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The binomial numbers
(

m
n

)
are very important in several applications and satisfy sev-

eral number of identities. The purpose of this paper is to introduce a new combinatorial

integer
(

m,n
j

)
and obtain some algebraic identities by means of double combinatorial

argument. Further several arithmetic properties of this type of integers are proven and

some interesting identities are also provided.
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1 Introduction

The binomial coefficients, denoted by
(
n
k

)
, play an important role in combinatorics and

these numbers appear as coefficients in the expansion of the binomial expression(x + y)n.

That is,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k (1.1)

and this identity is known as Binomial theorem. The binomial coefficients are also known

as combinations or combinatorial numbers. In fact the equation (1.1) has very close relation

to the to the discussion of prime numbers. Further, primes come up in many different places

in the mathematical literature, and there are a lot of discussions to distinguish primes from

the composites.

In the literature the well known and the most amazing properties of prime numbers, dis-

covered by Fermat that, ifn is prime, thenn dividesan − a for all integersa. That is
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an ≡ a (mod n), for all integersa andn. Now if n is a prime number then it was proved

that (x + y)n ≡ x + y ≡ xn + yn (mod n) for all integersx, y and primesn. Then we

state the following related theorem which was proved in [1].

Theorem 1.1. Integern is prime if and only if(x + 1)n ≡ xn + 1 (mod n) in Z[x].

The arithmetical properties of binomial coefficients have also been studied by many au-

thors, for example see [3]. The sequence of middle binomial coefficients(an) =
(
2n
n

)

known also as central binomial coefficient is an particular interest to many people and have

the following generating function

1√
1− 4x

= 1 + 2x + 6x2 + 20x3 + 70x4 + 252x5 + . . . . (1.2)

The middle binomial coefficients also play an significant role in Erdös Conjecture that is

widely known as square-free integers, see [2]. In constructing the properties and identities

of some special numbers, binomial coefficients are frequently involved. Note that the defi-

nition of the binomial coefficients was extended in [3] wheren can be a complex number.

However there are still many properties and identities that one can establish by using the

binomial coefficients. In the next we introduce the combinatorial integers
(
n,m

j

)
which is

useful for the calculations in cohomology.

2 Identities on Combinatorial Integers

Now recall the equation (1.1) and consider to multiply by(x− y) then we have

(x+ y)n(x− y) =
n∑

k=0

(
n

k

)
xkyn−k(x− y) =

n∑

k=0

(
n

k

)
xk+1yn−k−

n∑

k=0

(
n

k

)
xkyn−k+1.

(2.1)

More general,

(x + y)n(x− y)m =
n∑

k=0

(
n

k

)
xkyn−k(x− y)m

=
n∑

k=0

(
n

k

) 


m∑

j=0

(
m

j

)
xj(−y)m−j


xkyn−k

=
n∑

k=0

m∑

j=0

(−1)m−j

(
n

k

)(
m

j

)
xk+jym+n−j−k (2.2)

wherem,n ≥ 0. Now we letPn(x) denote the Legendre polynomials of nth order. Then

the function

P (x, y) =
n∑

k=0

Pk(x)yk = (1− 2xy + y2)−1/2
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is the generating function for Legendre polynomials. Then we can easily have

P (1 + 2x, y) = (1− y)−1[1− 4xy(1− y)−2]−1/2,

whereQn(x) = Pn(1 + 2x), Q(x, y) = P (1 + 2x, y) and

P (1 + 2x) = lim
n→∞

Pn(1 + 2x)

Q(x, y) = lim
n→∞

Pn(1 + 2x, y) = P (1 + 2x, y).

Now we have two expansions

Q(x, y) = (1− y))−1
[
1− 4xy(1− y)−2

]−1/2
,

=
∑

k=0

(
2k

k

)
xkyk(1− y)−2k−1

=
∑
n=0

yn
∑

k=0

(
n + k

2k

)(
2k

k

)
xk,

Q(x, y) = (1− (1 + 2x)y))−1
[
1− 4(x + x2)y2(1− y − 2xy)−2

]−1/2
,

=
∑
n=0

yn
∑

k=0

(
n

2k

)(
2k

k

)
(1 + 2x)n−2k(x + x2)k, (2.3)

so that

Qn(x) =
n∑

k=0

(
n + k

2k

)(
2k

k

)
xk =

x n
2 y∑

k=0

(
n

2k

)(
2k

k

)
(1 + 2x)n−2k(x + x2)k.

Then

Qn(x) =
n∑

k=0

qn,kxk(1 + x)n−k where

qn,k =
k∑

j=0

(
n

2j

)(
2j

j

)(
n− 2j

k − j

)
,

=
(

n

k

) k∑

j=0

(
k

k − j

)(
n− k

j

)
=

(
n

k

)2

(by Vandermonde convolution)

so that

Qn(x) =
n∑

k=0

(
n

k

)2

xk(1 + x)n−k

see [4]. Now by making substitutions forx we can obtain several identities, for example, if

we replacex = − 1
2 in equation (2.3) then it follows that

Q

(
−1

2
, y

)
=

(
1 + y2

)−1/2
=

∑
n=0

(−1)n

(
2n

n

)
2−2ny2n,
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then we obtain the following identities

(−1)n

(
2n

n

)
=

2n∑

k=0

(−1)k

(
2n + k

2k

)(
2k

k

)
22n−k =

2n∑

k=0

(
2n

k

)2

(−1)k.

Now by using the right hand side of the equation (2.2) and symmetric properties of the

binomial coefficients respectively we can introduce a new and interesting integer sequence(
n,m

j

)
that will simplify the calculation and we will call it twin pairs binomial coeffi-

cients. In particular we can represent

(1 + x)n(1− x)m =
n+m∑

j=0

(
n,m

j

)
xj .

Note that if we considerx = 1 andx = −1 then it is easy to obtain

n+m∑

j=0

(
n,m

j

)
=

n+m∑

j=0

(−1)j

(
n,m

j

)
= 0.

In fact, this type of sequences play an important role for the computation in cohomology,

see [5]. Through out this study we call ittwin pairs binomial coefficientsas follows:

(
m,n

j

)
=

j∑

k=0

(−1)k

(
m

k

)(
n

j − k

)

wheren,m ≥ 0 integers and0 ≤ j ≤ m + n, and of course

(
m

k

)
=





m!
k!(m−k)! if m ≥ k,

0 if m < k.

Note that the generating function of the integer sequence of

(
m,n

j

)
is the function(1 +

x)n(1− x)m. By definition of

(
m,n

j

)
we can easily show that

(
m,n

j

)
=

j∑

k=0

(−1)k

(
m

k

)(
n

j − k

)
=

j∑

k=0

(−1)k

(
n

j − k

)(
m

k

)

=
j∑

k=0

(−1)k−j

(
n

k

)(
m

j − k

)

=





(
n,m

j

)
if j even,

−
(

n,m

j

)
if j odd,
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and hence

(
n, n

j

)
= 0 wheneverj is odd. The calculation of the twin pairs binomial

coefficients also play a crucial role in the calculation of generators for ideals. Further

if we let G be a compact semi-simple Lie group,LG the space of smooth loops on the

groupG andT is the maximal torus ofG, then twin pairs of binomial coefficients will

also be very useful during the determination of the rank for each module which is graded

by integral cohomology algebra of finite dimensional flag manifoldsLG/T andΩG in the

local coefficient ringZ[ 12 ] for G = A2, see [5]. Now the symmetry and anti-symmetry

property can be given in the following theorem.

Theorem 2.1. Letn be a non-negative integer. Fork = 0, 1, 2, . . . , n we have

(
k, n− k

k

)
=





(
n− k, k

n− k

)
if n even,

−
(

n− k, k

n− k

)
if n odd.

Proof. By definition, fork = 0, 1, 2, . . . , n we have

(
k, n− k

k

)
=

k∑

i=0

(−1)i

(
k

i

)(
n− k

k − i

)
=

k∑

i=0

(−1)i

(
n− k

k − i

)(
k

i

)

=
k∑

i=0

(−1)i

(
n− k

n + i− 2k

)(
k

k − i

)

=
n−k∑

i=n−2k

(−1)i−n+2k

(
n− k

i

)(
k

n− k − i

)
,

=





n−k∑

i=n−2k

(−1)i

(
n− k

i

)(
k

n− k − i

)
if n even

−
n−k∑

i=n−2k

(−1)i

(
n− k

i

)(
k

n− k − i

)
if n odd.

Since fori < n − 2k, we haven − k − i > k so it follows that
(

k
n−k−i

)
= 0 where

i = 0, 1, . . . , n− 2k − 1. Therefore we have

(
k, n− k

k

)
=





∑n−k
i=0 (−1)i

(
n−k

i

)(
k

n−k−i

)
if n even

−∑n−k
i=0 (−1)i

(
n−k

i

)(
k

n−k−i

)
if n odd.

Hence we have the desired result.

We note that the twin pairs binomial coefficients have also similar properties to the binomial
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coefficients. In particular

n = 0
(
0,0
0

)

n = 1
(
0,1
0

) (
1,0
1

)

n = 2
(
0,2
0

) (
1,1
1

) (
2,0
2

)

n = 3
(
0,3
0

) (
1,2
1

) (
2,1
2

) (
3,0
3

)

n = 4
(
0,4
0

) (
1,3
1

) (
2,2
2

) (
3,1
3

) (
4,0
4

)

n = 5
(
0,5
0

) (
1,4
1

) (
2,3
2

) (
3,2
3

) (
4,1
4

) (
5,0
5

)

Similar to triangular properties in the single binomial coefficients form we also we have

the following identities:

Theorem 2.2. Let r, s, l, p be non-negative integers. Then

(right shifting property)
(

r, s

l

)
=

(
r, s− 1

l

)
+

(
r, s− 1
l − 1

)
, (2.4)

(left shifting property)
(

r, s

l

)
=

(
r − 1, s

l

)
−

(
r − 1, s

l − 1

)
, (2.5)

(right shifting expansion)
(

r, s

l

)
=

l∑

i=0

(
r, s− i− 1

l − i

)
, (2.6)

(Vandermonde convolution)
(

r, s

l

)
=

p∑

i=0

(
r, s− p

l − i

)(
p

i

)
, (2.7)

2
(

r − 1, s− 1
l

)
=

(
r − 1, s

l

)
+

(
r, s− 1

l

)
and (2.8)

2
(

r − 1, s− 1
l − 1

)
=

(
r − 1, s

l

)
−

(
r, s− 1

l

)
. (2.9)

Proof. First we shall prove that equation (2.4) holds. Then

(
r, s

l

)
=

l∑

i=0

(−1)i

(
r

i

)(
s

l − i

)
=

l∑

i=0

(−1)i

(
r

i

)[(
s− 1
l − i

)
+

(
s− 1

l − i− 1

)]

=
l∑

i=0

(−1)i

(
r

i

)(
s− 1
l − i

)
+

l∑

i=0

(−1)i

(
r

i

)(
s− 1

l − 1− i

)
.

Since

(
s− 1
−1

)
= 0, then

(
r, s

l

)
=

l∑

i=0

(−1)i

(
r

i

)(
s− 1
l − i

)
+

l−1∑

i=0

(−1)i

(
r

i

)(
s− 1

l − 1− i

)
=

(
r, s− 1

l

)
+

(
r, s− 1
l − 1

)
.
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Let l be even. Then we have
(

r, s

l

)
=

(
s, r

l

)
=

(
s, r − 1

l

)
+

(
s, r − 1
l − 1

)

=
(

r − 1, s

l

)
−

(
r − 1, s

l − 1

)
this is the equation (2.5).

Now let l be odd. Then we have the equation (2.6) as follows:

(
r, s

l

)
= −

(
s, r

l

)
= −

(
s, r − 1

l

)
−

(
s, r − 1
l − 1

)

=
(

r − 1, s

l

)
−

(
r − 1, s

l − 1

)
.

If we take the sum (difference) of both sides of equations (2.4) and (2.5), then we obtain

equations (2.8) and (2.9). Equations (2.6) and (2.7) can be also obtained from equation

(2.4).

Theorem 2.3. Let r, s, l be non-negative integers. Then

s

(
r, s− 1
l − 1

)
= (l − r)

(
r, s

l

)
+ r

(
r − 1, s

l

)
, (2.10)

r

(
r − 1, s

l − 1

)
= −(l − s)

(
r, s

l

)
− s

(
r, s− 1

l

)
, (2.11)

(r + s− l)
(

r, s

l

)
= r

(
r − 1, s

l

)
+ s

(
r, s− 1

l

)
. (2.12)

Proof. Let us begin the proof of the first equation (2.10). Then

(l − r)
(

r, s

l

)
+ r

(
r − 1, s

l

)

= (l − r)
l∑

i=0

(−1)i

(
r

i

)(
s

l − i

)
+ r

l∑

i=0

(−1)i

(
r − 1

i

)(
s

l − i

)

=
l∑

i=0

(−1)i

[
(l − r)

r!
i!(r − i)!

s!
(l − i)!(s− l + i)!

+
r!

i!(r − i− 1)!
s!

(l − i)!(s− l + i)!

]

=
l∑

i=0

(−1)i(l − r + r − i)
r!s!

i!(r − i)!(l − i)!(s− l + i)!

= s

l∑

i=0

(−1)i r!
i!(r − i)!

(s− 1)!
(l − i− 1)!(s− l + i)!

= s

l∑

i=0

(−1)i

(
r

i

)(
s− 1

l − 1− i

)

= s

l−1∑

i=0

(−1)i

(
r

i

)(
s− 1

l − 1− i

)
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since

(
s− 1
−1

)
= 0. Therefore we have

(l − r)
(

r, s

l

)
+ r

(
r − 1, s

l

)
= s

(
r, s− 1
l − 1

)
.

If l is odd then we have

r

(
r − 1, s

l − 1

)
= r

(
s, r − 1
l − 1

)
= (l − s)

(
s, r

l

)
+ s

(
s− 1, r

l

)

= −(l − s)
(

r, s

l

)
− s

(
r, s− 1

l

)
.

If l is even then we have

r

(
r − 1, s

l − 1

)
= −r

(
s, r − 1
l − 1

)
= −(l − s)

(
s, r

l

)
− s

(
s− 1, r

l

)

= −(l − s)
(

r, s

l

)
− s

(
r, s− 1

l

)
.

By using the equations (2.10) and (2.11) we obtain the equation (2.12) as follows

r

(
r − 1, s

l

)
+ s

(
r, s− 1

l

)
= s

(
r, s− 1
l − 1

)
− (l − r)

(
r, s

l

)
+ (s− l)

(
r, s

l

)
− r

(
r − 1, s

l

)

= 2(r + s− l)
(

r, s

l

)
− s

(
r, s− 1

l

)
− r

(
r − 1, s

l

)

and hence we have

2
{

r

(
r − 1, s

l

)
+ s

(
r, s− 1

l

)}
= 2(r + s− l)

(
r, s

l

)
.

Lemma 2.1. Letn be a non-negative integer andk = 0, 1, 2, . . . , n then

n∑

j=0

(
k, n− k

j

)
=





2n if k = 0

0 if k 6= 0.

Proof. Fork = 0,
n∑

j=0

(
k, n− k

j

)
=

n∑

j=0

(
n

j

)
= 2n.

Let k 6= 0. Since

(1 + x)n−k(1− x)k =
n∑

j=0

(
k, n− k

j

)
xj ,

for x = 1, then we have

0 =
n∑

j=0

(
k, n− k

j

)
.
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Similarly we have the following result.

Lemma 2.2. Letn be a non-negative integer. Fork = 0, 1, 2, . . . , n we have

n∑

j=0

(−1)j

(
k, n− k

j

)
=





2n if k = n

0 if k 6= n.

Thus we can state this result as the following corollary.

Corollary 2.1. (Twin pairs) Letn be a non-negative integer. Then we have

(
2n, 2n

2n

)
=

2n∑

j=0

(−1)j

(
2n

j

)2

= (−1)n

(
2n

n

)
.

Note that in particular we can easily show that

(
n, n

n

)
=





(−1)
n
2
(

n
n
2

)
if n even,

0 if n odd.

Now let us consider addition of the twin binomial coefficients as follows:
(

0, 0
0

)
= 1

(
0, 1
0

)
+

(
1, 0
1

)
= 0

(
0, 2
0

)
+

(
1, 1
1

)
+

(
2, 0
2

)
= 21

(
0, 3
0

)
+

(
1, 2
1

)
+

(
2, 1
2

)
+

(
3, 0
3

)
= 0

(
0, 4
0

)
+

(
1, 3
1

)
+

(
2, 2
2

)
+

(
3, 1
3

)
+

(
4, 0
4

)
= 22

(
0, 5
0

)
+

(
1, 4
1

)
+

(
2, 3
2

)
+

(
3, 2
3

)
+

(
4, 1
4

)
+

(
5, 0
5

)
= 0

and so on. Thus in general case we have the following theorem.

Theorem 2.4. (Diagonal formula) Letn be a non-negative integer. Then we have

n∑

k=0

(
k, n− k

k

)
=





2
n
2 if n even,

0 if n odd.

Proof: We prove this in two cases:

Case 1.Let n be odd. Then by using the theorem (2.1) we have

n∑

k=0

(
k, n− k

k

)
= −

n∑

k=0

(
n− k, k

n− k

)
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then by making substitutionn− k = j we have

n∑

k=0

(
k, n− k

k

)
= −

n∑

j=0

(
j, n− j

j

)
= −

n∑

k=0

(
k, n− k

k

)

⇒ 2
n∑

k=0

(
k, n− k

k

)
= 0 ⇒

n∑

k=0

(
k, n− k

k

)
= 0.

Case 2. If n is even integer then we will show that
n∑

k=0

(
k, n− k

k

)
= 2

n
2 . The proof will

be done by using the induction.

Case is trivial forn = 0 since we have

(
0, 0
0

)
= 1 = 2

0
2 = 20.

For0 ≤ j ≤ n with j is even and assume that
j∑

k=0

(
k, j − k

k

)
= 2

j
2 .

Our aim is now to show
n+2∑

k=0

(
k, n + 2− k

k

)
= 2

n+2
2 .

Now if j = n since
n∑

k=0

(
k, n− k

k

)
= 2n/2 then it follows that

n+1∑

k=0

(
k, n− k

k

)
= 0. Now

n+2∑

k=0

(
k, n + 2− k

k

)
= 1 +

n+1∑

k=1

(
k, n + 1− k

k

)
+

(
k, n + 1− k

k − 1

)
+ 1

=
n+1∑

k=0

(
k, n + 1− k

k

)
+

n+1∑

k=1

(
k, n + 1− k

k − 1

)

= 2 +
n∑

k=0

[(
k, n− k

k

)
−

(
k, n− k

k − 1

)]

= 1 +
n∑

k=0

(
k, n− k

k

)
−

n∑

k=1

(
k, n− k

k − 1

)
on using shifting properties

= 1 + 2
n
2 −

n−1∑

k=0

(
k + 1, n− k − 1

k

)

= 1 + 2(n
2 ) + 2(n−2

2 ) + 2(n−4
2 ) + . . . + 2(n−2i

2 ) +
n−2i∑

k=1

(
k, n− 2i− k

k − 1

)

for 0 ≤ i ≤ n
2 . On using the geometric series summation we obtain

n+2∑

k=0

(
k, n + 2− k

k

)
= 2(n+2

2 )

that completes the proof.
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Theorem 2.5. (Orthogonality formula) Letn be a non-negative integer. Fori, j =
0, 1, 2, . . . , n we have

1
2n

n∑

k=0

(
k, n− k

i

)(
j, n− j

k

)
= δij =





1 if i = j,

0 if i 6= j.

Proof: Similar to the previous theorem we also use the induction methods onn. The case

is very obvious forn = 1. Suppose that

1
2n

n∑

k=0

(
k, n− k

i

)(
j, n− j

k

)
= δij =





1 if i = j,

0 if i 6= j.

is true. Then we will show that

1
2n+1

n+1∑

k=0

(
k, n− k + 1

i

)(
j, n− j + 1

k

)
= δij =





1 if i = j,

0 if i 6= j.

There are two different cases:

(i) Let i = j then it follows that

n+1∑

k=0

(
k, n− k + 1

i

)(
j, n− j + 1

k

)
=

(
n + 1

i

)
+

(
n + 1

i

)

+
n∑

k=1

([(
k, n− k

i

)
+

(
k, n− k

i− 1

)][(
i, n− i

k

)
+

(
i, n− i

k − 1

)])

= 2
(

n + 1
i

)
+

n∑

k=0

(
k, n− k

i

)(
i, n− i

k

)
+

n∑

k=1

(
k, n− k

i

)(
i, n− i

k − 1

)

+
n∑

k=1

(
k, n− k

i− 1

)(
i, n− i

k

)
+

n∑

k=1

(
k, n− k

i− 1

)(
i, n− i

k − 1

)

=
(

n

i− 1

)
+ 2n +

n∑

k=0

(
k, n− k

i

)(
i, n− i

k

)

−
n∑

k=0

(
k, n− k

i− 1

)(
i, n− i

k

)
+ (−1)2i−1

(
n

i− 1

)

= 2n + 2n = 2(2n) = 2n+1

(ii) Let i 6= j.

Then there are two subcases:

Case 1.If i− 1 6= j. Then we have
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n+1∑

k=0

(
k, n− k + 1

i

)(
j, n− j + 1

k

)
=

(
n + 1

i

)
+ (−1)i+j

(
n + 1

i

)

+
n∑

k=1

[(
k, n− k

i

)
+

(
k, n− k

i− 1

)][(
j, n− j

k

)
+

(
j, n− j

k − 1

)]

=
(

n + 1
i

)
+ (−1)i+j

(
n + 1

i

)
−

(
n

i

)

+
n−1∑

k=0

(
k + 1, n− k − 1

i

)(
j, n− j

k

)

−
(

n

i− 1

)
+

n−1∑

k=0

(
k + 1, n− k − 1

i− 1

)(
j, n− j

k

)

= (−1)i+j

(
n + 1

i

)
− (−1)i+j

(
n

i

)
+ (−1)i+j−1

(
n + 1
i− 1

)

= 0

on noting that
n∑

k=0

(
k, n− k

i

)(
j, n− j

k

)
= 0.

Case 2.If j = i− 1 then the proof is similar to the case 1 on noting that

n∑

k=0

(
k, n− k

i

)(
j, n− j

k

)
= 0

and
n∑

k=0

(
k, n− k

i− 1

)(
j, n− j

k

)
= 2n.
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