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Abstract: Incremental hierarchical sliding mode control (IHSMC) methodology involves 2n−2 sign switches of controller parameters
for an underactuated system withn subsystems. Too many sign switches trouble parameter tuning. This paper presents an adaptive
control design approach based on IHSMC methodology for overheadcrane systems with 2 subsystems with only 1 sign switch. The
system stability is proven by Barbalat’s lemma and Lasalle’s invariance principle in the sense of Lyapunov theory. Simulation results
illustrate the feasibility of the presented method by transport control of overhead crane systems.
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1 Introduction

Overhead crane systems are usually employed to move
materials horizontally in industries because they can
move loads far beyond the normal capability of a human.
But their performance may be constrained by the fact that
their loads are free to swing with a pendulum-type
motion. In practice, operating an overhead crane by
manual is hard to resist the pendulum-type motion that is
harmful for industry safety. Automation of operation is
desirable because high positioning accuracy, small swing
angle, and short transportation time are required [1]. As
far as transport control of overhead crane systems is
concerned, the objective is to transport the loads to the
required position as fast and as accurately as possible
without free swings. Many control approaches concerning
the control problem have been reported in recent years,
i.e., fuzzy control [1,4], adaptive control [3], feedback
linearizing control [8], wave-based robust control [5],
sliding mode control [2,6,7], ect. Other reports about this
topic can be found in [13] and [14].

Incremental hierarchical sliding mode control
(IHSMC) [2] is a methodology to solve control problems
of a class of underactuated systems withn subsystems
and 1 control input. For an underactuated system withn
subsystems, the incremental sliding surfaces of IHSMC

are with 2n− 1 layers. To ensure the stability of all the
surfaces, signs of parameters of the sliding surfaces need
to be switched except the first layer (theorem 1 in [2]).
But too many sign switches may trouble parameter
tuning. In nature, overhead crane systems belong to
underactuated systems with 2 subsystems and 1 input. A
crane system in [2] was utilized as a benchmark to verify
the feasibility of IHSMC. But the signs of two
sliding-surface parameters had to be switched for the
stability of this system. In this paper, we investigate an
adaptive control based on IHSMC for overhead crane
systems with only 1 sign switch.

The remainder of this work is organized as follows.
Section 2 describes the control design. The stability
analysis is presented in section 3. Section 4 shows the
simulation results. Conclusion is drawn in section 5 at
last.

2 Adaptive Control Design Based on IHSMC
for Overhead Crane Systems

2.1 Dynamic Model

Fig. 1 illustrates structure of an overhead crane system.
This system consists of the trolley subsystem and the load
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subsystem. We assume there is on static friction, the rope
is inflexible, the rope mass is ignored, and the load is
regarded as a material particle. Using Lagrange’s method,
its motion equations can be derived as

(m+M)ẍ+mL(θ̈ cosθ − θ̇ 2sinθ) = f (1)

ẍcosθ +Lθ̈ +gsinθ = 0 (2)

hereM is trolley mass,m is load mass,L is rope length,g
is gravitational acceleration,θ is swing angle of the load
with respect to the vertical line,x is trolley position with
respect to the originx, f is control force applied to the
trolley.

Fig. 1: Structure of an overhead crane system

The motion equations (1) and (2) can be transformed
to the state space expression as











ẋ1 = x2
ẋ2 = f1(x)+b1(x) ·u
ẋ3 = x4
ẋ4 = f2(x)+b2(x) ·u

(3)

Here x = [x1, x2, x3, x4]
T , x1 = x; x3 = θ ; x2 is trolley

velocity; x4 is angular velocity of the load;u = f is the
control input; fi andbi (i = 1,2) can be written as

f1 =
m ·L · x2

4 ·sinx3+m ·gsinx3 ·cosx3

M+m ·sin2 x3

b1 =
1

M+m ·sin2 x3

f2 =−
(m+M) ·g ·sinx3+m ·L · x2

4 ·sinx3 ·cosx3

(M+m ·sin2 x3) ·L

b2 =−
cosx3

(M+m ·sin2 x3) ·L

2.2 IHSMC-Based Adaptive Control Design

By means of the methodology of IHSMC, the incremental
sliding surfaces of this overhead crane system are designed

as

s1 = c1x1+ x2

s2 = c2x3+ s1

s3 = c3x4+ s2

(4)

wherec1 is a positive constant,c2 is constant, andc3 is
defined as a time-varying parameter. Due to the derivative
relation betweenx1 andx2 in (3), we definec1 is positive
on the aspect of the system stability.

Based on the methodology of equivalent control of
variable structure control [9], the SMC law usually
includes two parts: switching control and equivalent
control. Here we still adopt it and define the total control
law u of the adaptive IHSMC as

u = ueq +usw (5)

whereueq is the equivalent control andusw is the switching
control.

In order to ensure (5) make the last layer sliding
surfaces3 asymptotically stable, a Lyapunov function is
defined as

V (t) =
1
2

s2
3 (6)

DifferentiatingV with respect to timet in (6) yields

dV
dt

=
dV
ds3

ds3

dt
= s3ṡ3 = s3

d(c3x4+ s2)

dt
(7)

Sincec3 is a time-varying parameter, its adaptive law can
be derived from (7) in the sense of Lyapunov. So we have

dV
dt

= s3(ċ3x4+ c3ẋ4+ ṡ2) (8)

Substituting (3), (4), and (5) into (8) yields

dV
dt

= s3[ċ3x4+ c3( f2+b2u)+(c2ẋ3+ ṡ1)]

= s3[ċ3x4+ c3 f2+ c2x4+ f1+ c1x2+(c3b2+b1)u]

= s3[ċ3x4+ c3 f2+ c2x4+ f1+ c1x2+

(c3b2+b1)(ueq +usw)]
(9)

In order to have the stability of the third layer sliding
surface, let







c3 f2+ c2x4+ c1x2+(c3b2+b1)ueq = 0

κs3+ηsgn(s3)+(c3b2+b1)usw = 0

ċ3x4+ f1 = 0

(10)

Here κ and η are positive constants,sgn(·) is sign
function. Substituting (10) into (9), we have

dV
dt

=−κs2
3−η |s3| ≤ 0 (11)

which means the sliding motion of the third layer sliding
surfaces3 occurs att f . From (10), the equivalent control
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law, the switching control law and the adaptive law ofc3
of the presented adaptive IHSMC are gotten as































ueq =
−c3 f2− c2x4− c1x2

c3b2+b1

usw =
−ks3−ηsgn(s3)

c3b2+b1

ċ3 =−
f1x4

||x4||2+δ

(12)

Hereδ is a small positive constant to avoid the expression
is singular whenx4 is equal to zero.

3 Stability Analysis

In this section, we shall prove that only 1 sign switch of the
controller parameters is able to make this control system
possess the asymptotic stability.

Theorem 3.1. Consider an overhead crane systems (3)
under the IHSMC-based adaptive control law (12). Then
the third-layer sliding surfaces3 and the second-layer
sliding surfaces2 are asymptotically stable.

Proof. Integrating both sides of (11) yields
∫ t

0
dV =

∫ t

0
s3[−ks3−ηsgn(s3)] dt

V (t)−V (0) =
∫ t

0
(−ks2

3−η |S3|) dt
(13)

So we can obtain

V (0) =V (t)+
∫ t

0
(ks2

3+η |s3|) dt ≥
∫ t

0
(ks2

3+η |s3|) dt

(14)
From (14), (15) becomes

lim
t→∞

∫ t

0
(ks2

3+η |s3|) dt < ∞ (15)

From (15), there exist

lim
t→∞

∫ t

0
ks2

3 dt < ∞ (16)

lim
t→∞

∫ t

0
η |s3| dt < ∞ (17)

We can conclude that

s3 ∈ L2 (18)

s3 ∈ L1 (19)

From (6) and (14), we can get

1
2

s2
3 =V (t) =V (0)−

∫ t

0
(ks2

3+η |s3|) dt <V (0)< ∞
(20)

here (20) means
s3 ∈ L∞ (21)

From (11), we have

dV
dt

= s3
ds3

dt
=−ks2

3−η |s3|< ∞ (22)

so we have
ṡ3 ∈ L∞ (23)

(24) can be drawn from (18), (21) and (23) on account of
Barbalat’s lemma [10], i.e., the third layer sliding surface
s3 is of asymptotic stability.

lim
t→∞

s3 = 0 (24)

Define a set

Sc =

{

s3 ∈ R
2 |

dV
dt

≤ c, c > 0

}

(25)

Since dV
dt ≤ 0 in (11), we knowSc is positively invariant

and compact. By LaSalle’s principle [11], s3 approaches
the largest invariant set in

S=

{

s3 ∈ Sc |
dV
dt

= 0

}

(26)

Since the sliding mode of the third-layer surfaces3 takes
place at t f , this control system does not contain any
discontinuous term in time interval[t f , ∞), and becomes
an autonomous one. As a result, we have

S= {s3 | s3 = 0 ∩ ṡ3 = 0}

= {x4, s2 | c3x4+ s2 = 0 ∩ (c3x4)
′+ ṡ2 = 0}

(27)

Assumes2 and x4 do not converge to the origin by the
axesx4 and s2 as t → ∞. Then,s3 would converge to a
point of the sliding surfaces3 on phase plane byx4 versus
s2 except the origin. This case contradicts the fact that
limt→∞ s3 = 0. So the assumption is false. From proof by
contradiction, we have boths2 andx4 do converge to the
origin rather than other points on the phase plane.
Moreover, we already knowS is attracting, so the largest
invariant set in S contains no sets other than the
coordinate origin. On account of Lasalle’s invariance
principle, we have

lim
t→∞

s2 = 0 lim
t→∞

x4 = 0 (28)

i.e. s2 and x4 are asymptotically stable. �

Theorem 3.2. Consider an overhead crane systems (3)
under the IHSMC-based adaptive control law (12). Then
the sliding surfaces1 is asymptotically stable if (29) is
satisfied.

c2 =

{

c2 i f x3 · s1 ≥ 0
−c2 i f x3 · s1 < 0 (29)
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Proof. Substitutings2 = c2 · x3+ s1 into (28), we have

lim
t→∞

s2 = lim
t→∞

(c2 · x3+ s1) = 0 (30)

Since limt→∞ x4 = 0 and ˙x3 = x4, we have
limt→∞ x3 = const.. So (30) becomes

lim
t→∞

s1 =− lim
t→∞

(c2 · x3) = const. (31)

If (29) is satisfied, there exisits

sgn(c2 · x3 · s1)≥ 0 (32)

From (31) and (32), this constant in (31) is zero rather than
others. Thus, we can draw

lim
t→∞

x3 = 0 lim
t→∞

s1 = 0 (33)

(33) means bothx3 ands1 are asymptotically stable if (29)
is satisfied.�

Comment 1: Substitutingx2 = ẋ1 into limt→∞ s1 = 0 in
(33), we have

lim
t→∞

(c1 · x1+ ẋ1) = 0

This means the two system statesx1 and x2 are locally
exponentially stable.

Comment 2: As proven in theorems 1 and 2, all the
sliding surfaces are asymptotically stable. There also
exists tiny difference among them. From (11), the sliding
mode of s3 takes place in finite time because of the
existence of the discontinuous switching control in (5).
But the sliding modes ofs2 ands1 are just asymptotically
reachable or are reachable in infinite time because their
reachability cannot be ensured by (11). Although (29) is
discontinuous, it cannot ensure the reachability ofs1 and
s2 under the Lyapunov function (6). This may inspire one
to explore a new Lyapunov function and to deduce a
novel switching control law, making all the sliding
surfaces possess the reachability.

Comment 3: From our design process,c1 andc2 have
each individual function, i.e.,c2 switches its sign to get a
stables1, c1 is positive to guaranteex1 andx2 are locally
exponentially stable. The function of the adaptive control
law of c3 is to make the sliding mode ofs3 reachable as
soon as possible.

Comment 4: The same incremental sliding surface in
[2] was presented. But 2 sign switches of the controller
parameters in [2] were needed to guarantee the stability of
the sliding surfaces. Although such the method can
predigest the system stability analysis [2], it troubles
parameter tuning. Whereas, only one sign switch of our
controller parameters can ensure the stability of the entire
sliding surfaces.

4 Simulation Results

In this section, the validity of the IHSMC-based adaptive
control is demonstrated by the transport control problem

of an overhead crane system. The physical parameters of
the overhead crane system are determined as [12]
M = 37.32 kg, m = 5 kg andL = 1.05 m. The parameters
of the adaptive IHSMC law is selected asδ = 0.01,
c1 = 3.98, c2 = 0.25, k = 1.20 andη = 0.06 after trial
and error. The initial value ofc3 is selected asc0

3 = 0.80.
The initial state vectorx0 and the desired state vectorxd

are[2, 0, 0, 0]T and[0, 0, 0, 0]T , respectively.
The simulation results in Fig.2 demonstrate all the

system states and the control input. As proven, all the
states are asymptotically stable. From Fig.2a the system
states can achieve the control objective fromx0 to xd at
about 4.6 s. Especially, there is no overshoot of the state
variablex1, this means the trolley could directly arrive at
the desired position with no oscillation. This trait is
important for transport control of overhead crane systems
in industries. The incremental sliding surfaces, the
adaptive process ofc3, and the switch process ofc2 are
displayed in Fig.3. As proven in theorem 1 and 2, all the
surfaces possess the asymptotic stability under the
IHSMC-based adaptive control law with only 1 sign
switch of the controller parameterc2. Phase plane plots of
s3, s2, ands1 are illustrated in Fig.4. As pointed out in
comment 2, only the sliding mode ofs3 is reachable in
finite time, yet the sliding modes ofs2 and s1 is
asymptotically reachable.

5 Conclusions

This paper has proposed an IHSMC-based adaptive
control approach for the transport control problem of
overhead crane systems, belonging to underactuated
systems extensively used in industries. The system
stability is analyzed by Barbalat’s lemma and Lasalle’s
invariance principle in the sense of Lyapunov. The
presented method with only 1 sign switch of the
controller parameters can achieve transport control of
overhead crane systems. Simulation results show the
feasibility of the presented IHSMC-based adaptive
control approach.
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input u.

0 2 4 6
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

Time (s)
(c)

S
w

itc
h 

pr
oc

es
s 

of
 c

2

0 2 4 6
0.4

0.6

0.8

1

Time (s)
(d)

A
da

pt
iv

e 
pr

oc
es

s 
of

 c
3

0 2 4 6
−5

0

5

10

Time (s)
(a)

S
3 a

nd
 S

2

 

 

0 2 4 6
−5

0

5

10

Time (s)
(b)

s 1

s
3

s
2

Fig. 3: Simulation results. (a). the third layer sliding surfacess3 and the second layer sliding surfacess2, (b). the first layer
sliding surfaces1, (c). Switch process ofc3, (d). Adaptive process ofc2.

−0.2 0 0.2 0.4 0.6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
4

(a)

s 2

 

 

trajectory of s
3

s
3

−0.2 −0.1 0 0.1 0.2
−0.1

−0.05

0

0.05

0.1

x
3

(b)

s 1

 

 

trajectory of s
2

s
2

−0.05 0 0.05 0.1
−0.2

−0.1

0

0.1

0.2

x
1

(c)

x 2

 

 

trajectory of s
1

s
1

Fig. 4: Phase plane plots. (a). the third layer sliding surfacess3, (b). the second layer sliding surfacess2, (c). the first layer
sliding surfaces1.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1364 D.W. Qian, S.W. Tong, J.Q. Yi: Adaptive Control Based on Incremental...

[7] W. Chen, and M. Saif, IEEE Transactions on Industrial
Electronics,55, 3985-3997 (2008).

[8] D.K. Chwa, IEEE Transactions on Control Systems
Technology,17, 876-883 (2009).

[9] V.I. Utkin, Sliding Modes in Control and Optimization,
Springer-Verlag Press, New York, 1992.

[10] J.J. Slotine, and W.P. Li, Applied Nonlinear Control,
Prentice-Hall Press, New Jersey, 1991.

[11] H.K. Khalil, Nonlinear Systems, Prentice-Hall Press, New
Jersey, 2002.

[12] D.W. Qian, J.Q. Yi, and D.B. Zhao, Proceedings of the IEEE
International Conference on Robotics and Automation, 2429-
2434, (2008).

[13] B.A. Elsayed, M.A. Hassan, and S. Mekhilef, Applied
Mathematics & Information Sciences,7, 193-201 (2013)

[14] C.L. Chen, C.W. Chang, and H.T. Yau, Applied
Mathematics & Information Sciences,6, 89-98 (2012)

D.W. Qian received
the B.E. degree from the
Hohai University, Nanjing,
China, in 2003. In 2005 and
2008, He received the M.E.
degree from the Northeastern
University, Shenyang, China,
and the Ph.D. degree from
the Institute of Automation,
Chinese Academy of

Sciences, Beijing, China, respectively. Currently, he is an
Associate Professor at the School of Control and
Computer Engineering, North China Electric Power
University, Beijing, China. His research interests include
theories and applications of intelligent control, nonlinear
control, etc.

S.W. Tong received
the B.E. degree in chemical
engineering from the
University of Petroleum
(East China), Shandong,
China, in 1999, the M.E.
degree in control theory
and control engineering from
the University of Petroleum
(Beijing), Beijng, China, in

2003, and the Ph.D. degree from the Institute of
Automation, Chinese Academy of Sciences, Beijing,
China, in 2008. He was an operator with Liaohe Oil Feild
Petrochemical Refinery from 1999-2002, an Engineer
with Bejing Anwenyou Science and Technology
Company, Ltd. from 2005-2008, and an instument senior
engineer with China Tianchen Engineering Corporation
(TCC) from 2008-2012. He is currently a staff with
College of Automation, Beijing Union University. His
research interests include the intelligent control,
networked control, PEM fuel cell, and their industrial
applications.

J.Q. Yi received the
B.E. degree from the Beijing
Institute of Technology,
Beijing, China, in 1985 and
the M.E. and Ph.D. degrees
from the Kyushu Institute
of Technology, Kitakyushu,
Japan, in 1989 and 1992,
respectively. He worked
as a Research Fellow with

Computer Software Design, Inc., Tokyo, Japan, from
1992 to 1994. From 1992 to 1994, he was with the
Computer Software Development Company, Tokyo. From
1994 to 2001, he was a Chief Researcher and Chief
Engineer with MYCOM, Inc., Kyoto, Japan. Currently, he
is a Full Professor with the Institute of Automation,
Chinese Academy of Sciences, Beijing. His research
interests include theories and applications of intelligent
control, intelligent robotics, underactuated system
control, sliding-mode control, flight control, etc.

c© 2013 NSP
Natural Sciences Publishing Cor.


	Introduction
	Adaptive Control Design Based on IHSMC for Overhead Crane Systems
	Stability Analysis
	Simulation Results
	Conclusions

