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Abstract: The main purpose of this article is to find the exact and apprate solutions of space-time conformable Sharma-Tasso-
Olver equation using first integral method (FIM) and g-hoopgt analysis method (g-HAM) respectively. The obtainedcexand
numerical solutions are compared with each other. Alsontimaerical results obtained by g-HAM are compatible with éxact
solutions obtained by FIM; hence, it is clearly seen thasé¢hechniques are powerful and efficient in finding approiénaend exact
solutions for nonlinear conformable partial differengajuations.
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1 Introduction

The fractional differential equations and its solutionevail in different branches of applied sciences such as
engineering, applied mathematics, biology and physik®,38,4,5,6]. So, mathematical viewpoints of fractional
differential equations and the methods for their solutioange been discussed by many auth@r8,0,10]. As a result of
these discussions, it is deduced that fractional ordeemifftial equations require effective solution methodsaBse of
this prerequisite, scientists study on new effective méshar new definitions of fractional derivative which can bereno
applicable to real-life problems and to known methods. Upda, many scientists have paid great attention to this new
definition [12,13,14,15,16] which is presented as follows:

Definition 1.Let f: [0,00) — R be a function. The'" order "conformable derivative” of f is defined by,

Ta(£)(0) = lim f(t +£t1:’) —f(t)

forallt >0,a € (0,1).

If fis a-differentiable in som¢0,a),a> 0 and lim f(@)(t) exists then definé(®) (0) = lim f(@)(t). The”conformable
t— t—

integral” of a functionf starting froma > 0 is defined as:

X

t
500 = [ 12 ax

, where the integral is the usual Riemann improper integuadia € (0,1]. The following properties of conformable
derivative are given in1[1].
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Theorem lLeta € (0,1] and suppose,fj are a-differentiable at point t~ 0. Then

1Ta(cf+dg) =cTy(f)+cTy(g) foralla,b e R.
2.Tq(tP) = ptP~% forall p € R.

3.Ta(A) = Ofor all constant functions (t) = A.
4.T4(fg) = Ta(9) +9Ta(f).

5T, (5) - W.

6.If, in addition f is differentiable, then,[f)(t) :tlf"%.

Based on the practicability and easy applicability of thédimition, considerable amount of studies have been made on
this subject. For example; T. Abdeljawal?] has presented fractional versions of the chain rule, exptal functions,
Gronwalls inequality, integration by parts, Taylor poweries expansions and Laplace transform. Conformablesicate
fractional calculus has been introduced by N. Benkhettual. [18]. In addition to this, M.A. Hammad and R. Khalil
[19] expressed the solution for the conformable heat equatiohVe.S. Chung 20] used the conformable derivative
and integral to discuss fractional Newtonian mechanicsoAthe extended mean-value theorem and the Racetrack type
principle are proven for the class of functions which argélifferentiable in the context of conformable derivatiaasd
integral with application using D’Alambert approach by Oysola [12]. Hence, it is clearly deduced that further studies
and explanations can be made on this new subject area.

In recent years, scientists have applied many methods tee sa@nlinear fractional PDEs such as quadratic spline
collocation methodZ1], sub-equation metho@p], homotopy analysis metho@38], etc. Among these, a method which

is based on the ring theory of commutative algebra calledfitse integral method is explained by Fengd4]. This
method has been applied to different type of equations ilwuarfields by many author2%,26]. For this reason, in this
article, the first integral method and the new fractionalv@give are gathered to present analytic solution of spaue-
Sharma-Tasso-Olver (STO) equation

2% 2% ,0°U 0%°u 9%
ot 35((;)(0) FIPUT S+ 3PUT 5 + By =0 @

wheret > 0,0 < a,0 < 1 andf is arbitrary constant.

Thereafter, the approximate analytical solution of thesticonformable Sharma-Tasso-Olver equation is determiyed b
using g-homotopy analysis method, a modified version of Hoppoanalysis method se27,28,29,30]. This solution
involves an auxiliary parametér which is also determined, and a fraction facﬁoNVe show by comparison, that this
method is powerful and efficient in finding the numerical $iolu of the time conformable Sharma-Tasso-Olver
equation. The numerical solution of Sharma-Tasso-Olveaggn with the analytical solution obtained by using th®IFI
are compared.

The rest of this article is organized as follows; in secti@)) the analytical solution of the time conformable Sharma-
Tasso-Olver equation using FIM is presented, in sect®ng-HAM is applied to obtain series solution of the equation
involved. Numerical comparisons are made between theignfibbtained by FIM and g-HAM in sectiod)(and in
section B), we give some conclusion.

2 Analytical Solution of Space-time STO Equation by FIM

In this section, we give brief description of first integra¢tinod first and then apply it to solve the space-time Sharma-
Tasso-Olver equation.

2.1 Fundamentals of FIM

We summarize the method of first integral applied to confdompartial differential equation in four steps.
Stepl.Regard the nonlinear conformable partial differentialaggpn in the form
(0"u 2% du 9%u 9%u d%u ) 0

Ota 7 IxI’ Jy’ 92 9x2’ gy2 "

where P is a polynomial and in its arguments and subscripts denotBapalerivatives. Step2. Considering the
transformation

)

u(xt) =u(é),§ = ——c— ®)

o a

(@© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl4, No. 4, 519-531 (2018)www.naturalspublishing.com/Journals.asp NS = 521

in whichc is a constant can be determined later. Based on this:

09() d(.) a() _d() o° <0°’(~)) _ 240 @)

= 0'[0’ W,

ate dE’ox  dE 'ata
Using EQ.B), Eq. @) turns into a nonlinear ordinary differential equation
G(U,U’,U”,uU"” ..)=0, (5)

where the derivatives is with respectdo
Step3.Now, we introduce new independent variables

X(&)=U(£),Y(§) =Us(&) (6)
which results in the system of nonlinear ordinary diffetgréquations (ODE)

oX
3

Step4.If the integrals to 7) could be found under the same conditions by the qualitétieery of ordinary differential
equations 32], then the general solutions t@)(can be solved directly. However, in general, it is reallfficlilt for us to
realize this even for one first integral, because for a gilang@autonomous system, there is no systematic theory that
can tell us how to find its first integrals, nor is there a logigay for telling us what these first integrals are. We apply
the Division Theorem to obtain one first integral ®,(which reduces4) to a first-order integrable ordinary differential
equation. An exact solution t@Y is then obtained by solving this equation. Now, let us rgbal Division Theorem:

=Y<£>,§—§ — SIX(E),Y(E)). @)

Lemma 1(Division Theorem)4] Suppose that B,y) and Qx,y) are polynomials inC[x,y] and R(x,y) is irreducible
in C[x,y]. If Q(x,y) vanishes at all zero points of(Ry), then there exists a polynomialBy) in C[x,y] such that

Q(x,y) = P(x,y)G(x,y).
2.2 Implementation of the FIM on Space-time STO Equation

Consider the space-time fractional Sharma-Tasso-Olveatean () wherea € (0,1) and % means conformable
derivative of functioru(x,t). Using @) and @) and integrating obtained equation once, the Bdhécomes

—cu+3Bud + Bu + Bu’ =0, (8)

where the prime denotes the derivation with respeét tbhen choosing new variables usir@),(we get

Xe(€) =Y (€).
Ye(&) = 5X(E) =XV (E) ~ (X(@)" ®)

Now, we employ the division theorem to find the first integrie{®. We assume that(&) = X,Y (&) =Y are nontrivial
m .

solutions of @) andP(X,Y) = S &(X)Y' is irreducible polynomial in the complex doma(i{X, Y] such that
i<0

PIX(E).Y(&)) = 5 A(X)Y =0 10)

wherea; (X)(i = 0,1,...,m) are polynomials oK andam # 0. Eq.(10) is called the first integral of Eq9). Based on the
division thearem, there exists a polynomig@K) + h(X)Y in C[X,Y] such that

P  OPIX IPAY il i
3¢ = ox a7 Ty gz ~ X +hOY) (izoa@(X)Y ) : (11)
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Case A:Assume tham = 1 in (10. When the coefficients of (i = 0,1, 2) in both sides of{1) are compared, we achieve

8 (X) = a(X)h(X), (12)
ap(X) = g(X)a(X) +ao(X)h(X) — 3Xay(X), (13)
g(X)ao(X) = §Xa1<><> — X3a (X)), (14)

Due toa; (X) is a polynomial ofX, we determine thad; (X) is a constant antd(X) = 0 from (12). For convenience, let’s

takea; (X) = 1. Balancing the degrees a§(X) andg(X), it is comprehended thategg X) = 1. Because, if the other
choices are evaluated, it is clearly seen that degrees phbilgaomials in two sides of Eq18) are not equal to each other.
As a result of our evaluations, we can tak&) = AX+ B. By usingg(X) in Eq. (13) we handle,

31A
a0(X) = %x% BX+Y,

wherey is integration constant. Substitutirg(X), a;(X) andg(X) in (14) and equaling all the coefficients of powers
of X to zero, then a system of nonlinear algebraic equationsuisd@ut. Solving the algebraic equations with aid the
Mathematica, we obtain the following set of solutions

A=-1,B=0;c=—yB, (15)
A=-2;B=0;c=—-2yp, (16)
C
A:—l;B:i\/%;y:O. a7
Setting Eq.15) in Eq.(10), we obtain
Y(&)=—X(&)*—y. (18)
Combining (8) with (9), we obtain the exact solution ta)(as
x?  ctd
ur(x,t) = —Wtan((F - 7) N \/Ve) .
Substituting Eq16) in Eq.(L0),
Y(E) = 5(-X(E-20) (19

Similarly combining €9) with (9), we obtain the exact solution of Edj)(as following

1 x?  ct?
Up(x,t) = \/2ytan > —\/2y =T +2¢\/2y) ).
The other solution (which can be obtained in a similar wayHaq. (17) is following.

ForB= \/% in (17)

U3(X,t) = —

v/c(cosh(y/ce) + sinh(y/ce))

—cosh<%>+ Bcosﬁﬁe)—sinh<%>+ Bsinh(e,/C)

ForB= —\/%in a7
NG <cosh<7ﬁ<%§%) ) — sinh<7ﬁ(%‘/g%> ) )

x0 _ ctd x9 o

ﬂcosh(%) — cosh(,/ce) + Bsinh(%) — sinh(\/Ce)

Us(x,t) =

)
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wheree is integration constant. _
Case B:Suppose than = 2. Comparing the coefficients ¥f(i = 0,1,2,3) in both sides of11), we handle

a(X) = a(X)h(X), (20)

& (X) = 6Xap(X) + g(X)ax(X) + h(X)ay(X), (21)

al(X) = 3Xau(X) — 2%a2(X) +2X3a(X) + g(X)a1(X) + h(X)ag(X), 22)
0(X)0(X) = 5X&(X) ~X%as(X). (23)

Sinceay(X) is a polynomial ofX, it is determined thaa,(X) is a constant ant(X) = 0 from (20). For convenience, lets
takeay(X) = 1. Balancing the degrees a§(X) andg(X), it is realized thatlegg X) = 1. If the other choices evaluated
for degree ofj(x), it is seen that degrees of the polynomials in two side of E§).§re not equal to each other. As a result
of our evaluations, we can takgX) = AX+ B. Regarding(X) in Eq. 21) we handle,

6+A
a(X) = (%) X2+ BX+y

and

11 9A A%\ _, [(AB s (B2 ¢ 3y Ay\.,
%(X)—(Z+§+§)X +<7+ZB>X +<7—E+?+7 X+ BXy+r,

wherey, r are integration constants. SubstitutegX), a1 (X), ax(X) andg(X) in (23) and setting all the coefficients of
powers ofX to zero, then a system of nonlinear algebraic equationstairadd. Solving the algebraic equations by the
help of Mathematica, we get the following set of solutions

A=-2B=0;y=0;r =0, (24)
.._ BB, .
A:—Z,C:T,V:O,rzo, (25)
BZ
A=-3;c=B%B;y= ——ir=0, (26)
A=—-2,c=B?B;y=—-B%r=0, (27)
A:—4,B:O;c_—ﬁy,r:§, (28)
R 2By, 2y
A=-3;B=0;c= 3 ,r_?, (29)
 mm_qge_ By, V¥
A_—2,B_O,c_—?,r_€. (30)
Substituting EqZ4) in Eq.(L0), we obtain
/X —X2\/B
Y1i(X) = ——F+F7-—— 31
and 2\/_
VEX—X*\/B
Yo(X) = ——FF——. 32
2(X) NG (32)
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Combining 1) and @2) with (9), we obtain the exact solutions ti)(successively as
\/c(cosh/ce) + sinh(,/c¢))
E(5-9) (Ve . '
—cosh — + /B cosh/ce) —sinh Bsinh(,/ce)

U5(X,t) -

The other solution ford4) using 0) can be obtained in a similar way as

ﬁ(cosh(%)j%mh( 50 -) ))

ﬂcosh(%) —cosh(y/ce) + Bsmh<\f(xx/%°a >_s|nh(\/68)

Us(x,t) =

The other solutions (which can be obtained in the same mafordEq. (25)-(30) as following.
For (25), exact traveling wave solutions can be obtained as

U(xt) = — B(cosH{Be) + sinh(Be))
- cosh(ﬁ) + 2cosl{Be) —sinh (ﬂ) + 2sinh(Be)

For (26), exact solutions of Edl] is evaluated as

ug(x,t) = Btanh(g ((g - %) + 28)) (33)
and B(coshBg) + sinh(Bg))

u X,t = X0 a N X0 a .
o) ~ —cosh(B (£ — <)) +cosh{Be) —sinh(B (- — £%)) + sinh(Be)
For (27) traveling wave solutions of EdL) can be obtained as following

Ugo(X,t) = Btanh(B ( (g - %) + e))

B(coshBg) + sinh(Bg))
~ —cosh(B(¥ —2%)) + cost{Be) —sinh(B (2 — <<)) 4 sinh(Be)

g

and

Ull(X,t) =

Now for (28) the exact solution to EdL) as follows

x9 ot

Uia(X,t) = ﬁtan(% (— (— - —) VY+ 2ﬂ£))

o

The exact solutions of EdL) for (29) can be obtained

ura(xt) = \/%tan(% <—\/@(£ — —) +6\/_ys>)
Ura(x,t) = \/?tan(% <_\/§/(£ — —) +3\/_y£))

The last solutions of EdLj for (30)
Jysin <_fy<<?\ﬂ§) ~6e) )

_1+\@COS<M>

and

U15(X, t) =—

V3
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and

o 50
V/ysin (T)
1+ ﬁcos(M) ’

wheree is arbitrary integration constant in all of the solutions.

U16(X, t) =

3 Approximate Analytical Solution of Time-fractional STO Equation by g-HAM

In this section, we give a brief description of the g-homgtapalysis method and then apply it to time-fractional Skearm
Tasso-Olver Equation. We make this particuler choice oapesters for comparison purposes.

3.1 Fundamentals of the g-HAM

Consider the following differential equation
A [Dfu(x,t)] —g(x,t) =0, (34)

where.#” denotes non-linear operat®y is the the conformable derivativgis a given function and(x,t) is an unknown
function. To generalize the original homotopy method, thth-order deformation equation is constructed as

(1_ nq)g((p(xat;q) - UO(th)) = QhH(X,t) (JV[DIG(I)(X,t;q)] - g(X,t)), (35)

wheren>1,q¢€ [0, %] denotes the so-called embedded paramietéi0 is an auxiliary parametdlr,is an auxiliary linear
operatorH (x,t) is a non-zero auxiliary function.
Whenq =0 andq= % we have equatiorB6) to be

®(x,1;0) =up(x,t) and ¢ (x,t; %) =u(x,t) (36)

respectively. So, aq increases from 0 tc%, the solutiong (x,t;q) varies from the initial guessg(x,t) to the solution
u(x,t).

If up(x,t), 2, h, H(x,t) are chosen appropriately, solutigiix,t; q) of equation 85) exists forg € [0, %}

The Taylor series expansion ¢fx,t;q) gives

p(xt:q) =Uo(xt)+ 3 um(x,t)q", (37)
m=1
where 1 " (x.t:q)
_ 19Mp(xt;q
Um(X,t) = m g q=O. (38)

Assume that the auxiliary linear operatgrthe initial guessy, the auxiliary parametdrandH (x;t) are properly chosen

such that the serie87) converges afj = % then we have

u(x,t) = up(x,t) + ilum(x,t) (:—r:) . (39)

Let the vectow, be defined as follows:

Un = {Up(X,t),ur(x,t), - ,un(X,t)}. (40)

Differentiating equation35) m-times with respect to the (embedding) paramegighen evaluating ai = 0 and finally
dividing them bym!, we have what is known as tmé"-order deformation equation

Z [Um(X,t) — XmUm-1(%,1)] = hH(X,1)Zm (Um-1) - (41)
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with initial conditions

u¥(x,0)=0, k=0,1,2,...m—1, (42)
where L
_ 1 M (D (xtg)]—gx.t))
e@m(umfl) - (m_ 1)| aqmil 4=0 (43)
and
0 mg<1l
Xm= , (44)
n otherwise
3.2 Application of the Method
Consider the time-fractional Sharma-Tasso-Olver equdfipwith o = 1 and initial condition
u(x,0) _tanh<2;X>, (45)

wherea € (0,1) and the derivative means conformable derivative. For colevee and to shorten the article, the exact
solution is taken as3@) andB =1, 3 =1, € = 1 are used for all calculations. One can easily make the ledicns for all

of the other solutions and other valuesf3, c.

To obtain the series solution of Ed.)(with initial condition @5), the linear operator is chosen as

Z[¢p(xt;0)] =D (x.t;q)

with the property
Z [S] =0,

wheres is constant. From Eqlj, the nonlinear operator can be defined as following,

A lpxtig) = 2O g (0¢(;;(t;q)>2+3¢(x,t;q)2 DO o q)02¢(§§,2t;q> a3¢;§ét;q>_
From Theorem), the nonlinear operator can be written as follows,
KBt =t a¢<;tt 9, 4 <a¢<;,xt:q>)2+3¢ (x g0 tia) ¢<x 9D, 3ptg) 02¢5§,t;q> N a3¢(§§,3t;q>.
Thus the zero-order deformation equation is set up as:
(1-ng)-Z[p(xt;0) — uo(x,t)] = ght"[p(x,t;q)].
ChoosingH (x,t) = 1, the mth-order deformation equation is
Z [Um(x,t) = XmUm-1(X,t)] = hRm (Um-1) (46)

with initial condition form > 1, um(x,0) = 0, x,,, is as defined in44) and

OUm_1(X,t) 1z9u (x,t) du (xt) _mt/n OUm-1-n(X,1t)

1-a Y¥m-1{A L l n m—1-n m—1—-n\#A,

Rm(Um-1) =t 32 OX +3nZO kzouk(xat)un—k(xat) — ax
— ,t — t
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The solutions of thenth-order deformation Eq46) for m> 1 resultin

Um(X,t) = X;Um-1(%t) +hZ 1 [Ry (Um-1)] . (47)
By using Eq.47) with initial condition given by 45) we respectively obtain

Uo(X,t) = tanh(z%j ;

() — 2htde?t>

1) = Gar e

2¢7hnt* PR (14t -2(1+ ) a)

UZ(Xat) = 2 3 )
(1+e™)a (1+e2tX)°a?
@R ((1+e27) (14 7%(—4+e27)))
Halxt) = 3(1+e2%)%ad
@ Xhte (6(—1+e2+X) h(h+262(h— 2n) + n+ e 2(h-+ ) t% + 6 (1+ &) (h+ n)ZaZ)
- 3(1+ )% g3 ’

We can obtainuy(x,t) form=4,5,6,---, following the same approach, using Mathematica, Maple AF MAB.

Then the series solution expression by g-HAM can be writtethé form

u(xt,n,h) — tanh(%‘) +niui (xt;n;h) (%)I (48)

Equation 48) is an appropriate solution to the problem) {n terms of convergence parameteaindn.

4 Numerical Results and Comparison

In this section, we discuss some numerical results. How #narpeteih can be chosen to get to a good approximation
is given. We make some comparisons between the solutiorinobyag-HAM and the analytical solution by FIM. In
addition, we give the error estimate for different fracbordera. Throughout this section, we use only tlg series
solution given by g-HAM.

4.1 Theh-curve

The auxiliary parameten andn, which are involved in our g-HAM solution series, provide wih a simple way to
adjust and control the convergence of the solution serie®bfain a suitable range for we consider the so-calldd
curves which are shown in Figuré)( We choose an appropriate valuehofvhich guarantees that the series solution is
convergent, as pointed by Lia81], by finding the valid region ofi which corresponds to the line segments nearly parallel
to the horizontal axis.
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Fig. 1: Theh-curve of 4th-order g-HAM solution for different values @fandn = 2.
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b) Analytical solution.

Fig. 2: Comparison of the gHAM Solution and the analytical solufiona = 0.5.

4.2 Exact Solution vs Approximate

Effectiveness and efficiency of q-HAM are displayed here dmparing the approximate solutiotds), obtained by g-
HAM given in Equation 48) of the time conformable fractional Sharma-Tasso-Olveragign with its exact solutiorB@)
forx=10,0<t<05,a=025h=-2,n=2,x=10,0<t<05,a0a =05,ih=-2,n=2andx= 10, 0<t <0.5,

o = 0.75,h= —2,n= 2 shown in Table X)-(3) respectively for different values & The graphs of both approximate
solution and analytical solution are also shown in Fig@auginga = 0.5,h = —2 andn = 2.

Table 1: Exact and approximate solutions for= 0.25,n = 2 andh = —2.

x ot g-HAM Exact Absolute error
10 01 0.999893 0.999883 .@9897x 10 °
0.2 0.999846 0.999822 .28116x10°
0.3 0.999805 0.999763 .22799x 10°°
0.4 0.999768 0.999704 .89294x 10°°
05 0.999733 0.999645 .84508x 10°°
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Table 2: Exact and approximate solutions for= 0.5,n =2 andh = —1.5.

x ot g-HAM Exact Absolute error
10 01 0.999977 0.999977 .88582x 10’
0.2 0.999971 0.999970 .89343x 10’
0.3 0.999965 0.999963 .83308x 10 ©
0.4 0.999959 0.999956 .25884x 10 6
0.5 0.999954 0.999949 .35933x 106

Table 3: Exact and Approximate solutions far=0.75,n= 2 andh = —2.

x t g-HAM Exact Absolute error
10 01 0.999985 0.999984 .65812x 10’
0.2 0.999983 0.999982 .21963x10°°
0.3 0.999981 0.999979 .02684x 107
0.4 0.999979 0.999976 .@0473x10°°
0.5 0.999977 0.999973 .#6941x10°°

5 Conclusion

In this paper, we present new exact and approximate sotitibapace-time conformable Sharma-Tasso-Olver equation,
which are found by using FIM and g-HAM respectively. It hagbalso shown that the g-HAM solution of the problem
converges very rapidly to the exact one which is obtainedguBliM by choosing a convenient auxiliary parameter from
given tables and figures. Thus, it is deduced that both mstpve reliable and effective results for solving conforieab
nonlinear equations. In this way, we conclude that the applinethods can be used to solve many nonlinear
time-fractional partial differential equations. So-eallconformable derivative definition is a convenient daéniin the
exact solution procedure of fractional differential egoias. Conformable fractional derivative provides conescie
both in applicability of methods and solution procedureisaderivative definition does not include any integral term
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