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Abstract: Within the non-relativistic quark model framework, the spa forcc-mesons are usually derived through the (numerical)
solution of the Schrodinger equation with a given potediaquark-antiquark interactions. Cornell potential phyperfine corrections
are popular models with successful predictions of masstigpetthese heavy mesons. We use the Numerov matrix metholotain

the mass spectra et-mesons with high accuracy. Their (root-mean-squared) rags are then derived through the corresponding
radial wavefunctions. Angular momentum quantum numbeds ag allow to determine the momentum width for these meson states
We then relate the masses amgls for cc-mesons through constraints arising from the uncertaint/\ariational principles. These
ideas can be straightforwardly generalized for other metates.
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1 Introduction sometimes restricted by the analytic form of the choice of
) ) .. the potential model. A number of robust numerical
Understanding the nature of hadron spectra is an exc't'ngechniques to solve the SE are also available, among

problem of non-perturbative hadron physics which \ynich are the shooting methog][and several variants of
demands a modern view of strong interactions among thgne marix discretization of this equatiod]| The Qena
constituent quarks of these hadrons. A natural frameworlbroup has successfully made use of Numerov matrix
for the pred|c't|.on. of heavy quarkomum meson Masses isnethod p] to describe bottomonium spectra, 7,8,9].

the non-relativistic potential model, which albeit beimg i Haore we adopt this strategy to accurately obtain the

the market for half a century, still offers a number of .zgpecira for the Comell and Cornell plus hyperfine
possibilities for improvement of the description of strong grrections models of quark interactions f& and
interactions and development of more accurate numericab_siates. The cornerstone of this method is a matrix

and analytical techniques to describe the mass spectra. 'lrépresentation of the radial kinetic operator which

this model, Schrodiger equation (SE) is solved given ayanglates the SE to a matrix eigenvalue problem, whose
phenomenological ~ description ~of  quark-antiquark oy parameters are the maximum value of the range of
interactions through a static, rad|allpotent|al. Most know integration,rmax and the number of equidistant discrete
models demand a numerical solution to the SE, and thugsintsN for the discretization procedure. Thus, stability
the choice of an accurate strategy for this task is highlycan pe carried out straightforwardly. Mass spectrum is
desirable. Though this problem is already addressed iRjeriyed from the eigenvalues of the SE and other meson

quantum mechanics textbooks (see, for instancep qnerties, like the radii of these states are then obtained
Ref. [1]), the problem of solving SE in radial potentials is f,om the wavefunctions.

still nowadays a topic of active study.

Approximate methods like WKB, variational Although the Numerov method can be extended
principle and perturbation theory have been employed tdirectly to higher angular momentum states, in search for
predict heavy meson spectra in agreement witha simpler yet accurate calculation of the mass spectra, we
experimental result2]. Nevertheless, its applicability is combine the uncertainty principle and the variational
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principle to obtain an analytical constraint to the mass andakes into account spin-spin interactions of constituent
radius of a given state given the momentum width in quarks. Here,
terms of the angular momentum eigenvalues and
root-mean-squamems separation of constituent quarks in ol o242 s(s+1) 3
charmonium. To this end, we organized the remaining of o (r) = (7.[) € » Q= 2 3’ ()
this article as follows: In Sect2 we describe the
non-relativistic framework to derive the mass spectra ofyheres is the spin quantum number of the bound state.
charmonia S and P-states andrims with  Numerov Forcc_spectroscopy' we set (See Rg‘]) [n‘b — rnd: Me.
method, for the sake of illustration. We combine the The parameters that best describe the experimental mass
uncertainty and variational principles to derive consti®ii  spectra (see below) foW:(r) are as = 0.5317 and
of these quantities in a given potential in Se8t.We b — 0.1497 Ge\?, while me = 1.4495 GeV, whereas for
discuss our results and conclude in Sdct. Vz(r), as = 0.4827,b = 0.1488 GE\?, o = 1.2819 GeV
andm, = 1.4499 GeV.

o A robust strategy to obtain the heavy meson spectra

2 Non-relativistic framework for mesons from Eq. @) is the Numerov method, that has been widely
implemented by the Qena group, particularly for the case

The non-relativistic quark model to the determination of of bottonomium §,7,8,9]. Setting an interval € (0, Fmax)
heavy quarkonium meson properties has beerand constructing an equidistant sefbpointsr; separated
successfully applied to determine the mass of bound distancel, Eq. (3) can be cast in the matrix form
states (molecular states) d@Q-systems. Perturbative
guantum chromodynamics (QCD) constraints and lattice 1 _ I(1+1
simulations have provided valuable information to _EANvNBN,lNWi + {VN(rH' (2,”2)} =44, (8)
determine the profile of the&QQ interaction potential
¥ =V(r), considered to be radial, that is then introducedwherey; = (r;) and the matrices
in a stationary Schrodinger equation

HY(.0,0) = AY(1,0,0) @ A By S ()
where#’ = 7 + 7 is theHamiltonian of the system and  \; (r = diag...,.Vi_1,Vi,Vis1,...) where
A cqrr_es_ponds_to the mass of the bound state. The NONZ —V/(r;) +1(1 +1)/(2ur?) + 2m andl_1, o andl are,
relativistic kinetic term7” is respectively, the sub-, main-, and up-diagonal unit
1,5, 5 matrices. By takindN = 200 andrax = 4fm for S-states
T =mg+mg+ 20 (px+Py+p3) (2)  andN = 400 andray = 4fm for P-states, the spectra we

find is summarized in Tabl&, where a comparison with
wherep = momg/(mg +mg) is the reduced mass of the experimental result<] is also presented. Corresponding
system and the (cartesian) coordinates describe the centfvefunctions foiS states folv(r) andVa(r) are shown
of mass motion of the meson. Thus, for central potentialsin Figs.1and2, respectively.
in units whereh = 1, Eq. (L) becomes

1) [10+1)
2u  dr2 2ur2

+V(r)+mg+mg| Y(r) Table 1: Mass spectra in GeV f@t mesons irs- andP-states.
State Name Exp. value Vi o

= Ay(r), ©) 13s, Iy 3.09687 0.0004 3.05027 3.07834

where the second term represent the centrifugal barrierand1 'S nc(1S)  2.9792+0.0013  3.05027  2.94518

| is the orbital angular momentum of the meson. For the 23S, ¢/(2s)  3.68609+ 0.0004 3.65176 3.66535

potential part, two popular choices are 2l n'c(2S) 3.637:0.004 3.65176 3.60943
4 3% Y(39) 4.039+ 0.001 4.06608 4.07606
a 1 _
VA(r) = Veomei = —= 25 4 b | 4) 3 350 ne(39) 4.06608 4.03636
3r 4°S (49 4.4214-0.004 441315 4.42131

4l ne(4s - 4.41315 4.38935
13P, x2(1P) 3.55620:0.00009 3.50078 3.52544
13P,  x1(1P)  3.51066:0.00007 3.50078 3.52544
3
V() = VA (r) + Vi) | ) 11P0 Xo(1P)  3.41475:0.00031 3.50078 3.52544
1P he(1P) 3.52541-0.00016 3.50078 3.51837

referred to as the Cornell potential and a second example
is of the form

where the hyperfine correction

_ 32nas _ Charmonia root-mean-squared radiygs is a basic
Vhyp(r) = 9Imomg o (NS & (6) property of these states and can be derived from the radial
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Table 2: ryms and B for cc mesons irs- andP-states.
State  Name I'rms [fM] B
] \ Vs \ Vs,

- — 8 135 J/y 0.417 0.432 0.5874 0.5666
ES S 28 1 ne(1S 0417 0.369  0.5874 0.6642
e - 38 235 ¢'(2s) 0.87 0.88 0.4248 0.4249
ad ] e 48 21y n'.(29) 0.87 0.84 0.4299  0.4456
335, @w(3S 1.238 1.246 0.3787 0.3763
o i 2 3 r 31y ne(3S)  1.238 1.216  0.3787 0.3858
r [fm] 435 @(4S) 1559 1565 0.3513 0.3499

415 ne(4S) 1559  1.54 0.3513  0.3555

Fig. 1. Sstate radial wavefunctions for the Cornell potential 12P2 X2(1P) ~ 0.6912  0.7025 0.3544  0.3487
VA (1), eq. @). 13P,  xi(1P) 0.6912 0.7025 0.3544 0.3487
1%y  xo(1P) 0.6912 0.7025 0.3544 0.3487
1P he(1P) 0.6912 0.6928 0.3544 0.3535

] s 3 Uncertainty and Variational Principles

Heisenberg’s uncertainty principle

Apx> (12)

can be combined with the variational principle for a back
of the envelope estimate of the ground state energy of a
particle of massm subjected to a spherical central

potential. Considering\ px = 3 as a momentum width of

_ I ——1s the ground state wavefunction of the said particle and
T ool M AN e ) e 28 Ax = X as an effective characteristize in cartesian
----- - 35 coordinates of the bound state, we assume that
] 4s px = B = 1/(2x) and considerx as a variational
parameter (the same along the other cartesian
s 2 coordinates). Thus, one can write
px py pz
H=X+_2+4+_24V(\/X+y?+7
om *om T om TV (VEHYIEE)
Fig. 2: Sstate radial wavefunctions for the Cornell potential plus 1 1 1
hyperfine correctiond/(r) in egs. 6) and 6). Upper pandl: 1S = AR + = + = +V(v X2+y2+72) . (13)
3 X2 8mPy? | 8Pz
statesLower panel: °S; states.

Minimizing with respect tox, namely, finding the roots of

oH

: - = = +Vx(VXe+y2+22) =0 (14)

wavefunction from the definitioril[0] ox 4mx
o whereVx denotes the partial derivative with respectxo —
r2 o= / dr r2jy(r))?, (10)  we obtain the optimum valugyin. At the symmetric point
0 X =Y = Z= Xnmin, the energy of the ground state is simply

Itis known and can be straightforwardly observed that the 1
wavefunctions of these mesonic states are characterized by By = 8mer2. +V("min) , (15)
a momentum width of the form min

3 1 5 with Fmin = V3Xmin. We can use t_he same reasoning to
B=q/2n—1)+I+>— =" (11)  derive the mass of thgc meson, which simply becomes

2ms rrms

which along withrms are summarized in Tab® Below Ane =2Me+ o 55— 8m2 57— +Vi2(fmin) - (16)

we show that masses anmghs are tightly constrained min

quantities from the point of view of the uncertainty and The above expression givegi, = 0.437 fm forVy(r), in

variational principles. agreement with other theoretical calculatioh][and the
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experimental measurement of the); interaction The main observation is that the different states describe
radius [L2). Frome hered, = 3.22677GeV, 6% above of mesons with a momentum width depending upon the
the exact numerical result. Fo%(r), rmin = 0.44 fm and  angular momentum quantum numbers and the
A, = 3.23702GeV, with 10% difference. Both results for root-mean-square separation between the constituent
Ay, are in accordance with the variational principle. This quark and antiquark. These observations combined with
approach, however, does not take into account the (actuathe uncertainty and variational principles set analytic
momentum width of the wavefunction of charmonia constraints between the meson mass and radius of every
states, nor allows to estimate the masses of higher excitestate which is very accurate for low-lying states and
state mesons. We can overcome this situation assumingontinues to be accurate fop 0 states.

that for all states (see EqLY), px — B = 6/(v/3x) and Relations here presented can be straightforward
similarly to the other cartesian coordinates. Then,extended to other mesons, including those with light
minimization with respect tax and evaluation of the quarks as constituents. Further results along this line are
Hamiltonian at the symmetric point gives the following currently under scrutiny and will be presented elsewhere.
relation between the mass angls cc-mesons

[(1+1)
2UrZns

1
A =2m + 532+ +Vi2(Frms). 7)) Acknowledgement
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framework to explore the meson mass spectra. For th

case of heavy quarkonium, the Numerov meth&fl [
employed to solve the SE in a variety of potential
models B,7,8,9] has proven to be accurate for the case of
charmonia. As compared to other metho®s4], this
matrix discretization of the SE is easy to implement and
robust to describe details of different proposals for the
quark-antiquark potential model of quarkonium states.
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