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Abstract: In this paper, we provide a fractional-order delay differential model for coronavirus (CoV) infection to give us best

understand what causes the intensity of symptoms and illness of contaminated lung and respiratory system. A fractional-order and

time-delays are incorporated in the model to naturally represent the effects of both long-run and short-run memory in the dynamics of

cells and tissues of immune system. Some interesting sufficient conditions that ensure the asymptotic stability of the steady states are

obtained. Sensitivity analyses such as sensitivity to variations in the rate of interferon, rate of innate immunity cells, rate of adaptive

immunity cells, and variation in pathogen virulence are investigated to provide insight into the role of each and most effective

parameter of the model. This consideration may deliver experiences into respiratory infections and define the foremost compelling

parameters for treatment.
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1 Introduction

The ongoing pandemic coronavirus (CoV) disease (COVID-19) outbreak was first reported in Wuhan, China, in December
2019 and has spread to more than 197 territories Worldwide. WHO declared COVID-19 as pandemic on 11 March 2020.
This rising infectious disease involves a fast spreading, endangering the health of huge numbers of people. Thus requires
immediate actions have to be taken to prevent the disease at the community level. COVID-19 is the seventh member of
the coronavirus (CorV) family, together with MERS-CoV and SARS-CoV, that can spread to humans [1]. The symptoms
of the infection include fever, cough, shortness of breath, and diarrhea. In more severe cases, it causes respiratory illness
ranging from mild disease to severe disease and death. However, some people infected with the virus never develop
symptoms [2]. The incubation period of COVID-19 is between 3–14 days or longer. While incubation time for flu is 1-3
days [3]. During the period of latent infection, the disease may still be infectious. The virus is very series can spread fast
from person to person through respiratory droplets and close contact [4]. Therefore, many researchers and scientists are
interested to know how to create treatment methods against such infectious diseases. Those methodologies help to partially
understand the complexity of the dynamics/interactions between specific viral or bacterial pathogens and the human host.
The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time [5,6].
Most of these efforts have focused on multi-level diseases and adopted quite different computational approaches [7,8,9,
10,11]. In [8], the authors considered epidemiological models with nonlinear incidence rates and examined the dynamical
behaviors of the considered model. In [11], the author discussed the developments and importance of the mathematical
modeling to understanding of HIV infection.

The transmission COVID-19 at the cells level may cause upper-respiratory-tract infection among humans. In human
cells, we have healthy, infected, virus cells and antibodies that could be considered as input parameters and the output will
be infected lung cells. Accordingly, the characteristics of COVID-19 tend to be similar to SARS-CoV. This will help us to
determine some routes of infection and prevent its spread. Moreover, the immune response system of human plays a vital
role in the protection against dangerous infections [12,13,14]. In the view of biological systems, the stimulation of the
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defensive immune responses suggests that the kinetics of innate immune responses critically impinge on the development
of pathogen-specific adaptive immune responses. In [15], the authors investigated the dynamics of influenza A virus
infection model with a human immune response. Also, the immune response to hepatitis B virus infection was discussed
in [16]. Many research papers discussed transmission of CoV among groups [17,18,19]. However, the dynamics of CoV
infection are not intensively addressed in an individual (organism), in the literature, which we investigate in the present
paper.

In the literature, most scientific modeling of biological systems with memory is based either on delay differential
equations (DDEs) with integer-order or fractional-order differential conditions without a delay [20]. However, fractional-
order calculus is more suitable than integer order ones in modeling biological systems with intrinsic memory and long-
range interactions such as epidemic evolution systems [5]. Modeling such frameworks using fractional-order differential
conditions has more points of interest than classical integer-order scientific modeling, in which the impacts of memory
or long-range intuitive are dismissed [21,22,23]. In fact, memory effects play an essential role in the spread of diseases.
Moreover, fractional-order derivatives of the model provide more accurate and generalized results than the integer-order
derivatives. Fractional-order models have both memory and nonlocality effects which are rather relevant to epidemic
spread. Therefore, many researchers have focused their interest on investigating the dynamics of fractional-order epidemic
models in recent decade [24,25,26,27,28,29]. The problem of stability and Hopf bifurcation of fractional-order delayed
Ebola virus infection model with cytotoxic T-lymphocyte (CTL) response have been investigated in [26]. In [29], the
authors have examined the dynamical behaviors of considered fractional-order model Hepatitis-C Virus model in presence
of interferon-α treatment. Recently, Rihan and Velmurugan in [30] proposed a delay differential model with fractional-
order for tumor immune system with external treatments. They investigated the necessary and sufficient conditions for
stability of the steady states and Hopf bifurcation with respect to two different tumor time-delays. A fractional-order
model of cytotoxic T lymphocyte response with long-term behavior of tumor growth and with tumor elimination has been
investigated in [31].

The present paper aims to propose a compartmental mathematical model with fractional-order and time-delay for
the dynamics of viral infection of COVID-19 and immune system (in an individual), with respiratory infections. This
may help us better understand what causes the intensity of symptoms, infectivity of the virus and the host, and duration
of the disease. Parameters of system dynamics models are subject to uncertainty. Sensitivity analyses are conducted to
provide insight into how uncertainty in the parameters affects the model outputs and which parameters tend to drive these
variations. Herein, we study sensitivity of the model to small changes in its parameters to evaluate how the severity of
infection can be affected by disturbing the parameters. Sufficient conditions that ensure asymptotically stable of existing
steady states, using Laplace transform and characteristic roots, are also deduced. The rest of the manuscript is structured
as follows: In Section 2, we provide a fractional-order delayed model for the dynamics of CoV with immune response. In
Section 3, we investigate the qualitative feature of the model and deduce some conditions which guarantee the asymptotic
stability of the steady states. Sensitivity analysis with numerical simulations are discussed and provided in Section 4.
Discussion and conclusion are presented in Section 5.

2 Dynamics of COVID-19 infection

In fact, the immune system has two types of immunity: innate immunity and adaptive immunity. During viral infections,
the adaptive immune response plays a significant role in the control of infection process. This response is generated by
two arms of immunity. The first one based on antibodies, called humoral immunity, is programmed to eradicate viral
pathogens, while the second one mediated by Cytotoxic Lymphocytes Cells (CTL), called cellular immunity, is
programmed to destroy infected cells [32]. In the beginning of infection, the innate immune response develops first in
minutes or hours, while adaptive immunity follows innate immunity occurs in days or weeks [33,34]. The innate immune
system uses receptors that are encoded by intact genes inherited through the germline [35], whereas the adaptive immune
system uses antigen receptors [36]. Host cells are generated with counter components to distinguish virus-encoded
molecular patterns and engender an antiviral reaction. Viral double-stranded RNA (dsRNA) is a well-characterized
pathogen-associated molecular pattern recognized by cytosolic pattern recognition receptors retinoic acid inducible
gene-1 (RIG-1), melanoma differentiation-associated protein 5 (MDA5), and endosomal toll-like receptor 3 (TLR3),
resulting in type 1 interferon (IFN1) production [37]. Viruses utilize a unique evasion mechanism by synthesizing
proteins that hinder the IFN1 production and secretion pathways. For instance, influenza A virus uses non-structural
protein 1 to bind dsRNA [38], inhibiting RIG-1-like receptors and TLR3-dependent IFN1 synthesis. Dengue virus, on
the other hand, prevents IRF3 phosphorylation through the non-structural protein 2B3 protease complex [39].

Similar to MERS-CoV and SARS-CoV, COVID-19 implements a mechanism to evade dsRNA sensors including RIG-
1, MDA5, and endosomal TLR3 of the host immune system. Some studies have found that MERS-CoV and SARS-CoV
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are sensitive to IFN1 treatment [40,41,42]. This viral interference in the host innate immune pathway enhances virus-
induced disease progression and elevates the mortality rate to 60%. Antigen presenting cells (APC) are also essential in
the induction and amplification of the human immune response [43].

2.1 Mathematical model

Herein, we provide a mathematical model, governed by a system of fractional-order delay differential equations, for the
dynamics of COVID-19 infection with human immune response. The model variables have the following sense:

– V (t), concentration of free CoV (COVID-19) in 1 ml of mucous compartment (particle/ml) in an organism;
– H(t), proportion of healthy cells (cell/ml);
– I(t), proportion of infected cells (cell/ml).
– M(t), activated antigen presenting cells per homeostatic level (cell/ml);
– F(t), interferon per homeostatic level of macrophages (cell/ml);
– R(t), proportion of resistant cells (cell/ml);
– E(t), effector cells per homeostatic level (cell/ml);
– P(t), plasma cells per homeostatic level (cell/ml);
– A(t), concentration of antibodies per homeostatic level (molecule/ml);
– S(t), antigenic distance (cell/ml);
– D(t), concentration of damaged cells in 1 ml in the compartment of upper respiratory (cell/ml).

The model considers the following assumptions (see Figure 1): The epithelial respiratory cells are divided as healthy cells,
H(t), infected, I(t), dead, D(t), or safe/resistant to disease, R(t). The total number of epithelial cells is expected to be
steady (i.e. H(t)+ I(t)+D(t)+R(t)= 1). It is accepted that the infection particles V (t) connected with healthy cells H(t)
and taint them, and contaminated cells I(t) discharge unused infection particles upon their passing. Replication of H(t)
cells causes reproduction and decrease the load of D(t) cells. Moreover, the dead cells fortify the enactment antigen APC,
M(t). In this way, APC stimulate within the creation of intergalactic F(t), effector cells E(t) and plasma cells P(t). The
interferons are intermingle with healthy cells and alter over time to a safe state. The effector cells E(t) end contaminated
/infected cells. The plasma cells surrender antibodies A(t) that deactivate infection particles. This deactivation is controlled
by the antigenic compatibility S(t) between CoV disease particles and antibodies right presently made by the substance.
S(t) tallies the comparability between antibodies and contamination particles.

Based on the attention of some interfaces between immune response system against CoV, and due to the fact that both
time-delays and fractional-order play a vital role in biological systems with memory which gives more degree of freedom,
we propose a fractional-order delayed differential model, which is based on Marchuk model [6]. The model takes the form

dβV (t)

dtβ
= γV I(t)− γVAS(t)A(t)V(t)− γVHH(t)V (t)−αVV (t)−

aV1V (t)

1+ aV2V (t)
, (1a)

dβ H(t)

dtβ
= bHDD(t)(H(t)+R(t))+ aRR(t)− γHVV (t)H(t)− bHFF(t)H(t), (1b)

dβ I(t)

dtβ
= γHV V (t)H(t)− bIEE(tτ)I(t − τ)− aII(t), (1c)

dβ M(t)

dtβ
= (bMDD(t)+ bMVV (t))(1−M(t))− aMM(t), (1d)

dβ R(t)

dtβ
= bHF F(t)H(t)− aRR(t), (1e)

dβ F(t)

dtβ
= bF M(t)+ cFI(t)− bFHH(t)F(t)− aFF(t), (1f)

dβ E(t)

dtβ
= bEMM(t)E(t)− bEII(t − τ)E(t − τ)+ aE(1−E(t)), (1g)

dβ P(t)

dtβ
= bPMM(t)P(t)+ aP(1−P(t)), (1h)
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dβ A(t)

dtβ
= bAP(t)− γAV S(t)A(t)V (t)− aAA(t), (1i)

dβ S(t)

dtβ
= rP(t)(1− S(t)). (1j)

Here, dβ

dtβ is the fractional-order derivative, with 0 < β ≤ 1. From the above-mentioned assumption the dead cells D(t) is

D(t) = 1− I(t)−R(t)−H(t). (1k)

The interacting parameters in the model (1a-1j) are provided in Table 1. The time-lag τ > is incorporated in the model to
represent required time for reaction between the infected and effector cells.

The left hand side of Eq. (1a) represents the rate of change of CoV, V (t). The primary four terms of right side
accounts the generation rate of CoV by contaminated cells, neutralization of CoV by particular antibodies, adsorption
of viral particles by healthy cells, and the common rot of viral particles. The nonspecific mucociliary removal of virions
supported by a cough and other mechanisms is described by the term aV1V/(1+ aV2V ), which saturates with increasing
V (t) as the available capacity of these mechanisms is exhausted.

Eq. (1b) represents the rate of alert of H(t). The healthy cells are produced, due to the replications of healthy and
resistant, with proportional to (H +R), and D. Safe cells R(t) continuously loose the resistance to disease and return
to their beginning touchy state (sound state) citeJoklik, which is characterized by aRR(t). gHVV (t)H(t) represents the
misfortune of solid/healthy cells due to the disease. The term bHF FH represents transition of healthy cells into resistant
state. In the same manner, Eq. (1c) is the rate of change of infected cells I(t). Infection of healthy cells by virions is
described in the term γHVVH. The term aII indicates the natural death of infected cells during which new virus particles
are produced. The term bIEEI is the destruction of infected cells by effector cells (CTL and NK) during which no new
virus is produced.

Eq. (1d) shows the rate of change of activated APC (M(t)) , which is proportional to the amount of the virus and
the number of dead cells. The natural decay of activated state of APC is represented by the last term, wherese Eq. (refE)
indicates that safe cells R(t) are actuated from solid cells (bHF F(t)H(t)) and change over back to solid cells (aRR(t)) with
a limited lifetime. Eq. (1f) describes the rate of change of interferon-α that depends on the production rate of F(t) by APC

and by infected cells, at the rate of F(t) binding healthy cells, as well as on the nonspecific decay of F(t).

The seventh Eq. (1g) represents the rate of alart of effector cells E(t) concentration. The essential terms talks to
the era rate of effector cells braced by APC, and minute term os the demolition rate of sullied cells by effector cells,
bEII(t − τ)E(t − τ)). The time-lag τ ≥ 0 is considered to legitimize the specified time of reaction between the corrupted
and effector cells. The terms aE(1− E) and aP(1− P) in (1g) and (refH) are expressions for homeostatic upkeep of
the levels of energetic effectors and plasma cells, reflecting the discernment that the strong body tends to protect their
concentrations interior contract bounds. The essential term in the eighth Eq. of (1h) talks to the sanctioning handle of
plasma cells invigorated by APC.

The ninth Eq. (1i) shows the rate of variation of antibodies A(t). The primary term portrays the generation rate of
antibodies by plasma cells. The second terms is the neutralization rate of free viral particles by particular antibodies,
and the final term is normal rot rate of A. The variable S(t) within the final Eq. (refJ) addresses the closeness between
antibodies and the infection strain in a person and ranges from 0 to 1 (no compatibility to maximal compatibility). Amid
the course of the infection, S(t) increments as plasma cells deliver antibodies progressively congruous with viral antigens.
The rate of increment of S(t) is rP(1− S) that estimates for two normal perceptions: (i) the increment in S(t) is fortified
by plasma cells and (ii) S(t) cannot increment past 1. Altering the time advancement of S(t), we see how the course of the
malady depends on the advancement of antigenic distance.

No single natural substance or marker shows the APC in our demonstration to supply both antigen displaying and IFN
creating functions. Moreover, we excluded halfway steps within the pathways: for case, we do not account for the middle
steps within the production of effector cells and plasma cells such as T h1 and T h2 partner cells and B-cells. We don not
consider time-delays within the propagation of cellular components; See Figure 1.

Some presumptions are considered to streamline of our information about immune system. The populaces of cells and
disease are anticipated to be reliably passed on over the epithelial layer during all times. In addition, it is accepted that the
rate of alter of demonstrate variable is decided by the show value of all factors. A few variables do not have extraordinarily
identifiable natural partners. The advantage of using fractional-order differential equations is that they involve memory
which means that if we want to compute the fractional derivative at a current state t = t1 it is necessary to consider all the
previous complete history from the starting point t = t0 up to the point t = t1. Up to our best knowledge, there have been
few numbers of fractional-order viral infection models considering the dynamics of transmission and adaptive immunity
in an organism.
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Fig. 1: Schematic representation of interactions included in model (1a-1j).

Next, we investigate the qualitative behaviour of the model through the stability of the endemic and healthy (infection-
free) steady states of the above-mentioned fractional-order delay differential model.

3 Qualitative behaviours of the model

Supposing that E (V ∗,H∗, I∗,M∗,F∗,R∗,E∗,P∗,A∗,S∗) is the steady state of system (1a–1j), and the left hand sides of the
model are zeros at the steady state E , one can obtain

V ∗ =
−b±

√

b2 − 4ac

2a
, H∗ =

bHDD∗R∗+ aRR∗

γHVV ∗+ bHFF∗− bHDD∗
, I∗ =

γHVV ∗H∗

bIE E∗+ aI

,

M∗ =
bMDD∗+ bMVV ∗

bMDD∗+ bMVV ∗+ aM

, F∗ =
bF M∗+ cFI∗

bFHH∗+ aF

, R∗ =
bHF F∗H∗

aR

,

E∗ =
aE

aE + bEII∗− bEMM∗
, P∗ =

aP

aP − bPMM∗
, A∗ =

bAP∗

γAV S∗V ∗+ aA

, S∗ = 1,

where a = (−aV2αV − aV2γVAA∗S∗− aV2γVHH∗), b = (−aV1 −αVV + aV2γV I∗− γVAA∗S∗− γVHH∗) and c = γV I∗.

We call E ∗ an endemic steady state of the model. However, a disease free or healthy steady state E0 of the model also
exists,

E0(.) = (0, 1, 0, 0, 0, 0, 1, 1,1 ,1).
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Parameters Narrative Value Sources

γV Generation rate of CoV by contaminated cells 510 [?]

γVA Neutralization rate of CoV by particular antibodies 619.2 [?]

γVH Absorption rate of CoV by infected cells 1.02 [?]

αV Natural decay rate of CoV 1.7 [?]

aV1
Rate of nonspecific CoV removal 100 Assumed

aV2
Rate of nonspecific CoV removal 23000 Assumed

bHD Rate of regeneration only occur in the presence of damage 4 [?]

aR Rate of cells’ virus resistance state decay 1 [?]

γHV Rate of healthy cells infected by CoV 0.34 [?]

bHF Rate of transition of healthy cells nto resistant state 0.01 [?]

bIE Rate of infected cells that CTL damage 0.066 [?]

aI Rate of infected cells damage by cytopathicity of CoV 1.5 [?]

bMD Rate of stimulation of antigen presenting cell (APC) by dead cell 1 [?]

bMV Rate of stimulation of APC by virus 0.0037 [?]

aM Natural decay rate of stimulation state of APC 1 [?]

bF Production rate of Interferon (IFN) by APC 250000 [?]

cF Production rate of IFN by infected cell 2000 Assumed

bFH Rate of IFN binding healthy cells 17 [?]

aF Natural decay rate of IFN 8 [?]

bEM Production rate of effector cells simulation by APC 8.3 [?]

bEI Rate of death effector cells by lytic interaction with infected cells 2.72 [?]

aE Natural death rate of effector cells 0.4 [?]

bPM Production rate of plasma cell 11.5 [?]

aP Natural death rate of plasma cell 0.4 [?]

bA Generation rate of counter acting agent by plasma cells 0.043 [?]

γAV Neutralization rate of CoV by antibodies 146.2 [?]

aA Natural death rate of antibodies 0.043 [?]

r Rate of S variable 3e−5 Assumed

Table 1: The description and values of the parameters used in model (1a-1j).

3.1 Stability of endemic steady state E ∗

To investigate the stability of endemic steady state of the model (1a–1j), we linearizing the model at the steady state E ,
we have

DβV (t) = (−γVAS∗A∗− γVHH∗−αV −
aV1

(1+ aV2V ∗)2
)V (t)− γVHV ∗H(t)+ γV I(t)− γVAS∗V ∗A(t)− γVAA∗V ∗S(t),

Dβ H(t) =−γHV H∗V (t)+ (−bHD(H
∗+R∗)+ bHD(1−H∗−R∗− I∗)− γHVV ∗− bHFF∗)H(t)

− bHD(H
∗+R∗)I(t)− bHFH∗F(t)+ (−bHD(H

∗+R∗)+ bHD(1−H∗−R∗− I∗)+ aR)R(t),

Dβ I(t) = γHV H∗V (t)+ γHVV ∗H(t)− bIEE∗I(t)− aII(t)− bIEI∗E(t),

Dβ M(t) = bMV (1−M∗)V (t)− bMD(1−M∗)H(t)− bMD(1−M∗)I(t)

− bMD(1−H∗−R∗− I∗)M(t)− bMVV ∗M(t)− aMM(t)− bMD(1−M∗)R(t),

Dβ F(t) =−bFHF∗H(t)+ cFI(t)+ bFM(t)+ (−bFHH∗− aF)F(t),

Dβ R(t) = bHF F∗H(t)+ bHFH∗F(t)− aRR(t),

Dβ E(t) =−bEIE
∗I(t − τ)+ bEME∗M(t)+ (bEMM∗− aE)E(t)− bEII

∗E(t − τ),

Dβ P(t) = bPMP∗M(t)+ (bPMM∗− aP)P(t),

Dβ A(t) =−γAV S∗A∗V (t)+ (bA − γAV S∗V ∗− aA)A(t)− γAVV ∗A∗S(t),

Dβ S(t) = r(1− S∗)P(t)− rP∗S(t).

(2)

The vector form of (2) can be written as

Dβ X(t) = ΩX(t)+Ω ∗X(t − τ), (3)
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where X(t) = (V (t), H(t), I(t), M(t), F(t), R(t), E(t), P(t), A(t), S(t))T .

Ω =





























ω1 ω2 ω3 0 0 0 0 0 ω4 ω5

ω6 ω7 ω8 0 ω9 ω10 0 0 0 0
ω11 ω12 ω13 0 0 0 ω14 0 0 0
ω15 ω16 ω16 ω17 0 ω16 0 0 0 0
0 ω18 ω19 ω20 ω21 0 0 0 0 0
0 ω22 0 0 ω23 ω24 0 0 0 0
0 0 0 ω25 0 0 ω26 0 0 0
0 0 0 ω27 0 0 0 ω28 0 0

ω29 0 0 0 0 0 0 0 ω30 ω31

0 0 0 0 0 0 0 ω32 0 ω33





























,

and

Ω ∗ =





























0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 ω∗

1 0 0 0 ω∗
2 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





























,

with ω1 = −γVAS∗A∗ − γV HH∗ − αV −
aV1

(1+ aV2V ∗)2
, ω2 = −γVHV ∗, ω3 = γV , ω4 = −γVAS∗V ∗, ω5 =

−γVAA∗V ∗, ω6 = −γHV H∗, ω7 = (−bHD(H
∗ + R∗) + bHD(1 − H∗ − R∗ − I∗) − γHVV ∗ − bHF F∗), ω8 =

−bHD(H
∗ + R∗), ω9 = −bHF H∗, ω10 = −bHD(H

∗ + R∗) + bHD(1 − H∗ − R∗ − I∗) + aR, ω11 = γHV H∗, ω12 =
γHVV ∗, ω13 = −bIEE∗− aI, ω14 = −bIE I∗, ω15 = bMV (1−M∗), ω16 = −bMD(1−M∗), ω17 = −bMD(1−H∗−R∗−
I∗)− bMVV ∗ − aM, ω16 = −bMD(1 − M∗), ω18 = −bFHF∗, ω19 = cF , ω20 = bF , ω21 = −bFHH∗ − aF , ω22 =
bHF F∗, ω23 = bHF H∗, ω24 = −aR, ω25 = bEME∗, ω26 = bEMM∗ − aE , ω27 = bPMP∗, ω28 = bPMM∗ − aP, ω29 =
−γAV S∗A∗, ω30 = bA − γAV S∗V ∗− aA, ω31 =−γAVV ∗A∗, ω32 = r(1− S∗), ω33 =−rP∗, ω∗

1 =−bEIE
∗, ω∗

2 =−bEII
∗.

Taking Laplace transformation on both sides of (3), we have

sβY (s)− sβ−1ψ(0) = ΩY (s)+Ω ∗e−sτ

[

Y (s)+

∫ 0

−τ
e−stψ(t)dt

]

, (4)

where Y (s) = Yi(s), i = 1,2, · · · ,10, is the Laplace transform of X(t), i.e. Y (s) = L (X(t)) and
ψ(t) = ψi(t), t ∈ [−τ,0], i = 1,2, · · · ,10, is the initial value of the model (1a-1j). Next, we rewrite the equation (4) as

∆(s)









Y1(s)
Y2(s)

...
Y10(s)









=









d1(s)
d2(s)

...
d10(s)









. (5)

Here,

d1(s) =sβ−1ψ1(0), d2(s) = sβ−1ψ2(0), d3(s) = sβ−1ψ3(0), d4(s) = sβ−1ψ4(0), d5(s) = sβ−1ψ5(0),

d6(s) =sβ−1ψ6(0), d7(s) = sβ−1ψ1(0)+ω∗
1 e−sτ

∫ 0

−τ
e−stψ3(t)dt +ω∗

2 e−sτ
∫ 0

−τ
e−stψ7(t)dt,

d8(s) =sβ−1ψ8(0), d9(s) = sβ−1ψ9(0), d10(s) = sβ−1ψ10(0)
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and

∆(s) =





























s1 −ω2 −ω3 0 0 0 0 0 −ω4 −ω5

−ω6 s2 −ω8 0 −ω9 −ω10 0 0 0 0
−ω11 −ω12 s3 0 0 0 −ω14 0 0 0
−ω15 −ω16 −ω16 s4 0 −ω16 0 0 0 0

0 −ω18 −ω19 −ω20 s5 0 0 0 0 0
0 −ω22 0 0 −ω23 s6 0 0 0 0
0 0 −ω∗

1 e−sτ −ω25 0 0 s7 0 0 0
0 0 0 −ω27 0 0 0 s8 0 0

−ω29 0 0 0 0 0 0 0 s9 −ω31

0 0 0 0 0 0 0 −ω32 0 s10





























,

with s1 = sβ −ω1, s2 = sβ −ω7, s3 = sβ −ω13, s4 = sβ −ω17, s5 = sβ −ω21, s6 = sβ −ω24, s7sβ −ω26−ω∗
2 e−sτ , s8 =

sβ −ω28, s9 = sβ −ω30, s10 = sβ −ω33.

Moreover, ∆(s) is known as the characteristic matrix of the model (2) and det(∆(s)) as the characteristic polynomial
of ∆(s). Sstability of the model (2) is purely obtained by the distribution of eigenvalues of det(∆(s)).

Now, we obtain the characteristic equation of the model (3) (det∆(s) = 0) at E ∗ as follows:

P1(s)+Ps(s)e
−sτ = 0, (6)

where

P1(s) = s10β +A1s9β +A2s8β +A3s7β +A4s6β +A5s5β +A6s4β +A7s3β +A8s2β +A9sβ +A10,

P2(s) = B1s9β +B2s8β +B3s7β +B4s6β +B5s5β +B6s4β +B7s3β +B8s2β +B9sβ +B10,

and Ai (i = 1,2, · · · ,10), B j ( j = 1,2, · · · ,9) are constants based on the various combinations of the parameter values of
given model (2). We consider the two cases:

• Case 1: τ > 0. Herein, we prove that the characteristic equation (6) has no pure imaginary roots for any τ > 0. But, let
us assume that the characteristic equation (6) has pure imaginary root, i.e. s = iζ = ζ (cos π

2
+ isin π

2
), ζ > 0. Substituting

the pure imaginary root s into (6), we get

C1 + iD1 +(C2 + iD2)e
−iζτ = 0, (7)
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where C1, C2 and D1, D2 are real and imaginary part of P1(s) and P2(s). Here,

C1 =ζ 10β cos(5β π)+A1ζ 9β cos

(

9β π

2

)

+A2ζ 8β cos(4β π)+A3ζ 7β cos

(

7β π

2

)

+A4ζ 6β cos(3β π)

+A5ζ 5β cos

(

5β π

2

)

+A6ζ 4β cos(2β π)+A7ζ 3β cos

(

3β π

2

)

+A8ζ 2β cos(β π)

+A9ζ β cos

(

β π

2

)

+A10,

D1 =ζ 10β sin(5β π)+A1ζ 9β sin

(

9β π

2

)

+A2ζ 8β sin(4β π)+A3ζ 7β sin

(

7β π

2

)

+A4ζ 6β sin(3β π)

+A5ζ 5β sin

(

5β π

2

)

+A6ζ 4β sin(2β π)+A7ζ 3β sin

(

3β π

2

)

+A8ζ 2β sin(β π)

+A9ζ β sin

(

β π

2

)

C2 =B1ζ 9β cos

(

9β π

2

)

+B2ζ 8β cos(4β π)+B3ζ 7β cos

(

7β π

2

)

+B4ζ 6β cos(3β π)

+B5ζ 5β cos

(

5β π

2

)

+B6ζ 4β cos(2β π)+B7ζ 3β cos

(

3β π

2

)

+B8ζ 2β cos(β π)

+B9ζ β cos

(

β π

2

)

+B10,

D2 =B1ζ 9β sin

(

9β π

2

)

+B2ζ 8β sin(4β π)+B3ζ 7β sin

(

7β π

2

)

+B4ζ 6β sin(3β π)

+B5ζ 5β sin

(

5β π

2

)

+B6ζ 4β sin(2β π)+B7ζ 3β sin

(

3β π

2

)

+B8ζ 2β sin(β π)

+B9ζ β sin

(

β π

2

)

Separating equation (7) into its real and imaginary parts, we have
{

C2 cosζτ +D2 sinζτ =−C1,
D2 cosζτ −C2 sinζτ =−D1.

(8)

From (8),






cosζτ = −(C1C2+D1D2)

C2
2+D2

2

=G1(ζ ),

sinζτ = (C2D1−D2C1)

C2
2+D2

2

=G2(ζ ).
(9)

Squaring and adding (9),

G
2
1(ζ )+G

2
2(ζ ) = 1. (10)

It follows that cosζτ =G1(ζ ), then

τ(k) =
1

ω
[arccos(G1(ζ ))+ 2kπ ], k = 0,1,2, · · · . (11)

Hence, it is clear that equation (10) has one positive root at least. Thus, the bifurcation point is defined as

τ0 = min{τ(k)}, k = 0,1,2, · · · , (12)

where τ(k) is defined in (11).

• Case 2: τ = 0. When τ = 0, the characteristic equation (6) becomes

λ 10 +Q1λ 9 +Q2λ 8 +Q3λ 7 +Q4λ 6 +Q5λ 5 +Q6λ 4 +Q7λ 3 +Q8λ 2 +Q9λ +Q10 = 0, (13)
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where Q j, ( j = 1,2, · · · ,10) are constants based on the various parameter values given in the model (2). Using Routh-
Hurwitz’s criteria, the following conditions hold.

H1 = |Q1|> 0, H2 =

∣

∣

∣

∣

Q1 1
Q3 Q2

∣

∣

∣

∣

> 0, H3 =

∣

∣

∣

∣

∣

∣

Q1 1 0
Q3 Q2 Q1

Q5 Q4 Q3

∣

∣

∣

∣

∣

∣

> 0, H4 =

∣

∣

∣

∣

∣

∣

∣

Q1 1 0 0
Q3 Q2 Q1 1
Q5 Q4 Q3 Q2

Q7 Q6 Q5 Q4

∣

∣

∣

∣

∣

∣

∣

> 0,

H5 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q1 1 0 0 0
Q3 Q2 Q1 1 0
Q5 Q4 Q3 Q2 Q1

Q7 Q6 Q5 Q4 Q3

Q9 Q8 Q7 Q6 Q5

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, H6 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q1 1 0 0 0 0
Q3 Q2 Q1 1 0 0
Q5 Q4 Q3 Q2 Q1 1
Q7 Q6 Q5 Q4 Q3 Q2

Q9 Q8 Q7 Q6 Q5 Q4

0 Q10 Q9 Q8 Q7 Q6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, H7 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q1 1 0 0 0 0 0
Q3 Q2 Q1 1 0 0 0
Q5 Q4 Q3 Q2 Q1 1 0
Q7 Q6 Q5 Q4 Q3 Q2 Q1

Q9 Q8 Q7 Q6 Q5 Q4 Q3

0 Q10 Q9 Q8 Q7 Q6 Q5

0 0 0 Q10 Q9 Q8 Q7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0,

H8 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q1 1 0 0 0 0 0 0
Q3 Q2 Q1 1 0 0 0 0
Q5 Q4 Q3 Q2 Q1 1 0 0
Q7 Q6 Q5 Q4 Q3 Q2 Q1 1
Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2

0 Q10 Q9 Q8 Q7 Q6 Q5 Q4

0 0 0 Q10 Q9 Q8 Q7 Q6

0 0 0 0 0 Q10 Q9 Q8

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, H9 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q1 1 0 0 0 0 0 0 0
Q3 Q2 Q1 1 0 0 0 0 0
Q5 Q4 Q3 Q2 Q1 1 0 0 0
Q7 Q6 Q5 Q4 Q3 Q2 Q1 1 0
Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1

0 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3

0 0 0 Q10 Q9 Q8 Q7 Q6 Q5

0 0 0 0 0 Q10 Q9 Q8 Q7

0 0 0 0 0 0 0 Q10 Q9

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, H10 = Q10H9 > 0.

Hence, the eigenvalues of the characteristic equation (13) have negative real parts. It is clear that the endemic steady state
E ∗ of the model (2) is asymptotically stable when τ = 0.

Theorem 1.For any τ > 0, Hi > 0, (i = 1,2, · · · ,10) holds. Then, the endemic steady state E ∗ of the model (1a-1j) with

fractional order β ∈ (0,1) is locally asymptotically stable.

3.2 Stability of healthy steady state E0

Now, we consider healthy steady state E ∗
0 of model (1a-1j) as

E
∗
h (.) = (0,1,0,0,0,0,1,1,1,1).

At the healthy steady state E ∗
0 , system (3) is reduced as

Dβ X(t) = ΩX(t)+Ω ∗X(t − τ), (14)

where X(t) = (V (t),H(t), I(t),M(t),F(t),R(t),E(t),P(t),A(t),S(t))T ,

Ω =





























φ1 0 φ2 0 0 0 0 0 0 0
φ3 φ4 φ4 0 φ5 φ6 0 0 0 0
φ7 0 φ8 0 0 0 0 0 0 0
φ9 φ10 φ10 φ11 0 φ10 0 0 0 0
0 0 φ12 φ13 φ14 0 0 0 0 0
0 0 0 0 φ15 φ16 0 0 0 0
0 0 0 φ17 0 0 φ18 0 0 0
0 0 0 φ19 0 0 0 φ20 0 0

φ21 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 φ22





























,
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and

Ω ∗ =





























0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 φ∗

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





























,

with φ1 = −γVAS∗A∗ − γV HH∗ −αV , φ2 = γV , φ3 = −γHV H∗, φ4 = −bHD, φ4 = −bHD, φ5 = −bHF , φ6 = −bHD +
aR, φ7 = γHV , φ8 = −bIE − aI, φ9 = bMV , φ10 = −bMD, φ11 = −aM, φ12 = cF , φ13 = bF , φ14 = −bFH − aF , φ15 =
bHF , φ16 =−aR, φ17 = bEME∗, φ18 =−aE , φ19 = bPM, φ20 =−aP, φ21 =−γAV , φ22 =−r, φ∗

1 =−bEI.
Now, applying the same procedure (taking Laplace transform on (14)), we find the characteristic equation det∆(s) = 0

of system (1a-1j) at E ∗
0 is

s10β +T1s9β +T2s8β +T3s7β +T4s6β +T5s5β +T6s4β +T7s3β +T8s2β +T9sβ +T10 = 0, (15)

where Tj, ( j = 1,2, · · · ,10) are constants based on the various parameter values given in (14). According to the well-
known Routh-Hurwitz criteria, the eigenvalues of (15) have negative real parts.

Theorem 2.When τ ≥ 0, Ti > 0, (i = 1,2, · · · ,10) hold. Then all roots of equation (15) have negative real parts. Hence,

the healthy steady sate (infection-free) E ∗
0 of system (1a-1j) is asymptotically stable.
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Fig. 2: Numerical simulations of proportion of Dead cells, Healthy cells, Infected cells and Resistant/Safe cells of the model
(1a-1j) at β = 1.0, τ = 1.0. The Figure shows a periodic outbreak due to the memory of time-delay τ.

Figure 2 demonstrates numerical simulation of four different cells (healthy cells, dead cells, Infected cells and resistant
cells) of model (1a-1j) at β = 1.0, τ = 1.0 and parameter values given in the Table 2. The Figure shows a periodic outbreak
due to the time-delay τ . While, Figure 3 shows dynamics of the model with different values of the fractional order β
(= 1.0, 0.95, 0.9) and time-delay τ = 1.0. Figure 3 reveals that when β = 1 virus level peaks after 7-8 days. This interval
increases as β decreases but with lower maximum.

We have the following Remarks.
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Fig. 3: The dynamics of state trajectories of the model (1a-1j) with the parameter values shown in Table 2, time-delay
τ = 1.0 and various values of fractional-order: β = 1.0, 0.95, 0.9. The fractional-order plays the role of long-run memory in
the model.
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Fig. 4: Sensitivity of V (t), I(t) and D(t) due to small changes on the interferon parameters bF and bHF . We notice that the
model-sates are sensitive in the first stage and with lower values of the bF and bHF , the components V (t), I(t) and D(t)
become more sensitive.

Remark.A combination of a delay-time and fractional-order in the model leads to a notable increase in the complexity of
the observed behavior, as the solution is continuously based on all the previous states. However, the presence of fraction-
order damps the oscillatory behaviors of the model. The fractional-order plays the role of the memory.
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Fig. 5: This shows sensitivity of V (t), I(t) and D(t) due to small variations on the innate immunity parameters bEM and bIE .
We notice that the model is sensitive in the first stage. Also, the lower values of the bEM and bIE , the more sensitivity.
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Fig. 6: This shows sensitivity of V (t), I(t) and D(t) due to small variations on the adaptive immunity parameters bA, bPM

and γVA. We notice that the model is sensitive in the first stage. Also the lower values of the bA, bPM and γVA, the more
sensitivity.

Remark.The fractional derivative β ∈ (0,1] is defined by Caputo sense (See the Appendix), so introducing a convolution
integral with a power-law memory kernel benefits in describing memory effects in dynamical systems. The decaying
rate of the memory kernel depends on β . A lower value of α corresponding to more slowly-decaying time-correlation
functions leads a long memory. Therefore, as β → 1, the influence of memory decreases.
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Fig. 7: Sensitivity of V (t), I(t) and D(t) due to small variations on the pathogen parameters γV , γV H and V (0). We notice
that the model is sensitive in the first stage. However, the higher values of γV , γV H and V (0) the more sensitivity. Sensitivity
of V (t) due to small changes on the initial value V0, rate of production of infected cells γV , adsorption rate of V (t) by healthy
cells γVH , and rate of neutralization of V (t) by antibodies γVA. We notice that the viral infection is contiguously sensitive
to the initial infection V0 and the sensitivity decreases with time. The parameters γVH and γVA are very effective in the
subinterval 4–10 days.

4 Sensitivity analysis

Sensitivity analysis is an important tool for assessing dynamic behavior of the underlying biological system. Herein, we
evaluate sensitivity of state variables to small variations in model parameters to enable us to (i) display how robustness of
the underlying infection model is to small changes in the parameter values, (ii) discover in which subinterval the model
sensitive to a particular parameter to understand significant processes and immune system mechanisms. We evaluate the
sensitivity functionals throughout studying the effect of changes in the parameters on the period to estimate severity of
the diseases [?,45,46].

The first order sensitivity function can be approximated by finite-difference techniques. Assume that the state
dependent of the underlying model is Y (t,P) = [y1,y2, . . . ,yn]

T and P = [p1, p2, . . . , pm]
T , then

∂yi

∂ p j

≈
δyi

δ p j

= [yi(t, [p1, p2, . . . , p j + δ p j, . . . , pm])− yi(t, [p1, p2, . . . , p j, . . . , pm])]/δ p j.

As mentioned above, the information contained in the sensitivity analysis is useful for parameter identification,
optimization, reduction of complex nonlinear models, and for experimental design and analysis. For example, if it can be
observed that a particular parameter pj has little effect on the solution, it may be possible to eliminate it, at some stage,
from the modeling process.

Next, we discuss the sensitivity of model (1a-1j) due to small perturbations of (i) the production rate of interferon
IFN by APC (through the evaluation of the first-order sensitivity functions such as ∂V (t)/∂bF , ∂V (t)/∂bHF ); (ii)
parameters of cellular components of innate immunity (through the evaluation of sensitivity functions such as
∂V (t)/∂bEM , ∂V (t)/∂bIM); (iii) adaptive immunity (through the evaluation of the sensitivity functions such as
∂V (t)/∂bA, ∂V (t)/∂bPM, ∂V (t)/∂bAV ); and (iv) pathogen virulence (viral load) (through the evaluation of the
sensitivity functions such as ∂V (t)/∂γV , ∂V (t)/∂γV H , ∂V (t)/∂V (0)).
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4.1 Sensitivity due to variation in the rate of interferon-α

The interferon reaction depends on the parameters bF (the production rate of interferons) and bHF (the rate of induction of
resistant state in epithelial cells), respectively. When the production rate of interferon increases to the value bF = 450000
from the standard value bF = 250000, the host remains infectious for about 0-4 days. Likewise, when the production
rate of interferon decreases to the value bF = 150000 from the standard value, the host remains infectious for about 6-12
days. In both cases, the disease progresses for regular values of V (0) and S(0) and the only variance in the interval of the
infectious period. On the other hand, when the value of bHF increases, the host remains asymptotic and when value of
bHF decreases, the host has higher infectious. Therefore, the virus flaking is sensitive to the amount of bF and bHF , i.e. for
increasing values of bF and bHF , the virus shedding is low but a longer infectious period. When decreasing the values of
bF and bHF , the damage in the host increases over 50% which may cause secondary infections or death. For high values
of bF and bHF , onset of disease is the same, the duration of disease is short, and the damage is small. The host may cause
death at very low values of bF and bHF , respectively. Figure 4 shows the sensitivity behavior of the model (1a-1j) with
respect to the parameters bF and bHF . We may notice that a small change in bF and bHF can lead to a significant change
in the load of CoV, with low and high values of the parameters.

4.2 Sensitivity to variation in the rate of innate immunity cells

The proliferation of effector cells of innate immunity depends on the parameters bEM (the replication rate of effector
cells) and bIE (the rate of removal of infected cells by effectors), respectively. The disease may disappear without any
signs based on the suitably large values of bEM or bIE . Similarly, the symptoms of the disease remain longer at the small
values of bEM or bIE . Figure 5 shows the sensitivity of V (t), I(t) and D(t) due to small perturbations on the innate
immunity parameters bEM and bIE . We observe that the viral load and infected cells are sensitive to small changes in the
parameters, in the first stage. Also, the lower values of the bEM and bIE , the more sensitivity. The variables V (t), I(t) and
D(t) become insensitive to the parameters bEM and bIE after 10 days. However, the sensitivity is in the peak during first
2-3 days (see Figure 5).

4.3 Sensitivity to variation in rate of adaptive immunity cells

The parameters bPM represent the production rate of plasma cell, and bA is the production rate of antibody by plasma
cells), while γVA represents the neutralization rate of CoV by antibodies. These parameters are involved in the activation
of adaptive immune response. For high values of bA, the onset of disease occurs later and damage in the host is minor.
Also, a smaller numbers of viruses are shed at the peak of the disease and the infectious period is noticeably smaller,
i.e. all values of bA have the same duration of disease. Moreover, the disease always develops for low values of γVA. The
damage is less sensitive to the parameters bPM and γVA. The duration of disease is same for all values of bPM and γVA. The
infection period is same for all values of γVA and it affects the onset of disease alone. For sufficient large values of bPM, the
infection period becomes shorter. The infection can be removed without any signs in the host under the sufficiently large
values of bPM, bA and γVA. Figure 6 shows the sensitivity simulation of the model (1a-1j) based on small perturbations of
the adaptive immunity parameters bPM, bA and γVA.

4.4 Sensitivity to variation in pathogen virulence

The viral load is related to the changes in the initial values V (0) and the parameters γHV and γV , which represent the rate of
infection of epithelial cells by a CoV and the rate of CoV particles secretion per infected epithelial cell, respectively. The
viruses can contaminate the healthy cells at high values of viral load and they replicate and mimic themselves in infected
cells. The disease is constantly cultivating when the value of γHV is higher than the baseline value. Also, the disease
approaches asymptomatic when the value of γHV is lower than the baseline value. In this case, the typical and severe
disease establishments subject to viral load V (0), namely V (0) is small the disease holds asymptomatic. At the time of
higher virulence (γHV =0.9), the damage in the host is high. The damage in the host is little when the virulence is less
(γHV =0.14). In summary, infection by a virus of high virulence causes significant damage, as well as infection by a virus
of little virulence may show the small damage or unseen damage to the host. On the other hand, the sensitivity analysis
to γV is also significant and it shows the identical behavior of γHV . Based on the various values of viral load parameters
γHV , γV , and V (0), the sensitivity of the model (1a-1j) are shown in Figure 7. It shows that the disease develops when the
virulence parameters γHV , γV , and V (0) are high. The disease tends to asymptotic when the virulence parameters γHV , γV ,
and V (0) are less. The contagious days get longer when the disease developes for low virulence. The oscillation behaviour
in the Figure means that the viral infection is very sensitive to small perturbation in the corresponding parameter.
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5 Discussion and Conclusion

In this paper, we considered a comprehensive delayed fractional-order model for CoV infection with immune response in
an individual/infected lung. We also considered components of innate immunity and adaptive immunity. We explored the
characteristics and qualitative behaviours of the model, throughout stability and sensitivity analyses, which may help
understand more details about disease spread and control in an individual. Using Laplace transformations and
characteristics roots, some sufficient conditions have been deduced to ensure the asymptotic stability of the endemic and
infection-free steady states of the model. The combination of a delay-time and fractional-order in the model can lead to a
notable increase in the complexity of the observed behavior, as the solution continuously depends on all the previous
states. The fractional-order models extend the concepts of differentiability and incorporate non-local and system memory
effects through fractional-order time derivatives. The fractional-order plays the role of memory in the model. The
time-lag τ > 0 has been incorporated in the model to represent required time for reaction between the infected and
effector cells. Some numerical simulations, using Adams-Bashforth-Moulton predictor-corrector scheme, have been
shown to authenticate the derived results.

Sensitivity analysis of the model has been presented with respect to feasible parameter values and initial conditions.
The oscillation behavior, in Figures 4–7, means that the viral load population is sensitive to small variations in the existing
parameters. We notice that the infection occurs in an individual at the time of the changeover of healthy or chronic
cells. The disease is divided into three types: (i) asymptomatic disease, (ii) typical disease, and (iii) severe disease. The
asymptomatic disease occurs when the viral load is small as well as it drops monotonically to zero and the damage is also
trivial. The viral inoculum stays within the certain interval may cause typical disease. However, the severe disease occurs
when the viral inoculum is sufficiently large and also increases the viral load and creates the maximum damage which
causes death.

Moreover, the viral load of CoV infection depends on the parameters γHV and γV , the rate of disease of epithelial cells
by a CoV and the rate of CoV particles secretion per infected epithelial cell, respectively. For large values of γHV and γV ,
the infection may explore substantial damage. For low values of of γHV and γV , the infection approaches asymptomatic
with less damage. However, the innate immunity depends on the parameters bF , bHF , bEM , and bIE respectively. We may
notice that a small change in these parameters can lead to a significant change in the levels of viral load, and infected cells.
The infection may be cleared without any symptoms with suitably large values of bEM, and bIE . If the values of bEM , and
bIE are low, the infection lasts longer. In the innate immunity, the infection is not fully cleared and the minor levels of
virus inoculum are in a chronic state. On the other hand, the adaptive immunity depends on the parameters bPM, bA, and
γVA respectively. The adaptive immunity has designated to remove the CoV infection in an individual in the absence of an
innate immunity.

Thus, applying fractional-order to model the behavior of cells and tissues, we can begin to unravel the inherent
complexity of individual molecules and membranes in a way that leads to a better understanding of the overall biological
function and behavior of living systems. The results demonstrated that the combination of fractional-order derivative and
time-delay in the model improved the dynamics and increased complexity of the model. Periodic outbreak of the disease
can also occur due to the memory coming from time-delay τ and fractional-order. Future reserach will consider more
sophisticated model with control variables to define the best strategy to treat, control and eliminate CoV infection.

Appendix

In this section, the authors present some necessary definitions and lemmas of fractional calculus, which can be used to
obtain our key results.

Definition 1.[47]. The fractional integral of order β for a function u is defined as

Iβ u(t) =
1

Γ (β )

∫ t

0
(t − τ)β−1 f (τ)dτ, (16)

where t ≥ 0 and β > 0, Γ (·) is the gamma function defined as Γ (β ) =
∫ ∞

0 tβ−1e−tdt.

Definition 2.[48]. The Caputo fractional derivative of order β for a function u ∈Cn+1([0,∞),R) (the set of all n+1 order

continuous differentiable functions on [0,∞), where R denotes Euclidean space) is defined by

C
0 D

β
t u(t) =

1

Γ (n−β )

∫ t

0

u(n)(ξ )

(t − ξ )β−n+1
dξ , (17)

where t > 0 and n is a positive integer such that n− 1 < β < n ∈ Z+.
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The key advantage of the Caputo derivative is that it only requires that the initial conditions are given in terms of integer-
order derivatives. Based on the enhancement, we use the Caputo fractional-order derivative in this paper.

Definition 3.[48]. The Laplace transform of the Caputo fractional-order derivative is

L{C
0 D

β
t u(t);s}= sβU(s)−

n−1

∑
k=0

sβ−k−1u(k)(0), n− 1 < β ≤ n,

where U(s) is the Laplace transform of u(t), uk(0), k = 1,2, · · · ,n, are the initial conditions. If uk(0) = 0, k = 1,2, · · · ,n,
then

L{C
0 D

β
t u(t);s}= sβU(s).

Theorem 3.[49] If all the roots of characteristic equation det(∆(s)) = 0 have negative real parts, then the zero solution

of system (1a-1k) is Lyapunov asymptotically stable.

Theorem 4.[49] If β ∈ (0,1), all the eigenvalues of ∆(s) satisfy |arg(s)|> β π
2

and the characteristic equation det(∆(s)) =
0 has no pure imaginary roots for τpq > 0, then the zero solution of system (1a-1k) is Lyapunov asymptotically stable.

Introducing a convolution integral with a power-law memory kernel is useful to describe memory effects in dynamical
systems.
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