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Abstract: Within the non-relativistic quark model framework, the spectra forcc̄-mesons are usually derived through the (numerical)
solution of the Schrödinger equation with a given potential for quark-antiquark interactions. Cornell potential plus hyperfine corrections
are popular models with successful predictions of mass spectra of these heavy mesons. We use the Numerov matrix method toobtain
the mass spectra ofcc̄-mesons with high accuracy. Their (root-mean-squared) radii rrms are then derived through the corresponding
radial wavefunctions. Angular momentum quantum numbers and rrms allow to determine the momentum width for these meson states.
We then relate the masses andrrms for cc̄-mesons through constraints arising from the uncertainty and variational principles. These
ideas can be straightforwardly generalized for other mesonstates.
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1 Introduction

Understanding the nature of hadron spectra is an exciting
problem of non-perturbative hadron physics which
demands a modern view of strong interactions among the
constituent quarks of these hadrons. A natural framework
for the prediction of heavy quarkonium meson masses is
the non-relativistic potential model, which albeit being in
the market for half a century, still offers a number of
possibilities for improvement of the description of strong
interactions and development of more accurate numerical
and analytical techniques to describe the mass spectra. In
this model, Schrödiger equation (SE) is solved given a
phenomenological description of quark-antiquark
interactions through a static, radial potential. Most known
models demand a numerical solution to the SE, and thus
the choice of an accurate strategy for this task is highly
desirable. Though this problem is already addressed in
quantum mechanics textbooks (see, for instance,
Ref. [1]), the problem of solving SE in radial potentials is
still nowadays a topic of active study.

Approximate methods like WKB, variational
principle and perturbation theory have been employed to
predict heavy meson spectra in agreement with
experimental results [2]. Nevertheless, its applicability is

sometimes restricted by the analytic form of the choice of
the potential model. A number of robust numerical
techniques to solve the SE are also available, among
which are the shooting method [3] and several variants of
the matrix discretization of this equation [4]. The Qena
group has successfully made use of Numerov matrix
method [5] to describe bottomonium spectra [6,7,8,9].
Here we adopt this strategy to accurately obtain the
cc̄-spectra for the Cornell and Cornell plus hyperfine
corrections models of quark interactions forS- and
P-states. The cornerstone of this method is a matrix
representation of the radial kinetic operator which
translates the SE to a matrix eigenvalue problem, whose
only parameters are the maximum value of the range of
integration,rmax and the number of equidistant discrete
pointsN for the discretization procedure. Thus, stability
can be carried out straightforwardly. Mass spectrum is
derived from the eigenvalues of the SE and other meson
properties, like the radii of these states are then obtained
from the wavefunctions.

Although the Numerov method can be extended
directly to higher angular momentum states, in search for
a simpler yet accurate calculation of the mass spectra, we
combine the uncertainty principle and the variational
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principle to obtain an analytical constraint to the mass and
radius of a given state given the momentum width in
terms of the angular momentum eigenvalues and
root-mean-squarerrms separation of constituent quarks in
charmonium. To this end, we organized the remaining of
this article as follows: In Sect.2 we describe the
non-relativistic framework to derive the mass spectra of
charmonia S- and P-states andrrms with Numerov
method, for the sake of illustration. We combine the
uncertainty and variational principles to derive constraints
of these quantities in a given potential in Sect.3. We
discuss our results and conclude in Sect.4.

2 Non-relativistic framework for mesons

The non-relativistic quark model to the determination of
heavy quarkonium meson properties has been
successfully applied to determine the mass of bound
states (molecular states) ofQQ̄-systems. Perturbative
quantum chromodynamics (QCD) constraints and lattice
simulations have provided valuable information to
determine the profile of theQQ̄ interaction potential
V = V (r), considered to be radial, that is then introduced
in a stationary Schrödinger equation

H ψ(r,θ ,φ) = ∆ψ(r,θ ,φ) , (1)

whereH = T +V is theHamiltonian of the system and
∆ corresponds to the mass of the bound state. The non-
relativistic kinetic termT is

T = mQ +mQ̄ +
1

2µ
(

p2
x + p2

y + p2
z

)

, (2)

whereµ = mQmQ̄/(mQ +mQ̄) is the reduced mass of the
system and the (cartesian) coordinates describe the center
of mass motion of the meson. Thus, for central potentials,
in units wherēh = 1, Eq. (1) becomes

− 1
2µ

d2ψ(r)
dr2 +

[

l(l +1)
2µr2 +V(r)+mQ +mQ̄

]

ψ(r)

= ∆ψ(r) , (3)

where the second term represent the centrifugal barrier and
l is the orbital angular momentum of the meson. For the
potential part, two popular choices are

V1(r)≡VCornell=−4
3

αs

r
+ br , (4)

referred to as the Cornell potential and a second example
is of the form

V2(r) =V1(r)+Vhyp(r) , (5)

where the hyperfine correction

Vhyp(r) =
32παs

9mQmQ̄
δσ (r)SQ ·SQ̄ , (6)

takes into account spin-spin interactions of constituent
quarks. Here,

δσ (r) =

(

σ√
π

)3

e−σ2r2
, SQ ·SQ̄ =

s(s+1)
2

− 3
4
, (7)

wheres is the spin quantum number of the bound state.
For cc̄ spectroscopy, we set (see Ref. [4]) mQ = mQ̄ = mc.
The parameters that best describe the experimental mass
spectra (see below) forV1(r) are αs = 0.5317 and
b = 0.1497 GeV2, while mc = 1.4495 GeV, whereas for
V2(r), αs = 0.4827,b = 0.1488 GeV2, σ = 1.2819 GeV
andmc = 1.4499 GeV.

A robust strategy to obtain the heavy meson spectra
from Eq. (3) is the Numerov method, that has been widely
implemented by the Qena group, particularly for the case
of bottonomium [6,7,8,9]. Setting an intervalr ∈ (0,rmax)
and constructing an equidistant set ofN pointsri separated
a distanced, Eq. (3) can be cast in the matrix form

− 1
2µ

AN,NB−1
N,Nψi +

[

VN(r)+
l(l +1)
2µr2

]

ψi = ∆ψi , (8)

whereψi = ψ(ri) and the matrices

AN,N =
I−1−2I0+ I1

d2 , BN,N =
I−1+10I0+ I1

12
, (9)

VN(r) = diag(. . . ,Vi−1,Vi,Vi+1, . . .) where
Vi = V (ri)+ l(l +1)/(2µr2

i )+2mc andI−1, I0 andI1 are,
respectively, the sub-, main-, and up-diagonal unit
matrices. By takingN = 200 andrmax = 4fm for S-states
andN = 400 andrmax = 4fm for P-states, the spectra we
find is summarized in Table1, where a comparison with
experimental results [2] is also presented. Corresponding
wavefunctions forS states forV1(r) andV2(r) are shown
in Figs.1 and2, respectively.

Table 1: Mass spectra in GeV forcc̄ mesons inS- andP-states.
State Name Exp. value V1 V2

1 3S1 J/ψ 3.09687± 0.0004 3.05027 3.07834
1 1S0 ηc(1S) 2.9792± 0.0013 3.05027 2.94518
2 3S1 ψ ′(2s) 3.68609± 0.0004 3.65176 3.66535
2 1S0 η ′

c(2S) 3.637±0.004 3.65176 3.60943
3 3S1 ψ(3S) 4.039± 0.001 4.06608 4.07606
3 1S0 ηc(3S) – 4.06608 4.03636
4 3S1 ψ(4S) 4.421±0.004 4.41315 4.42131
4 1S0 ηc(4S) – 4.41315 4.38935
1 3P2 χ2(1P) 3.55620±0.00009 3.50078 3.52544
1 3P1 χ1(1P) 3.51066±0.00007 3.50078 3.52544
1 3P0 χ0(1P) 3.41475±0.00031 3.50078 3.52544
1 1P1 hc(1P) 3.52541±0.00016 3.50078 3.51837

Charmonia root-mean-squared radiusrrms is a basic
property of these states and can be derived from the radial
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Fig. 1: S-state radial wavefunctions for the Cornell potential
V1(r), eq. (4).

Fig. 2: S-state radial wavefunctions for the Cornell potential plus
hyperfine corrections,V2(r) in eqs. (5) and (6). Upper panel: 1S0
states.Lower panel: 3S1 states.

wavefunction from the definition [10]

r2
rms=

∫ ∞

0
dr r2|ψ(r)|2 , (10)

It is known and can be straightforwardly observed that the
wavefunctions of these mesonic states are characterized by
a momentum width of the form

β =

√

2(n−1)+ l+
3
2

1
rrms

≡ δ
rrms

(11)

which along withrrms are summarized in Table2. Below
we show that masses andrrms are tightly constrained
quantities from the point of view of the uncertainty and
variational principles.

Table 2: rrms andβ for cc̄ mesons inS- andP-states.
State Name rrms [fm] β

V1 V2 V1 V2

1 3S1 J/ψ 0.417 0.432 0.5874 0.5666
1 1S0 ηc(1S) 0.417 0.369 0.5874 0.6642
2 3S1 ψ ′(2s) 0.87 0.88 0.4248 0.4249
2 1S0 η ′

c(2S) 0.87 0.84 0.4299 0.4456
3 3S1 ψ(3S) 1.238 1.246 0.3787 0.3763
3 1S0 ηc(3S) 1.238 1.216 0.3787 0.3858
4 3S1 ψ(4S) 1.559 1.565 0.3513 0.3499
4 1S0 ηc(4S) 1.559 1.54 0.3513 0.3555
1 3P2 χ2(1P) 0.6912 0.7025 0.3544 0.3487
1 3P1 χ1(1P) 0.6912 0.7025 0.3544 0.3487
1 3P0 χ0(1P) 0.6912 0.7025 0.3544 0.3487
1 1P1 hc(1P) 0.6912 0.6928 0.3544 0.3535

3 Uncertainty and Variational Principles

Heisenberg’s uncertainty principle

∆ px∆x ≥ 1
2

(12)

can be combined with the variational principle for a back
of the envelope estimate of the ground state energy of a
particle of massm subjected to a spherical central
potential. Considering∆ px = β̃ as a momentum width of
the ground state wavefunction of the said particle and
∆x = x̄ as an effective characteristicsize in cartesian
coordinates of the bound state, we assume that
px ≡ β̃ = 1/(2x̄) and consider ¯x as a variational
parameter (the same along the other cartesian
coordinates). Thus, one can write

H =
p2

x

2m
+

p2
y

2m
+

p2
z

2m
+V(

√

x2+ y2+ z2)

=
1

8m2x̄2 +
1

8m2ȳ2 +
1

8m2z̄2 +V(
√

x̄2+ ȳ2+ z̄2) . (13)

Minimizing with respect to ¯x, namely, finding the roots of

∂H
∂ x̄

=− 1
4mx̄3 +Vx̄(

√

x̄2+ ȳ2+ z̄2)≡ 0 , (14)

whereVx̄ denotes the partial derivative with respect to ¯x,
we obtain the optimum valuexmin. At the symmetric point
x̄ = ȳ = z̄ = xmin, the energy of the ground state is simply

Eg =
1

8m2r2
min

+V(rmin) , (15)

with rmin =
√

3xmin. We can use the same reasoning to
derive the mass of theηc meson, which simply becomes

∆ηc = 2mc +
1

8m2r2
min

+V1,2(rmin) . (16)

The above expression givesrmin = 0.437 fm forV1(r), in
agreement with other theoretical calculations [11] and the
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experimental measurement of theηc interaction
radius [12]. Frome here,∆ηc = 3.22677GeV, 6% above of
the exact numerical result. ForV2(r), rmin = 0.44 fm and
∆ηc = 3.23702GeV, with 10% difference. Both results for
∆ηc are in accordance with the variational principle. This
approach, however, does not take into account the (actual)
momentum width of the wavefunction of charmonia
states, nor allows to estimate the masses of higher excited
state mesons. We can overcome this situation assuming
that for all states (see Eq. (11)), px → β = δ/(

√
3x̄) and

similarly to the other cartesian coordinates. Then,
minimization with respect to ¯x and evaluation of the
Hamiltonian at the symmetric point gives the following
relation between the mass andrrms cc̄-mesons

∆ = 2mc +
1

2µ
β 2+

l(l +1)
2µr2

rms
+V1,2(rrms). (17)

Thus, takingβ andrrms, we obtain the spectra shown in
Table 3 along with the percent error with respect to the
numerical results. Again, numbers are in agreement with
theoretical calculations presented here and in Refs. [10,
11], for instance and the errors are fair for such a simple
minded calculation scheme.

Table 3: Mass spectra forcc̄-mesons inS- andP-states from the
variational constraint (17).

cc̄ state Name ∆ [GeV] Error [%]
V1 V2 V1 V2

1 3S1 J/ψ 3.10915 3.11616 1.93 1.24
1 1S0 ηc(1S) 3.10915 3.09165 1.93 4.99
2 3S1 ψ ′(2s) 3.51506 3.52171 3.74 3.91
2 1S0 η ′

c(2S) 3.51506 3.49553 3.74 3.15
3 3S1 ψ(3S) 3.81042 3.81574 6.29 6.38
3 1S0 ηc(3S) 3.81042 3.79502 6.29 5.98
4 3S1 ψ(4S) 4.06008 4.06453 8.0 8.07
4 1S0 ηc(4S) 4.06008 4.04732 8.0 7.79
1 3P2 χ2(1P) 3.41341 3.48758 4.02 1.93
1 3P1 χ1(1P) 3.41341 3.48758 2.77 0.66
1 3P0 χ0(1P) 3.41341 3.48758 0.04 2.13
1 1P1 hc(1P) 3.41341 3.48469 3.18 1.16

4 Discussion and Perspectives

The non-relativistic quark model is still a powerful
framework to explore the meson mass spectra. For the
case of heavy quarkonium, the Numerov method [5]
employed to solve the SE in a variety of potential
models [6,7,8,9] has proven to be accurate for the case of
charmonia. As compared to other methods [3,4], this
matrix discretization of the SE is easy to implement and
robust to describe details of different proposals for the
quark-antiquark potential model of quarkonium states.

The main observation is that the different states describe
mesons with a momentum width depending upon the
angular momentum quantum numbers and the
root-mean-square separation between the constituent
quark and antiquark. These observations combined with
the uncertainty and variational principles set analytic
constraints between the meson mass and radius of every
state which is very accurate for low-lying states and
continues to be accurate forl ≥ 0 states.

Relations here presented can be straightforward
extended to other mesons, including those with light
quarks as constituents. Further results along this line are
currently under scrutiny and will be presented elsewhere.
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