τ1,τ2

and

K
υ1,υ2
τ1,τ2

=
m

∏
ℓ=1

∑
tℓ

n

∑
νℓ=0

ctℓ,νℓ

Γ (nm+Vt−ν∗+ τ1)
(

υ1 +η +∑m
ℓ=1 ∑n

j=1 yℓ j

)nm+Vt−ν∗+τ1

×
Γ (Ut +ν∗+ τ2)

(

υ2 +ρ +∑m
ℓ=1 ∑n

j=1

y2
ℓ j

2

)Ut+ν∗+τ2
.

Bayesian estimators of α and β under a SEL function are

α̃BS =
K2,1

K1,1

and β̃BS =
K1,2

K1,1

, (19)

respectively, while the Bayesian estimators of α and β based on the LINEX loss function are given by

α̃BL =−
1

c
ln

[

K
c,0
1,1

K1,1

]

and β̃BL =−
1

c
ln

[

K
0,c
1,1

K1,1

]

. (20)

2.2 Bayes estimation based on SRS

Suppose that xℓi, i = 1,2, . . . ,n, ℓ= 1,2, . . . ,m are m upper record sets, then the joint density is

f (x|α,β ) =
m

∏
ℓ=1

(

f (xℓn)
n−1

∏
i=1

f (xℓi)

F(xℓi)

)

=

(
m

∏
ℓ=1

n

∏
i=1

(α +β xℓi)

)

exp

(

−α
m

∑
ℓ=1

xℓn −
β

2

m

∑
ℓ=1

x2
ℓn

)

. (21)

where x = (x11, ...,x1n, ...,xm1, ...,xmn). Using Equation (9), the likelihood function in Equation (21) becomes

L3(α,β ;x) =
m

∏
ℓ=1

n

∑
κℓ=0

ζκℓα
mn−dκ β dκ exp

(

−α
m

∑
ℓ=1

xℓn −
β

2

m

∑
ℓ=1

x2
ℓn

)

, (22)

where dκ = ∑m
ℓ=1 κℓ and

ζκℓ =
n−κℓ+1

∑
b1=1

xℓb1

n−κℓ+2

∑
b2=b1+1

xℓb2
×·· ·×

n

∑
bκℓ

=bκℓ−1+1

xℓbκℓ
.

From Equations (12) and (22), the posterior density function is

π∗
3 (α,β |x) = A−1

1,1

m

∏
ℓ=1

n

∑
κℓ=0

ζκℓα
mn−dκ β dκ exp

(

−α

(

η +
m

∑
ℓ=1

xℓn

)

−β

(

ρ +
m

∑
ℓ=1

x2
ℓn

2

))

, (23)

where Aτ1,τ2
= A

0,0
τ1,τ2

and

A
υ1,υ2
τ1,τ2

=
m

∏
ℓ=1

n

∑
κℓ=0

ζκℓ

Γ (mn− dκ + τ1)

(υ1 +η +∑m
ℓ=1 xℓn)

mn−dκ+τ1
×

Γ (dκ + τ2)
(

υ2 +ρ +∑m
ℓ=1

x2
ℓn
2

)dκ+τ2
.

Bayesian estimators of α and β under a SEL function are

α̃BS =
A2,1

A1,1

and β̃BS =
A1,2

A1,1

. (24)

Under the LINEX loss function, the Bayesian estimates of α and β are given, respectively, by

α̃BL =−
1

c
ln

[

A
c,0
1,1

A1,1

]

and β̃BL =−
1

c
ln

[

A
0,c
1,1

A1,1

]

. (25)
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3 Maximum likelihood estimation (MLE)

In this section, maximum likelihood estimators for the parameters of LExp(α,β ) based on RRSS and SRS are derived.

3.1 MLE based on m-cycle RRSS

Based on Equation (16), we have

lnL
(
α,β ;y

)
=

m

∑
ℓ=1

n

∑
j=1

[

− ln( j− 1)!+( j− 1) ln

(

α +
β

2
yℓ j

)

+ ln
(
α +β yℓ j

)
−

(

αyℓ j +
β

2
y2
ℓ j

)]

.

Under the assumption that both the parameters α and β are unknown, the α̃ML and β̃ML can be solved numerically
from the following equations

m

∑
ℓ=1

n

∑
j=1

[

j− 1

α + β
2

yℓ j

+
1

α +β yℓ j

]

= mnY , (26)

and
m

∑
ℓ=1

n

∑
j=1

yℓ j

[
j− 1

2α +β yℓ j

+
1

α +β yℓ j

]

=
mn

2
Y . (27)

where

Y =
1

m

m

∑
ℓ=1

yℓ, yℓ =
1

n

n

∑
j=1

yℓ j and Y =
1

mn

m

∑
ℓ=1

n

∑
j=1

y2
ℓ j.

3.2 MLE based on SRS

Based on Equation (21), the log likelihood function is given by

lnL(α,β ;x) =
m

∑
ℓ=1

n

∑
i=1

[

ln

(

α +
β

2
xℓi

)

−

(

αxℓn +
β

2
x2
ℓn

)]

.

The MLE of α and β can be solved numerically from the following equations

m

∑
ℓ=1

n

∑
i=1

1

α +β xℓi
= mX and

m

∑
ℓ=1

n

∑
i=1

xℓi

α +β xℓi
=

m

2
X , (28)

where

X =
1

m

m

∑
ℓ=1

xℓn and X =
1

m

m

∑
ℓ=1

x2
ℓn.

4 Numerical Results

We illustrate our previous theoretical results of the inferences discussed, two simulated record sets of sizes n = 3 and 5
from the LExp(α,β ) based on RRSS and SRS are obtained.

1.Choose values of the prior parameters (η = 0.5 and ρ = 0.3), then generate α = 0.3328 from Gamma(1,η) and
β = 0.4995 from Gamma(1,ρ).

2.Based on those generated values of α and β in step (1), using the algorithms given in Aboeleneen [33], we generate

n record values from the LExp(α,β ) using Xi =

√
(

α
β

)2

− 2
β ln(1−U∗

i )−
α
β where U∗

i = 1−∏i
j=1 U j and U j from

U(0,1) for i= 1, · · · ,n. Then using the procedure of one-cycle (m= 1) RRSS, samples of size n= 3,5 can be obtained.
3.To obtain two-cycle RRSS, the previous step is replicated two times, so a sample size of 2n is obtained.
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4.The different Bayes estimates (.)BS and (.)BL of α and β are computed through Equations (14), (15), (19), (20), (24)
and (25), as well as the ML (.)ML of α and β are calculated numerically from Equations (26), (27) and (28).

5.Repeat Steps 1-4 for 1000 runs to obtain MSE and bias of all estimates for SRS and RRSS of one- and two- cycle,
respectively. MSE and bias are computed as, MSE(θ ) = 1

1000 ∑1000
i=1 (θ̃i − θ )2, θ̃i is the estimator of θ = (α,β ) for

the ith simulated data and θ̃Bias = (θ̃ − θ ), θ̃ is the average of the 1000 estimates of θ̃ . The bias and MSE of all the
estimates are in Tables 1 and 2, respectively.

4.1 Applications

The real data set is taken from Hand et al.( [34], p. 124) to illustrate Bayesian estimation techniques based on SRS and
RRSS for one- and two-cycle. Cox and Lewis [35] introduced 799 recorded waiting times which represent time intervals
between successive pulses along a nerve fibre measured in seconds.
To check whether the linear exponential distribution is suitable for this data, Cramér von Mises test is used to test the null
hypothesis

Ho : F(x) = linear exponential distribution, H1 : F(x) 6= linear exponential distribution.

Ho is rejected at a significance level of α = 0.05 if p−value < α . The Cramér von Mises test statistic is 0.2053 with
an associated p− value = 0.2575 > 0.05, so linear exponential distribution is fitted to the above real data set. The one-
and two- cycle RRSS is in Tables 3 and 4. Then, the Bayes estimates of α and β are in Table 5.

Table 1: Bias based on SRS and RRSS when α = 0.3328, β = 0.4995, η = 0.5 and ρ = 0.3.

SRS RRSS

(·)ML (·)BS (·)BL (·)ML (·)BS (·)BL

m n Par. c =−1 c = 1 c =−1 c = 1

1 3 α 0.2270 0.2734 0.5369 0.1488 0.1329 0.1136 0.1483 0.0868
β 0.1793 0.0905 0.3449 0.0420 0.1140 0.0593 0.0831 0.0450

5 α 0.2301 0.4366 0.6052 0.3188 0.1349 0.2351 0.2834 0.1915
β 0.0073 0.0596 0.1903 -0.0196 0.0406 0.0107 0.0512 -0.0260

2 3 α 0.2175 0.2451 0.4159 0.1462 0.0993 0.0874 0.0982 0.0781
β 0.0721 0.0385 0.0573 0.0311 0.0491 0.0355 0.0367 0.0345

5 α 0.2444 0.4369 0.5761 0.3302 0.1080 0.1653 0.1889 0.1431
β -0.0426 -0.0333 0.0149 -0.0740 -0.0004 -0.0249 -0.0142 -0.0356

Table 2: MSE based on SRS and RRSS when α = 0.3328, β = 0.4995, η = 0.5 and ρ = 0.3.

SRS RRSS

(·)ML (·)BS (·)BL (·)ML (·)BS (·)BL

m n Par. c =−1 c = 1 c =−1 c = 1

1 3 α 0.5102 0.8511 3.7446 0.3422 0.1995 0.2667 0.5247 0.1443
β 2.4584 0.3689 2.8984 0.0975 0.3824 0.1139 0.3752 0.0454

5 α 0.3248 0.4647 1.1243 0.2251 0.1236 0.1264 0.1961 0.0798
β 0.2263 0.1160 0.4200 0.0527 0.0662 0.0259 0.0328 0.0238

2 3 α 0.2270 0.2734 0.5369 0.1488 0.1329 0.1136 0.1483 0.0868
β 0.1793 0.0905 0.3449 0.0420 0.1140 0.0593 0.0831 0.0450

5 α 0.2175 0.2451 0.4159 0.1462 0.0993 0.0874 0.0982 0.0781
β 0.0721 0.0385 0.0573 0.0311 0.0491 0.0355 0.0367 0.0345
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Table 3: A record ranked set sample design
with sample size n = 5 when m = 1,2.

m RRSS

1 0.2100
0.0300 0.0500
0.1100 0.5900 0.9400
0.7300 0.7400 1.2100 1.3800
0.1500 0.2300 0.3100 0.7400 1.1000

2 0.1600
0.7800 1.1200
0.5000 0.5800 0.8300
0.0400 0.1400 0.3400 0.6500
0.0300 0.1700 0.3800 0.4000 0.4400

Table 4: The data of RRSS and SRS for
one- and two- cycle for n = 5.

m Samples

RRSS
1 0.2100 0.0500 0.9400 1.3800 1.1000

2 0.1600 1.1200 0.8300 0.6500 0.4400

SRS
1 0.1500 0.2300 0.3100 0.7400 1.100

2 0.0300 0.1700 0.3800 0.4000 0.4400

Table 5: Bayesian estimates and MLE based on SRS and RRSS for n = 5 .

SRS RRSS

(·)ML (·)BS (·)BL (·)ML (·)BS (·)BL

m Par. c =−0.1 c = 1 c =−0.1 c = 1

1 α 0.7229 1.1288 1.1530 0.9259 3.2213 3.0767 3.1441 2.4845
β 1.9915 1.5949 1.6553 1.1542 1.5555 1.8444 1.9589 1.1675

2 α 1.9634 2.4742 2.5037 2.1898 3.8464 3.8403 3.8635 3.5966
β 4.4192 2.8800 3.0494 1.7730 1.6857 1.6854 1.7658 1.1488

5 Conclusion

Based on both SRS and RRSS of the upper record values, Bayesian estimation and MLE are used to estimate the two
unknown parameters for the LExp(α,β ). The Bayes estimators obtained using both SEL and LINEX functions.
Comparisons made between the different estimators based on a simulation study and real record values taken from Hand
et al. [34]. We notice from results presented in Tables 1 and 2

1.The MLE and different Bayes estimates based on RRSS have the smallest MSE compared with the MLE and Bayes
estimates based on SRS in all cases considered. This demonstrates the efficiency of inference based on RRSS.

2.It is clear that the Bayes estimates based on both SRS and RRSS with two-cycle (m = 2) are better than the Bayes
estimates with one-cycle (m = 1). In general, the better results are obtained using a large number of cycles.

3.The the Bayes estimates relative to the LINEX loss function have the smallest MSE and bias compared with the SEL
loss function of Bayes estimates.

4.It is also observed that when the sample size is large (n = 5), the MLE and Bayes estimates have a small MSE for
RRSS and SRS.

5.The relationships in Equations (8) and (9) are quite useful in getting closed form expressions appeared frequently in
the previous sections.
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[32] M. S. Kotb, and M. Z. Raqab, Inference and prediction for modified Weibull distribution based on doubly censored samples,

Mathematics and Computers in Simulation, 132, 195−207 (2017).

[33] Z. A. Aboeleneen, Inference for Weibull distribution under generalized order statistics, Mathematics and Computers in Simulation,

81, 26−36 (2010).

[34] D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski, A Handbook of small data sets, Chapman and Hall London

(1994).

[35] D. R. Cox and P. A. W. Lewis, The statistical analysis of series of events, Chapman and Hall London (1966).

c© 2021 NSP

Natural Sciences Publishing Cor.


	Introduction
	Bayes Estimation
	Maximum likelihood estimation (MLE)
	Numerical Results
	Conclusion

