
Inf. Sci. Lett. 12, No. 12, 2877-2889 (2023) 2877

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/121229

Analysis of COVID-19 Disease Transmission with the

Impact of Vaccine

Ali Akgül1,2,3,4

1Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
2IRO, Research Center, University of Halabja, Halabja, 46018, Iraq
3Department of Mathematics, Art and Science Faculty, Siirt University, 56100 Siirt, Turkey
4Department of Mathematics, Mathematics Research Center, Near East University, Near East Boulevard, PC: 99138, Nicosia /Mersin

10 Turkey

Received: 2 Oct. 2023, Revised: 12 Nov. 2023, Accepted: 28 Nov. 2023

Published online: 1 Dec. 2023

Abstract: In this work, we incorporate the effects of the vaccine into the construction of the Covid-19 disease model. We discuss

the many kinds of equilibria in detail. This is where the stability analysis is shown. Additionally, we fractionalize the model using

the Mittag-Leffler kernel. We obtain the model’s solutions by an extremely effective numerical technique. We provide a few computer

simulations to show that the proposed method works.
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1 Introduction

The 2019 Coronavirus Disease (also known as COVID-19) was first identified in December 2019 in the Chinese city of
Wuhan. It is an acute respiratory syndrome coronavirus carried on by the SARS-CoV-2 viru. All the medical problems
starts as the cause of a pneumonia of unknown backgrounds [7,17,20]. The World Health Organization (WHO) proclaimed
COVID-19 an international pandemic on March 11, 2020, as a result of the rapid spread of SARS-CoV-2 worldwide [20,
4,26]. Due to the COVID-19 virus’s rapid spread, significant global countermeasures have been put in place, including
the quarantining of people who are thought to be at risk for the virus, isolating and quarantining confirmed cases, using
face masks in public, monitoring contacts, establishing social distance, closing schools and universities, and working
remotely from home or in institutions without scholars. Besides these steps, since the beginning of the pandemic state,
Governments of countries affected by the disease have been developing and implementing some programmes to come back
to ”normality”. One of this programmes was the occurrence of certain vaccines regarding COVID-19 [3,37]. Ones of the
well-known vaccines utilized in immunization are: Pfizer, Moderna, Astra Zeneca, and Janssen. For Pfizer, Moderna, and
AstraZeneca, the interval between two immunization doses is three weeks, four weeks, and twelve weeks, respectively.
For Pfizer and Moderna and Astra Zeneca vaccinations, efficacy is attained seven days following the dose recall, and
after 14 days. After 14 days, the Janssen single-dose vaccination reaches its advertised effectiveness. The effectiveness of
vaccination depends on the population’s overall immunity to this pathogen, which reduces the number of susceptible hosts
and lessens the impact of infected individuals [25,27]. It has been suggested that fractional models are crucial for systems
with genetic traits. As a result, there are numerous research that deal with fractional analysis. Ghanbari et al. [14] have
discussed some new edge detecting methods about the fractional derivatives. Baleanu et al. [5,6] have investigated the
variable-order fractional difference equations. Singh et al. [31] have discussed the methods of mathematical modelling.
Shiri et al. [29] have searched the system of the fractional differential algebraic equations with applications. For pandemic
planning and informing mass vaccination methods, it is crucial to understand the impact of vaccine on transmission.
Numerous studies have demonstrated how vaccination affects COVID-19 infection and hospitalization rates outside of
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clinical trial settings [10,9,34,30,2,28,15,38,22,16,18,19]. Some models concerning the vaccination with one or two
doses and certain properties of them were discussed in [8,11,23,24,33,35,36]. For more details see [39,40,41,42,43,44,
45]. In this study, we add one parameter to the model to examine the effect of immunization on the risk of COVID-19
infection. We evaluate the COVID-19 illness model proposed for investigation with fractal-fractional derivatives because
fractional operators with various memory is related to the different type of relaxation process of the non-local dynamical
systems. The use of the fractal-fractional operators method to note crossover behavior is well recognized. Our manuscript
is structured as follows: Section 1 presents the key definitions and theorems that are relevant to our work. In Sections 2
and 3, we build the model, and Section 3 is where we analyze it. In this section, we highlight the effectiveness of the
remedies. In this section, we also present the roundedness. In Section 4, we go over the existence and classification of
equilibriums. In this area, we also provide the local stability of the disease-free. In Section 5, we present the backward
bifurcation. In Section 6, we go over how the suggested model can be used with the Mittag-Leffer kernel. In this section,
we also show examples of the numerical simulations. In the final portion, Section 6, we provide the conclusions. Further,
let us give some important definitions useful in our study.

Definition 1.Let (a,b) be an open interval with order η and the function f (u) be continuous and fractal differentiable.

Following that, the generalized Mittag-Leffler type kernel-containing fractal-fractional derivative of f in the Riemann-

Liouville sense with order α is given as follows by[1]:

FFM
c Dσ ,η

u f (u) =
AB(σ)

1−σ

d

duη

∫ u

c
f (s)Eσ

( −σ

1−σ
(u− s)σ

)

ds, 0 < σ ,η ≤ 1, (1)

where, AB(σ) = 1−σ + σ
Γ (σ) .

Definition 2.Given a function f that is continuous in an open interval, say (a,b), the fractal-fractional integral of order

σ that corresponds to the fractal fractional derivative with a kernel of the Mittag-Leffler type is given by [1]:

FFM
0 Iσ ,η

u f (u) =
ση

AB(σ)

∫ u

0
sσ−1 f (s)(u− s)σ−1ds+

η(1−σ)uη−1

AB(σ)
f (u). (2)

2 The dimensional model

We give our model with quarantine segment [13]. We will use the following notations concerning the infected populations:
- S - Susceptible: People who are at risk even though they have not yet contracted the disease because they lack the
required antibodies to fight it. - E - Exposed: Individuals who are already infected but not yet affected to prevent the
infection from spreading. The latent period is the name given to this state, which has a short lifespan that varies based on
the sickness. - I - Infectious: people who become infected and can spread the virus. - R - Recovered: The patients who
were successful in beating their sickness. The body creates immunity as an adaptive reaction to the infectious pathogen to
stop a healed patient from getting smarter. The population is considered homogenous, its spatial distribution is uniform,
and all susceptible individuals are considered to be equally likely to be infected. This hypothesis make the problem much
easier. The mathematical representation for our model with quarantine segment is given by the next system of differential
equations:

dS

du
= (1− q)A− (αI+ρ + v)S, (3)

dE

du
= αSI− (θ +ρ)E, (4)

dI

du
= θE − (µ + δ +ρ)I, (5)

dR

du
= qA+ δ I+ vS−ρR, (6)

where v is the vaccinated parameter.
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3 Model Analysis

3.1 Positivity of solutions

Theorem 1.Assume that S0,E0, I0,R0 ≥ 0. The solution of Eqs.(3-6) with (S(0),E(0), I(0),R(0)) = (S0,E0, I0,R0) is non-

negative, S(u),E(u), I(u),R(u)≥ 0, for u > 0.

Proof.We have form equation (Eq.3) that,

dS(u)

du
= (1− q)A− S(u)y(u), (7)

where

y(u) = (αI +ρ + v). (8)

This give by integrating equation(7),

s(u) =

(

∫ u

0
ρ e

∫ τ
0 y(t)dt dτ + S0

)

e−
∫ u

0 y(τ)dτ
> 0. (9)

Therefore, S(u) is positive for all u. From equation (4), we acquire

dE(u)

du
≥−(θ +ρ)E(u),

or equivalently,

−de(u)

du
≤ (θ +ρ)i(u), (10)

Using the Grönwall’s lemma for Eq.(10) with initial state E0 we obtain the following,

−e(u)≤−E0e−
∫ u

0 (θ+ρ)dτ
< 0

This prove that E(u) > 0. Then, we have I(u),R(u) > 0. Since the model’s solutions are always positive, we draw this
conclusion.

3.2 Boundedness

Theorem 2.The compact set Ψ described as:

Ψ = {(S(u),E(u), I(u),R(u)) ∈ R
4
+ : S(u)+E(u)+ I(u)+R(u)≤ A

ρ
}, (11)

where (S(u),E(u), I(u),R(u)) are the solutions of the model (Eqs.3-6), by (S0,E0, I0,R0), and it is a positively invariant

region.

Proof.Denote by L(u) = S(u)+E(u)+ I(u)+R(u) then we have

dL(u)

du
=−L(u)ρ − µ · i+A,

dL(u)

du
≤−L(u)ρ +A

Therefore, L(u) ≤
(

L(0)exp(−ρu)+ A
ρ (1− exp(−ρu))

)

, where L(0) is the initial condition of L(u). Therefore 0 <

L(u)< A
ρ as u goes to +∞ and

dL(u)
du

< 0 for L >
A
ρ . This presents that Ψ is positively invariant.
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4 Existence and classification of equilibria

The disease-free equilibrium of model is given by

K0(S,E, I,R) =

(

A(1− q)

ρ + v
,0,0,

A(ρ q+ v)

(ρ + v)ρ

)

(12)

The other steady state solution called by endemic equilibrium (K1) is obtained,

S =
(µ + δ +ρ)(ρ +θ )

α θ
, (13)

E =
(1− q)A

ρ +θ
− (µ + δ +ρ)(v+ρ)

α θ
(14)

I =
θ (1− q)A

(µ + δ +ρ)(ρ +θ )
− v+ρ

α
(15)

R =

(

(

ρ2 +(θ + δ + µ)ρ +θ µ
)

q+θ δ

(µ + δ +ρ)(ρ +θ )ρ

)

A+

(

ρ2 +(θ + δ + µ)ρ +θ µ
)

v

ρ α θ
− δ

α
(16)

Then, we get:

R0 =
α (1− q)Aθ

(ρ + v)(µ + δ +ρ)(ρ +θ )
(17)

4.1 Local stability of the disease-free solution

The Jacobian matrix of Eqs.(3-6) at the disease-free solution K0 is presented as:

J(E0) =

















−ρ − v 0
α A(q−1)

ρ+v
0

0 −ρ −θ −α A(q−1)
ρ+v

0

0 θ −µ − δ −ρ 0

v 0 δ −ρ

















(18)

Its eigenvalues are:

λi =













−ρ

−[ρ + v]

λ3

λ4













, (19)

with

λ3 =
1

2(ρ + v)

[

−(ρ + v)(θ + δ + 2ρ + µ)+
√

ϒ
]

,

λ4 =
1

2(ρ + v)

[

−(ρ + v)(θ + δ + 2ρ + µ)−
√

ϒ
]

< 0,

ϒ =4 (ρ +θ )(µ + δ +ρ)(ρ + v)2
R0 +(ρ + v)2 (θ − δ − µ)2

> 0.

Thus, we reach λ3 = 0 when R0 = 1, λ3 < 0 for R0 < 1 and λ3 > 0 when R0 > 1.

Lemma 1.The disease-free solution K0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Theorem 3.K0 is globally asymptotically stable when Aα θ < ρ (µ + δ +ρ)(ρ +θ ).
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Proof.When Aα θ < ρ (µ + δ +ρ)(ρ +θ ), then it clears that R0 < 1 . Let us construct a Lyapunov function as follows:

Z(E, I) =
θ

θ +ρ
E + I (20)

Differentiating Z using the solutions of system (3-6), after simplification, we have,

dZ

du
=

(

Sα θ

ρ +θ
− µ − δ −ρ

)

I,

≤
(

Aα θ

ρ (ρ +θ )
− µ − δ −ρ

)

I < 0,

It is clear that dZ
du

< 0 if Aα θ < ρ (µ + δ +ρ)(ρ +θ ) and dZ
du

= 0 at K0. Thus the proof is completed.

5 Backward bifurcation

Theorem 4.The Equations 3-6 can not predict a backward bifurcation.

Proof.We investigate the occurrence of backward bifurcation applying the methods detailed in [21]. We describe the new
parameters as: x1 = S,x2 = E,x3 = I,x4 = R. Therefore, the equations 3-6 can be written as follow:

dx1

du
= f1 =(1− q)A− (αx3+ρ + v)x1 (21)

dx2

du
= f2 =αx1x3 − (θ +ρ)x2 (22)

dx3

du
= f3 =θx2 − (µ + δ +ρ)x3 (23)

dx4

du
= f4 =qA+ δx3+ vx1 −ρx4 (24)

We assume α to be the bifurcation variable. The condition R0 = 1 leads to

α =− (ρ + v)(µ + δ +ρ)(ρ +θ )

(q− 1)Aθ
:= α∗

. (25)

The Jacobian matrix of (21-24) at K0 when α = α∗ is

J =















−ρ − v 0 − (µ+δ+ρ)(ρ+θ)
θ 0

0 −ρ −θ (µ+δ+ρ)(ρ+θ)
θ 0

0 θ −δ −ρ − µ 0

v 0 δ −ρ















(26)

The right eigenvector of J for the zero eigenvalue is

(w1,w2,w3,w4) =













− ρ (µ+δ+ρ)(ρ+θ)
θ δ ρ−θ ρ v−θ vµ−δ ρ v−ρ2v−ρ vµ

(µ+δ+ρ)ρ (ρ+v)

θ δ ρ−θ ρ v−θ vµ−δ ρ v−ρ2v−ρ vµ

ρ (ρ+v)θ
θ δ ρ−θ ρ v−θ vµ−δ ρ v−ρ2v−ρ vµ













The left eigenvector is (v1,v2,v3,v4) = (0, θ
ρ+θ ,1,0). Next, applying same methodology as in [21] we derive the

expressions of the two variables a and b. The parameter a is described as:

a =
4

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j

, (27)
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which is equivalent (since v1 = v4 = 0) to:

a = v2w1w3
∂ 2 f2

∂x1∂x3

+ v2w3w1
∂ 2 f2

∂x3∂x1

. (28)

Substituting for the different derivatives gives:

a =−2
θ 2 (µ + δ +ρ)ρ2 (ρ + v)α

(((−µ −ρ)v+ δ ρ)θ −ρ v(µ + δ +ρ))2
.

We have next

b =
4

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂α
, (29)

which is also reduced to

b = v2w3

∂ 2 f2

∂x3∂α
=

θ 2ρ A(1− q)

(ρ +θ )(([−µ −ρ ]v+ δ ρ)θ −ρ v [µ + δ +ρ ])
. (30)

Therefore, we conclude that b is always positive when

v <
θ δ ρ

(µ +ρ)θ +ρ (µ + δ +ρ)
(31)

Thus, the backward bifurcation is not exist since a < 0. The proof is completed.

Next result assure the asymptotically stability of the equilibrium point of the model.

Theorem 5.K1 is asymptotically stable when R0 > 1.

Proof.The components of the endemic equilibrium point can be rewritten, as follows,

S =
(1− q)A

R0 (ρ + v)

E =
(1− q)(R0 − 1)A

R0 (ρ +θ )

The Jacobian matrix at the endemic equilibrium point is,

J =















−R0 (ρ + v) 0 − (µ+δ+ρ)(ρ+θ)
θ 0

(ρ + v)(R0 − 1) −ρ −θ (µ+δ+ρ)(ρ+θ)
θ 0

0 θ −µ − δ −ρ 0

v 0 δ −ρ















(32)

The eigenvalues are the solutions of the characteristic polynomial

[H +ρ ][H3 +(R0 (ρ + v)+θ + δ + 2ρ + µ)H2 +(ρ + v)(θ + δ + 2ρ + µ)R0 H

+(ρ + v)(µ + δ +ρ)(ρ +θ )(R0 − 1)] = 0. (33)

One of the eigenvalues of equation 33 is H =−ρ . Instead of calculating the other three eigenvalues of Equation 33, which
is a difficult task, the Routh-Hurwitz stability criterion applied to the characteristic equation of the third order remaining
submatrix, where

a0 = 1,

a1 = (R0 (ρ + v)+θ + δ + 2ρ + µ) ,

a2 = (ρ + v)(θ + δ + 2ρ + µ)R0,

a3 = (ρ + v)(µ + δ +ρ)(ρ +θ )(R0 − 1).
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It is obvious that a1,a2 and a3 is positive when R0 > 1. For the other condition, we have

a1a2 − a3 =(ρ + v)2 (θ + δ + 2ρ + µ)R0
2 +(ρ + v)

(

θ 2 +(δ + 3ρ + µ)θ

+ 3ρ2 +(3δ + 3µ)ρ +(δ + µ)2
)

R0

+(ρ + v)(µ + δ +ρ)(ρ +θ )> 0.

which always holds. Therefore, all solutions to Equation 33 have real portions that are negative. As a result, the model’s
equilibrium point is only locally asymptotically stable when R0 > 1

6 Application of the Model with Mittag-Leffler Kernel

We consider in our study of the Covid-19 model the fractional order and the fractal dimension between (0,1], 0<σ ,η ≤ 1.
We consider next, the following derivatives.

FFM
0 Dσ ,η

u S(u) =(1− q)A− (αI+ρ + v)S,
FFM
0 Dσ ,η

u E(u) =αSI− (θ +ρ)E,
FFM
0 Dσ ,η

u I(u) =θE − (µ + δ +ρ)I,
FFM
0 Dσ ,η

u R(u) =qA+ δ I+ vS−ρR.

Then, we obtain

AB
0 Dσ

u S(u) =ηuη−1 ((1− q)A− (αI+ρ + v)S) ,
AB
0 Dσ

u E(u) =ηuη−1 (αSI− (θ +ρ)E) ,
AB
0 Dσ

u I(u) =ηuη−1 (θE − (µ + δ +ρ)I) ,
AB
0 Dσ

u R(u) =ηuη−1 (qA+ δ I+ vS−ρR).

For simplicity, we define

K(u,S,E, I,R) =ηuη−1 ((1− q)A− (αI+ρ + v)S) ,

L(u,S,E, I,R) =ηuη−1 (αSI− (θ +ρ)E) ,

M(u,S,E, I,R) =ηuη−1 (θE − (µ + δ +ρ)I) ,

N(u,S,E, I,R) =ηuη−1 (qA+ δ I+ vS−ρR).

Then, we get

AB
0 Dσ

u S(u) =K(u,S,E, I,R),
AB
0 Dσ

u E(u) =L(u,S,E, I,R),
AB
0 Dσ

u I(u) =M(u,S,E, I,R),
AB
0 Dσ

u R(u) =N(u,S,E, I,R).

Applying the AB integral yields,

S(u)− S(0) =
1−σ

AB(σ)
K(u,S,E, I,R)+

σ

AB(σ)Γ (σ)

∫ u

0
(u− p)σ−1K(p,S,E, I,R)d p,

E(u)−E(0) =
1−σ

AB(σ)
L(u,S,E, I,R)+

σ

AB(σ)Γ (σ)

∫ u

0
(u− p)σ−1L(p,S,E, I,R)d p,

I(u)− I(0) =
1−σ

AB(σ)
M(u,S,E, I,R)+

σ

AB(σ)Γ (σ)

∫ u

0
(u− p)σ−1M(p,S,E, I,R)d p,

R(u)−R(0) =
1−σ

AB(σ)
N(u,S,E, I,R)+

σ

AB(σ)Γ (σ)

∫ u

0
(u− p)σ−1N(p,S,E, I,R)d p.
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We discretize these equations at um+1 as:

Sm+1 =S0 +
1−σ

AB(σ)
K(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)Γ (σ)

∫ um+1

0
(um+1 − p)σ−1K(p,S,E, I,R)d p,

Em+1 =E0 +
1−σ

AB(σ)
L(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)Γ (σ)

∫ um+1

0
(um+1 − p)σ−1L(p,S,E, I,R)d p,

Im+1 =I0 +
1−σ

AB(σ)
M(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)Γ (σ)

∫ um+1

0
(um+1 − p)σ−1M(p,S,E, I,R)d p,

Rm+1 =R0 +
1−σ

AB(σ)
N(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)Γ (σ)

∫ um+1

0
(um+1 − p)σ−1N(p,S,E, I,R)d p.

Then, we obtain

Sm+1 =S0 +
1−σ

AB(σ)
K(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)

m

∑
i=0

[

hσ K(ui,S
m,Em, Im,Rm)

Γ (σ + 2)
((m+ 1− i)σ(m− i+ 2+σ)

−(m− i)σ (m− i+ 2+ 2σ))]

− σ

AB(σ)

m

∑
i=0

[

hσ K(ui−1,S
m−1

,Em−1
, Im−1

,Rm−1)

Γ (σ + 2)

(

(m+ 1− i)σ+1

−(m− i)σ (m− i+ 1+σ))]

Em+1 =E0 +
1−σ

AB(σ)
L(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)

m

∑
i=0

[

hσ L(ui,S
m,Em, Im,Rm)

Γ (σ + 2)
((m+ 1− i)σ(m− i+ 2+σ)

−(m− i)σ (m− i+ 2+ 2σ))]

− σ

AB(σ)

m

∑
i=0

[

hσ L(ui−1,S
m−1,Em−1, Im−1,Rm−1)

Γ (σ + 2)

(

(m+ 1− i)σ+1

−(m− i)σ (m− i+ 1+σ))]

Im+1 =I0 +
1−σ

AB(σ)
M(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)

m

∑
i=0

[

hσ M(ui,S
m,Em, Im,Rm)

Γ (σ + 2)
((m+ 1− i)σ(m− i+ 2+σ)

−(m− i)σ(m− i+ 2+ 2σ))]

− σ

AB(σ)

m

∑
i=0

[

hσ M(ui−1,S
m−1,Em−1, Im−1,Rm−1)

Γ (σ + 2)

(

(m+ 1− i)σ+1

−(m− i)σ(m− i+ 1+σ))]
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Parameters Values

A 1252

q 0.1

α 0.00000396

ρ 4.21
10000

v 0.1

θ 0.000010

µ 0.09

δ 0.01546

Table 1: Values of the parameters used for numerical simulations.

Rm+1 =R0 +
1−σ

AB(σ)
N(um+1,S

m
,Em

, Im
,Rm)

+
σ

AB(σ)

m

∑
i=0

[

hσ N(ui,S
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− σ
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m

∑
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[

hσ N(ui−1,S
m−1,Em−1, Im−1,Rm−1)

Γ (σ + 2)

(

(m+ 1− i)σ+1

−(m− i)σ (m− i+ 1+σ))]

by the method using in [32]. Let us now list the values of the parameters utilized in numerical simulations in the table
below. Next, we will give some numerical simulations by Figures 1-3. We used initial conditions as: S(0)= 37.538;E(0)=
13.923; I(0) = 23.191;R(0) = 13.213. We used the values of the parameters as given in Table 1. In Figure 1, we consider
the fractal dimension η = 1. We show the simulations for different values of fractional order σ , as follows. Figure 2, we
consider the fractal dimension η = 0.9.. In Figure 3, we consider the fractal dimension η = 0.8. Studying all these figures,
we can remark the effects of the fractional order and the fractal dimension.
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Fig. 1: Numerical simulations for different values of fractional order and fractal dimension η = 1.
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Fig. 2: Numerical simulations for different values of fractional order and fractal dimension η = 0.9.
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Fig. 3: Numerical simulations for different values of fractional order and fractal dimension η = 0.8.

7 Conclusions

In this work, fractal-fractional modeling was used to account for the Covid-19 disease model. We used a very effective
technique to the model to get new results. In this study, we also examined mathematical properties such the presence and
classification of the model’s equilibria. We also discussed stability analysis, and to show the usefulness of the method, we
presented some numerical simulations for different values of the fractal dimension.
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