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Abstract: We present a system of ordinary nonlinear differential &gna describing the population growth dynamics of #exles
aegyptimosquito, the main transmitter of the dengue virus in Coliamibhis model incorporates the three types of known corfitol
mosquito eradication: mechanical, biological and cheimioausing on biological control through the use of #Welbachiabacterium,
which is the new hope for the control of the diseases tratsdhiiy this mosquito. A local stability analysis of the moidagperformed
on the three equilibrium points that are found, determiriiregconditions under which those points become stable dabiles Finally,
we present numerical simulations implemented in Matlabenetthe numerical results are obtained using hypothetadaksg of the
parameters obtained from the literature.

Keywords: Aedes aegyptintegrated controlyWolbachia stability.

1 Introduction using traps, destroying breeding grounds, etc.; chemical
control based on insecticides or larvicides; and bioldgica
Aedes aegyptis a mosquito that mainly lives close to control that makes use of other living organisms such as
human populations. It flies only short distances andthe Wolbachiabacterium which reduces the life span of
requires blood (primarily human), to reprodudg [7]. the mosquito and also, in the case of dengue, almost
During their lifetime the mosquitoes go through two eliminates the probability of transmitting the virus to
stages: immature and mature. In the immature phase, theumans$], [7], [8].
mosquito is aquatic and undergoes a metamorphosis from
egg to an adult. It feeds mainly on residues in the water
where they were laid by the female. Adult mosquitoes are
airborne and while the males feed on plant nectar, the
females feed on blood4]. The present article demonstrates a mathematical
By feeding on blood, in order to mature and deposit model that describes the population growth of the female
her eggs, the female mosquito promotes the transmissiomosquito in the adult phase. The model incorporates all
of viruses and pathogens that cause various diseaselree control mechanisms for the mosquito. A stability
including Dengue fever. For this reason global campaignsanalysis is performed and we show how the population
have been founded to eradicate the mosquito. So far, thgrowth dynamics change in response to a program of
struggle has been unsuccessful because although sonb@logical control via the introduction of thé/olbachia
countries have achieved temporary the extinction, thebacterium into the population. In this way, the model will
mosquito soon returns due to the infestation ofserve as a tool for the those who wish to determine the
neighbouring countrie<], [7]. way in which mechanical, chemical and biological
There are three main mechanisms to control thecontrols should be applied to diminish the breeding of
propagation of mosquitoes, namely: mechanical controlmosquitoes and, therefore, the propagation of diseases
focused on preventing the reproduction of the mosquitdike dengue that are transmitted by them.
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2 The Model

If we consider the variation db with over time, we
recognise that this population grows continuously as a

The following hypotheses are considered in the creation of€sult of the development of immature mosquitoes. It also

the model:

decreases as a result of the natural death of mosquitoes or

the use of insecticides. Therefore, in terms of the
—The population of interest is that of the adult female parameters shown in Table 1, we see that the expression
Aedes aegyptnosquitoes. (1—u3) ii‘ﬁ‘f represents, for each adult female that lays
—There are two populations of adult female mosquitoesieggs in the week, the average number of eggs that survive
those that are infected by tNéolbachiabacteriumand  to adulthood without being infected by th&blbachia
those that are not. bacterium. Furthermore, the expression —12tB
—The death rate of an adult mosquito infected with therepresents the probability that a mosquito that develops to
bacterium is greater than the death rate of anthe mature phase finds space available in the environment.
uninfected mosquito. From these, we have the number of mosquitoes that enter
—Three controls on the mosquito population are usedihe population of adult females without being infected by
traps that prevent the eggs from reaching adulthoodye pacterium is given by(1 — u3)ff¢6 (1- bLKB) b.

(mechanical - control); in the immature state a Similarly, the number of female mosnﬁiltloes in this state
proportion of the eggs are infected by tiolbachia Y q

bacterium, which _genetically manipulates  the that die in each instant is given ¢ + up)b. Thus we

mosquito and is transmitted vertically (biological have that:

control); a proportion of adult mosquitoes die from

the use of insecticides (chemical control). db fod bt B
T (12 o e
dt T+ Uy K

Taking these hypotheses into account, let us consider
b, the total number of adult female mosquitoes that are
not infected with the bacterium at time andB, the total
number of adult female mosquitoes tlaae infected with
the bacterium in a time We also consider the parameters
in Table 1. In this analysis we use the week as the perio
of time because it is short enough that a single fema
mosquito will lay eggs at most once during the period.

Table 1: Parameters of the model

Now, the mosquitoes that enter the population of adult
females infected by th&/olbachiabacterium are those
that develop from eggs that have been laid by an infected

(\slemale mosquito (because the bacterium is transmitted

ertically) and those that develop from eggs that have

%een laid by uninfected females but are infected through

micro-injection Therefore the change in this population is
given by:

Parameter| Description d—B = £79o (1— b+ B) B+ usé 190 (1 — biB) b
3 Rate of development of a mosquito dt - mtu K T+ K
from the immature phase to the —(v+uw)B.
adult phase
f Proportion of immature mosquitoes Thus the system of ordinary non-linear equations
that develop into adult females representing the growth dynamic of the population of
Q The probability that an adult female adult female mosquitoes both with and without
mosquito will lay eggs in the week Wolbachiainfection is given by:
o) The average number of eggs laid at a
time by an adult female mosquito db Ef@d b+B
T The natural death rate of immature at (1—-ug) n_:DUl (1_ p: ) b—(e+u)b (1)
mosquitoes
K The maximum number of mosquitoes d_B _ Sfgo (1 _ b+ B) (B+ Usb) — (v + up)B.
that the environment can support dt T+ Uy K
£ The natural death rate of the mosquito
without Wolbachia
Y The death rate of mosquitoes 3 Points of Equilibrium
infected byWolbachia
U The proportion of immature mosquitg Setting the right hand side of the system’s differential
deaths caused by raps _ equations to zero, we find that the model has three points
Up The proportion of immature mosquitg B
) - of equilibrium:
deaths caused by insecticides
us The proportion of eggs infected by the
Wolbachiabacterium through H-1
micro-injection PL=(0,0), P.= (0, k (T)) and P;= (by,B;)
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For the linearisation about the poiRt, we have the

matrix:

where

- h—1 _ Uz(€+Up)

b=k ( <v—s><1—u3>)’

B, — h—1 usk(e+uy)

T Th v (l—w)’
with
B & fpd ~ (1-ug)éfed
“vrworm M " rmmerw

which represent the thresholds of the growth of the A; = (g4 uy)

populations of adult female mosquitoes with and without
Wolbachiainfection respectively.

We can further see that, whep= 0, the third point of
equilibrium can be written as:

h—1
(579)

P

4 Stability Analysis

Theorem 1 The local stability of the system can be
summarised as:

lifh#H,h<landH< 1, P, is asymptotically stable,
and the points fand B are unstable.

2.1fh=H and h< 1, P, is asymptotically stable and the
points By B are not hyperbolic.

3.If h=H =1, none of the three points of equilibrium
are hyperbolic.

4If h=1and H+# 1, P, and R are not hyperbolic, but
P, is asymptotically stable when B 1 and unstable
when H< 1.

5.1fH=1and h# 1, P, y B are not hyperbolic, butf
is asymptotically stable whernth1 and unstable when
h<1

6.f h<H,h#1yH>1, B is asymptotically stable
and the points Pand R are unstable.

71fh>H, h>1yH#1, Pis asymptotically stable
and the points Pand B are unstable.

8.1f h=H, h> 1, P, is unstable and the points B P
are not hyperbolic.

Proof. We can see that the Jacobian matrix associated
with the linearised system abo®t is given by:

I(P) = ((€+“2)(h—1> 0 )

(v+ug)usH (v+up)(H—-1)
and so it's characteristic equation is

(A—(e+u)(h=1)A—-(v+u)(H-1))=0. (2

(e+u2) (h_TH 0

JP) = (
(V+u)(us—(H=1)) (v+up)(1—H)

|

3)

and the characteristic equation of this system is

(A —=A1) (A —A2)=0.

where

(h_TH> and A= (V+up)(1—H).

Finally, the matrix for the linearised system aroud
is:

_ (a1 a12
I(Ps) = <321 azz)

where

alp=—(e+up)(h—1) {1— %]

V—-¢&

axp =(v+uy) [E (1—M> —1]

a21:—U3(v+U2)% [(h—l) (”“2) —1]

h V—¢€

and it's characteristic equation is:

A7+ R (- 1)+ (h— H)JA+ @)
+(e+u)(h—1)(v—¢) <1—u3(\:}7j:2)%) =0.

Thus we have:

1If h< 1, H < 1, by equation (2) the eigenvalues of
J(Py) are real and negative, from which the equilibrium
point Py is asymptotically stable at the local level.
If we consider further thaH = h, from equation (3)

we can see that there are no null eigenvalues and that,

because + H > 0, there exists an eigenvalue that is
real and positive. This leads us to conclude tRais
an unstable point of equilibrium.

Finally, under this hypothesis, we have that H < 1

or H<h<1 If H<h<1andh# 2 then

H(h—1)+(th-H)#0 and% < 1. Thatis to say that
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E+Up
(V+Uz)(1—us)
operations to
uz(v +uy)

< 1 and,
this

< 1. From this we get:

applying algebraic

equation, we arrive at

(e+up)(h—1)(v—e¢) (1—M5) <o,

v—¢ h

from which we conclude, by the Routh-Hurwitz
criterion, that equation (4) has at least one root with a
positive real part and s®; is unstable. Similarly,
whenH <h<lyh= HZ—J':'l the roots of equation (4)
are real and of opposite signs which implies tRats

an unstable point of equilibrium. On the other hand, if
sih<H <1, thenHh-1)4+(h—H) <0 and

(e +U)(h—1)(v—e) (1_ Mﬂ) 40, and

v—¢ h
by the Routh-Hurwitz criterion, equation (4) has at

6.If H > 1, we can see that from equation (2) we obtain

an positive real eigenvalue and,fag 1, there are no
zero eigenvalues. Therefore, the point of equilibrium
P, is unstable. If we also have thht< H, equation
(3) gives us negative real eigenvalues from which we
conclude thaP, is asymptotically stable at the local
level.

On the other hand, i # 1, we must have eithdr< 1

or h> 1. But if h< 1 andh < H, we have that

Hh - 1) + (h — H) < O and
(e+up)(h—1)(v—¢) L%%) 20, and

therefore, by the Routh-Hurwitz criterion, equation
(4) has at least one root with a positive real part which
means thaks is unstable. Similarly, ih >1yh <H,

H
then(e + ) (h—1)(v—¢) (1— ‘“(‘fitmﬂ <0,
which leads us to the same conclusion.

7.1f h> 1, equation (2) gives us a positive real eigenvalue

and, sinceH +# 1, there are no zero eigenvalues which

least one root with a positive real part which implies
that the poin®P; is unstable.

2.Analogously, if we have thdt=H, h < 1, the point
of equilibriumPy is asymptotically stable dhe local
level. However, whenh = H, equation (3) has an

implies that the equilibrium poirf, is unstable. If, in
addition,h > H, equation (3) has no zero roots and also
we get a positive real eigenvalue, Bois unstable.

We also observe that under these hypotheses,

v+u
eigenvector ofzero, which impI}Les thatP, is not a h 2Hh—=1)+(-H)] > 0 and
hyperbolic point. Similarly, 7 = 1 gives us Us(V + ) H
(v + o) ! e+ w)h - v - o) (1- 27T o
————= =1 and, from equation (4), we have that V—¢&

which, by the Routh-Hurwitz criterion, guarantees
that equation (4) gives eigenvalues having a negative

not hyperbolic either. _ real part. Thus the poirf; is asymptotically stable a
3.We observe that whén= 1 andH = 1, we find a zero the local level.

eigenvalue in each of the three characteristic equations g |f h — H andh > 1, from equation (2) we get(Py)

and therefore none of the three points of equilibrium 55 two positive real eigenvalues and theref@rés

are hyperbolic. . unstable. However, from equations (3) and (4) we
4.Analogously to the previous case, whien= 1, the have zero eigenvalues which implies that the

characteristic equations f& andP; give eigenvalues equilibrium pointsP, andPs and not hyperbolic.

of zero, and these points are therefore not hyperbolic.

However, whenH < 1 in equation (3) we get a

positive real eigenvalue and another non-zero. Thus )

the pointP, is unstable. In the case thet> 1, from © Numeric Results

equation (2) we get negative real eigenvalues which

means that the poiri is asymptotically stable. For the numerical results, hypothetical values have been
5.If H = 1, the characteristic equations férandP, we considered for each of the parameters in the model. In

get eigenvalues of zero which implies that neither Tables 2 and 3 we can see the values that have been given

point is hyperbolic. When h > 1, to these parameters for the different scenarios and also the

uz(v+up) H values of the thresholdsandH.

H(h—1)+(h—H)>0and v—e h " 1, and so The simulations corroborate the analytic results.
all the coefficients in the characteristic equationPer  However, of special interest are the cases in which the
are positive. Thus, by the Routh-Hurwitz criterion, the |ocal stability analysis doesn’t determine the asymptotic
eigenvalues of(P3) have a negative real part afd  values of the system, as is the case whereH = 1. In
is asymptotically stable. However, wheh < 1,  this case, according to Figure 3 which uses the conditions

V—E¢
the matrixJ(Ps) has a zero eigenvalue; and Bgis

Hh - 1) + (h - H() <) 0 and  given in Scenario 3 of Table 2, the stable solution is the
_ _ _W(V+u)H point Pi. This result is also obtained when= 1 and
(e+u)(h=1)v-¢) <1 v—e h > 70, and H < 1 under the conditions given in scenario 5 of Table 2,

by the Routh-Hurwitz criterion there exists an or whenH = 1 andh < 1 under the conditions given in
eigenvalue with a positive real part and thBs is scenario 7 of Table 3. These results can be seen Figures 5
unstable. and 7, respectively. On the other hand, wiea H > 1,
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Table 2: Values of the parameters in scenario 1-5

10000~

Parameter] Sce.1| Sce.2| Sce.3| Sce.4 | Sce.5
'3 0.5 0.4 0.5 0.5 0.5
f 0.4 0.4 0.4 0.4 0.4 oo
0] 0.5 0.4 0.5 0.5 0.5
1) 10 10 10 10 10 6000
s 0.2 0.2 0.2 0.2 0.2 o
k 10000 | 10000 | 10000 | 10000 | 10000 4000
€ 0.1428| 0.1428| 0.1 0.1 0.1
v 0.4 0.21 0.2 0.16 0.21 2000(-
up 0.8 0.9 0.8 0.8 0.8 I
Uy 0.8 0.462 0.8 0.8 0.8 0
Uz 0.8 0.1 0.1 0.1 0.1 0
h 0.2121| 0.8658 1 1 1
H 0.8333 | 0.8658 1 1.0417 | 0.9901

1

5000 6000 7000 8000 9000
b

I |
1000 2000 3000 4000 10000

Fig. 2: Scenario 2.

Table 3: Values of the parameters in scenario 6-10 10000
Parameter] Sce.6| Sce.7| Sce.8 | Sce.9 | Sce. 10
& 0.5 0.5 0.8 0.6 0.6 8000
f 0.4 0.4 0.7 0.4 0.4
0] 0.5 0.5 0.9 0.5 0.5 6000l
1) 10 10 10 10 10
m 0.2 0.2 0.143 0.2 0.2 “
k 10000 | 10000 | 10000 | 10000 | 10000 400077
£ 0.09 0.1428| 0.1428 0.1 0.1428
v 0.2 0.2 0.28 021 | 021 ol
ug 0.8 0.8 0.4 0.8 0.8 y
U 0.8 0.8 0.3 0.8 0.462
Uz 0.1 0.1 0.4 0.1 0.1 %
h 1,0112 | 0.9546 | 12.5769 1.2 1.7857
H 1 1 16.0031| 1.1881 | 1.7857

10000 10001

8000 800

6000

4000

2000 200

| 0 !

1 L I L L L

1000 2000 3000

i I I 1
4000 5000 6000 7000 8000 9000 10000
b

Fig. 3: Scenario 3.

6001
o /—\
400t-p

I I 1
6000 7000 8000 9000 10000 0

0
0 1000 2000 3000 4000 5000
b

Fig. 1: Scenario 1.

according to Figure 10 which uses the conditions given in
scenario 10 of Table 3, the stable solution is the
equilibriumPpP,.

100 200 300 400 500 600 700 800 900 1000
b

Fig. 4: Scenario 4.
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1000 - 10000
800 8000
600 - 6000
1] o
400 4000
2001 2000
0 Pl L L L L L L L 1 L | 0 L L L I L L L L L 1
0 100 200 300 400 500 600 700 800 900 1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
b b
Fig. 5: Scenario 5. Fig. 8: Scenario 8.
1000 - 10000
800 8000
600 - 6000 -
[ o
400 4000
2001 2000 *pa
P, )
0 L L L L L L L L L I 0 L L L L L i L L Il I
0 100 200 300 400 500 600 700 800 900 1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
b b
Fig. 6: Scenario 6. Fig. 9: Scenario 9.
1000 10000
800 8000
600 6000
[ o
400 4000
200 2000
0 Pl L L L L L L L L L | 0 i I I I 1 L L L L |
0 100 200 300 400 500 600 700 800 900 1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
b b
Fig. 7: Scenario 7. Fig. 10: Scenario 10.
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6 Conclusions function. This function is based on the Runge-Kutta
method, which is defined ir6] and is useful for solving

In the proposed model, as in all mathematical modelsordinary differential equations with initial conditions.

based on ordinary differential equations that describe

population growth, the so-called Growth Threshold was

determined. This, like the Basic Reproduction NumberACknowledgement

described in 9], determines the number of new

individuals of a species that are generated during therne authors thank the GMME and ABCDynamics
lifetime of one of them, and which are capable \ggearch groups.

reproducing when introduced into a free environment ofthe authors are grateful to the anonymous referee for a

that species. careful checking of the details and for helpful comments
For this model two growth thresholds have been st improved this paper.

found, since adult female mosquitoes are classified into
two groups: those that are carriers of théolbachia
bacterium and those that aren’t. ThHsrepresents the
number of infected adult female mosquitoes that can b(BeferenceS
generated by a single mosquito with these characteristic
during its life span. Similarlyh represents the number of
adult female mosquitoes without the bacterium that can
be generateq.by a smglg mosquito during its Ilfet!me. [2] M. Eiman, V. Introini, C. Ripoll, Directrices para la prencin
The stability analysis of the system, determined that ~y chr01 de Aedes aegypti. Direccin de Enfermedades
there are three equilibrium points. Biologically, the goin  Transmitidas por Vectores. Buenos Aires: Ministerio dei8al
of equilibrium P, represents the free equilibrium of the de la Nacin, (2010).
two populations, i.e. where neither of the two groups of (3] c. Favier, D. Schmit, C. Mller-Graf, B. Cazelles, N. Déig,
adult female mosquitoes exist. The equilibrium pdt B. Mondet, M. Dubois, Influence of spatial heterogeneity on
represents the situation where all adult female mosquito an emerging infectious disease: the case of dengue epislemic
population are carriers, while non-carriers disappeanfro Proceedings of the Royal Society of London B: Biological
the environment. On the other hand, the equilibrigyms Sciences272(1568), 1171-1177 (2005).
the point at which the two groups of adult female [4]C. Ferreira, H. Yang, Estudo Dinmico da populaao
mosquitoes coexist. In this case it is necessary that the de mosquitos Aedes aegypti. Trends in Applied and
controlug be practised permanently, otherwise, the adult Computational Mathematic2), 187-196 (2003).
female mosquito population withoMfolbachiacontinues  [5] H. Hughes, N. Britton, Modelling the use of Wolbachia to
and those Who are |nfected W|th the bacte”um d|sappear CQntrOl dengue fever transmission. Bulletin of mathenadhtic
Analytically we have established that whier: H and biology 7%(5), 796-818 (2013). _
H > 1, under initial conditions close @, the population ~ [6]J- Mathews, K. Fink, Mtodos numricos con Matlab, pl.
of adult female mosquitoes with ttwolbachiabacterium Prentice Hall, Madrid, Espaa, 463-556 (2010).
will persist in the environment and the other population [71M. Rafikov, E. Rafikova, H. Yang, Optimization of the Aedes
will be extinguished, as demonstrated by conditions 4 and aegypti control strategies for integrated vector managéme

. . Journal of Applied Mathematics (2015).
6 of Theorem 1. This also seems to be the result in th .
) . 8] R. Thom, H. Yang, L. Esteva, Optimal control of Aedes
case wheréh = H as shown in Figure 10, but the local Gi ] g . pr

- . . aegypti mosquitoes by the sterile insect technique and
stability analysis does not prove this. When< h and insecticide. Mathematical Bioscienc@231), 12-23 (2010).

h> 1, under initial conditions close to poiffs, the tWo  [91p van den Driessche, J. Watmough, Reproduction
groups of mosquitoes will coexist in the medium ~ " hympers and sub-threshold endemic equilibria for

(provided thatus # 0), as demonstrated by conditions 5 compartmental models of disease transmission. Matheahatic
and 7 of Theorem 1. Finally, when both thresholds are  piosciences80(1), 29-48 (2002).

less than one, under initial conditions closeRg both
populations will disappear, as demonstrated by conditions
1 and 2 of Theorem 1. This condition seems to persist
when the thresholds are equal to one, as shown in Figure
3, and also wheh =1 andH < 1 as shown in Figure 5,

or in the case wherld = 1 andH < 1 as shown in Figure

7.

Fl] B. Adams, D. Kapan, Man bhites mosquito: understanding
the contribution of human movement to vector-borne disease
dynamics. PloS onél(8), (2009).

7 Materials and Methods

The numerical solutions of the proposed model were
derived using the software Matlab 2015a and its ODE45
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