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Abstract: In this paper, we investigate the dynamical behavior of the fractional-order breast cancer model with modified parameters.
In this fractional-order model (FOM), we replaced the integer-order derivatives with the fractional-order derivatives on both sides. In
physics, this means that the memory of a biological process is examined and transferred from one part to another while maintaining
balance. The positivity of solutions of this FOM is proved. Also, the equilibrium points and stability of disease-free and endemic
cases for this FOM are studied. Furthermore, the basic reproduction number (Ry) is computed and sensitivity analysis concerning the
parameters is achieved. We solve this FOM by two methods one of them gives an analytic-approximate solution called generalized
Mittag-Leffler function method (GMLFM) and another method gives a numerical solution called predictor-corrector method (PCM).
The simulations for the suggested model are presented to verify the obtained theoretical results.
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1 Introduction

A breast cancer disease (BCD) is the most common cancer diagnosed where can occur in both men and women, but its
far more common in women, BCD is a cancer that forms in the cells of the breast [1]. The BCD occurs when some breast
cells begin to grow abnormally, these cell divide more rapidly than healthy cell do and continue to accumulate forming a
lump or mass may cell spread through your breast to your lymph nodes or to other parts of your body. The most common
types of BCD are invasive ductal carcinoma, in this type the cancer cells grow outside the ducts into other parts of the
breast tissue and Invasive lobular carcinoma, in this kind the cancer cells spread from the lobules to the breast tissue that is
near it. There are different kinds of cancer treatments such as surgery, hormone therapy, radiotherapy, chemotherapy and
targeted therapy. These treatments are used to kill cancer cells and remove them or prevent them from spreading. Usually,
surgery is the first kind of treatment in use compared to other treatments. The target of BCD surgery is to discover the
stage of the disease and remove cancer from the breast. Chemotherapy may be used if cancer has spread or there is a risk
it will. Chemotherapy is dependent on many factors such as the number of lymph nodes involved, the size of cancer, and
the presence of estrogen or progesterone receptors. Breast cancer treatment with chemotherapy has side effects on the
heart is called cardiotoxicity [2]. The BCD has been studied in various ways by researchers in the literature (see e.g., [3,
4,5,6,7,8,9]).

Mathematical models have been widely used to address the analysis of models that describe diseases such as
bifurcation, extinction, the stability of solution and permanence of disease (see e.g., [10,11,12,13,14]). There are two
kinds of mathematical models: the continuous-time models described by differential equations and the discrete-time
models described by a difference equation. Moreover, there are different formulations to investigate continuous-time
mathematical models, for instance, partial differential equations, ordinary differential equations and fractional-order
differential equations (FODESs). The reason for using FODESs are very suitable tools related to systems with the memory
and genetic effects of various processes and substances. A lot of models in interdisciplinary fields can be modeled by
FODEs, such as epidemic [15], diffusion waves [16], nonlinear oscillation of earthquakes [17], viscoelastic material [18],
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hydrologic [19], wave propagation in nonlocal elastic continua [20], world economies [21], gyros [22], energy
supply-demand [23] and muscular blood vessel [24]. Also, FODEs are closely related to fractals which are wide in
biological systems. So, FODEs are more convenient than systems with integer order in biological, social and economic
systems where memory has an important and effective role [25].

In consideration of epidemiological models, it is important to study the basic reproduction number which is defined as
the expected number of secondary individuals produced by an individual in its lifetime and it is symbolized by the symbol
Ry [26,27]. If Ry < 1, then the free-disease equilibrium is locally asymptotically stable and the endemic equilibrium does
not exist, also when Ry > 1, then the free-disease equilibrium is unstable and the endemic equilibrium is stable [28,29].

In this article, we consider the FOM for breast cancer as follows:

0DfU =i — BfU - BS'U,

0DV =+ BSU — & Z — &5V — EJV — &V — 'V,

SEDOW = ¥ +EQV + 5P Z — 8IW — 8XW — ndw, (1)
EDYZ = BEU + EFV + 83W — EPZ — 807 — €07,

DM = e Z + 8XW + EFV —niM,

where U denote to the individuals who first received treatment, V refer to the individuals who were first treated at the
hospital, W express to the individuals who are treated for the first time because the cancer has undergone metastasis, Z refer
to the individuals number where disease-free can be increased, M denote to the individuals who experience cardiotoxic,
Y1 the rate of new patients diagnosed to suffer cancer, 81 and 3, represents the recovery and worse rate of the individuals
who have been chemotherapy, respectively, 7> the individuals rate who were first treated at the hospital, both & and
&3 were the recovery (disease-free) and the worse rate of the individuals after they used chemotherapy respectively, &4
be the cardiotoxicity rate, 1; the individuals death rate from cancer, &, the recovery rate where the individuals become
experience complete response, 03 the cardiotoxicity rate of cancer chemotherapy individuals who experience cardiotoxic,
1M, the death rate of stage W, &; the recovery rate of the individuals who back to V, 9, the recovery rate of individuals who
back to stage W, €] the recovery rate of the individuals who experience cardiotoxic and 13 the death rate of cardiotoxic.

The main aim of this work is to formulate a fractional-order for the breast cancer model with modified parameters.
Also, we investigate the stability analysis and their equilibria for the proposed FOM. Moreover, we solve this model
analytically and numerically by two different methods. Additionally, the simulation for the obtained results is presented.

The remainder of this research is organized as follows. In Section 2, we define some essential and important definitions
and concepts of fractional calculus. We introduce the non-negative solution in Section 3. Also, the stability analysis of
the system (1) and its equilibrium fixed points are investigated detailedly in Section 4. Additionally, our methods and its
applications are introduced in Section 5. Numerical simulation is carried out to support the theoretical results in Section
6. Finally, we show our conclusion in Section 7.

2 Preliminaries

Here, we introduce some important definitions concerned to fractional calculus (see [30]).

Definition 1.7The fractional integral of order o@ > 0 in Riemann-Liouville sense is define by

AW = g | =0 EE x>
L) = 1),

where I' (&) is Eular Gamma function is defined as follows
()= / “levdx,  R() >0
Jo

Definition 2.The Riemann-Liouville fractional derivatives is defined by

] L f[ f(fzwr]déa n*1<a<n,nEN,

T'(a—n) dr* Ja (1=&)
aD)((xf(x) =

dj;f,x) , a=necN.
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Definition 3.The Caputo fractional derivative of order o. > 0 is defined as follows

F(nlfa)fax(x_5)}170‘71.](‘(")(5)‘15) n_]<a<7’l,l’l€N,

d"f(x) —
am a=necN.

eDIf(x) =

Also, we present some properties of fractional calculus their detailedly explained in references [31,32]

DYal? f(x) = f(x),
ac o © (k) (xfa)k
aly anf(x):f(x)ikzz:of (a)m

Definition 4./n (1902-1905), the Mittag-Leffler functions Eq and Eq g defined by the power series as follows:

> x" > X"
Ea(x):,,;)m’ Ea’ﬁ(x):,,;)m’ o, p>0. 2)

Therefore, the Caputo fractional derivative of the generalized Mittag-Leffler function (see e.g.,[33,34,35,36]) is given by

x(nfl)a

00f Ealax®) = X & m e T has 1)

n=1

3)

3 Non-Negative Solution

Let RS = {X € R%: X >0}, where X (t) = (U,V,W,Z,M)" . In order to proceed, we introduce the following theorem and
corollary.

Theorem 1./37] (The mean value theorem). Suppose that f(x) € C(0,a] and D* f(x) € C(0,a], for 0 < o0 < 1. Then, we
have

F(6) = £(0) + =—— (D% £)(€)(x)°

with0 < & <x, Vx € (0,a].

Corollary 1./38] Assume that f(x) € C[0,a] and D*f(x) € C(0,a, for 0 < o < 1. It show that from Theorem 1 that if
D%f(x) >0, Vx € (0,al, then f(x) is non-decreasing and if D* f (x) <0, Vx € (0,d], then f(x) is non-increasing Vx € [0, a.

Theorem 2.There is a unique solution X (t) = (U,V, W,Z,M)T for (1) att > 0 and the solution will remain in R5+.

Proof.From [39], we can obtain the existence and uniqueness of the solution of the initial value problem (1) in (0,00).
Now we will show that RS+ is positively invariant domain. Then

6DYU |y—o =11 >0,

6DV ly—o =18+ BSU + £{'Z > 0,
SDIW |w—o = V& + &SV + 88Z > 0,
6DIZ 220 = B{'U + &'V + 87W > 0,
SDIM |y—o = €XZ + 88W + EFV > 0.

According to corollary 1, we will deduce that the solution remain in Ri.

© 2024 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

212 NS B H. M. Ali et al.: Dynamical Behavior of Fractional Order Breast Cancer Model ...

4 Stability and Equilibrium Points

To estimate the equilibrium points of the FOM (1), suppose that

607U =0,
6DV =0,
6DW =0,
6DZ =0,
$peM = 0.

Then, we deduce that the model (1) has two equilibrium fixed points as follows:
—Free-disease equilibrium point E; = (Uy,Vy,W;,Z;,M})
P R
Br+B S+ e g
—Endemic equilibrium point E, = (U, Vi, Wy, Zy, M)
" B+ BIUETZ VA EVet 8 Ze PlUA GV + SIWe €77+ ETW.+ Ve

b b 9 b ))
BE+ B EF+EFHEX+NE 8F+ 8¢+ 1Y &P+ O +gff ny

).

where
(680 — ) [Bru=(85+ 85+ ng) + 28895 + (655 + G BV ) [365 + 85+ ng |
(E801=3)) | (85 + 67+ n)(EF + 8 + &) — 280 £ E0 + 67| — Er&g 368 + 8¢ +ng |

also Ry [40] is given as follows:

Z, =

&
Ry=p(FV~ —_
0 =P(FV ) = g Ty
where
F = - 20(0 V= 53 +€4 +771 0
0 0) e apeatng )

Stability Analysis of the Free-Disease Equilibrium Point £

We state the following theorem to discuss the local stability of the disease-free equilibrium fixed point E of model (1).

Theorem 3.The disease-free equilibrium E\ is locally asymptotically stable if Ry < 1, and it is unstable if Ry > 1.

Proof. The Jacobian matrix of the system (1) evaluated at an equilibrium fixed point E; is given by

—(B{ +B5) 0 0 0 0
B (& &I+ &S+ 0 & 0
J(Er) = 0 & —(& + 65 +n7) oy 0 1, €5
B & 5 —(&+ 57 +ef) 0
0 & 2 &’ -3
and the corresponding characteristic equation at the disease-free equilibrium Ej is
(B + By + M) (&) + &5 + & i + M) (85" + 65" + 3" + A3) (8 + 8" + & + A4) (05" + As) = 0. (&)

Then, the eigenvalues of equation (5) are

(B +B5")
—(&+&3 +§4 +771)
— (65 + 8y +my) <0,
/1477(3;1 +6)+¢) <0,
15:7ng<0.

From the previous results of the eigenvalues, we note that the disease-free equilibrium E| is locally asymptotically stable.
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Sensitivity Analysis of R

Here, we show that the sensitivity of R at each parameters

JRy —1 <0
&y (EF+EF+nf) 7
OR o

g = Tfa % )2 >0,
& (& +&F+np)
OR o

g ~Tfa % o2 >0,
I} (& +&F+nf)

o

oRo _ > > 0.

anf (&' + & +nf)?

This refer to Ry is increasing at &, &, n{* and decreasing at &;*.

5 Applications and Results

In this part, we show the efficiency and performance of the GMLFM as an analytic-approximate solution and the PCM as
a numerical solution for solving FOM (1).

5.1 Implementing GMLFM on the Proposed Model

Here, we explain how use the GMLFM to solve the FOM (1). For more details of the analysis of GMLFM (see e.g., [33,
34,35,36]). Let

[} tna [}
U=Yd"———
r;)a I'(na+1)’ Z’ nOtJrl)
=) tn(x o no
W=YYc"—-—
”;)C Tot1) Z n(x+1) ©)
o tnOt
M=y :
r;) I'(noe+1)
by using Eq.(3) we have
Cra oo t(nfl)(x oo " he
DU =Y a" =Y da
0 ”Z,]a I'((n—1)a+1) n;) I'(na+1)
Cou oo t(nfl)oc oo " e
DIV =Y b" =Y
0 n; I'((n—1)a+1) 2::0 I'(na+1)
Cou oo t(nfl)ot oo " e
DW=Y " =) T ————— 7
0 n; I'(n—1a+1) Z‘O I'(na+1) 7
Cra 0o tn—Na 0o " e
D*zZ =Y d" =Y a :
0 ; I'((n—1a+1) ;0 I'(no+1)
Cra oo tn—Na 0o " e
DM =Y 1" =Y
o ”; L(n—1)a+1) n;) T(na+1)
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by substituting from Eqgs.(6) and (7) in model (1), we get

[VIOC

Z;:Oan+1F(rtza+l =1~ (B + B - OanF(na+l)’

tna tna [VIOC

Yoo R e = 15 B Eio0d" 7 (noc+1 5+ & B0 d" Fogrm — (82 + &5+ &7+ 0) B Y oy

tna tna tna

)::::OCJr y[wc+1 },a+§3 n= Obn T'(na+1) +5 Zn Odn T (na+1) (5a+6a+n2)2:::06nr(na+1)7

[VIOC [VIOC [VIOC tna

Lo d" gy = B Eito@" Farn + &0 Lo P Fruary + 85 Ko vy — (6 + 81 + 1) Lo 4" g

oo l no _ no no no oo no
=0 " oy = & Lm0 Frgrm + 08 Lo ¢ oy + 64" Lo P Finar — M5 Lo U Tt 1y
(3)
after calculate the summations of equation (8), we obtain
Eiro (e + (B + BE) ey )1 = ¥,
o prtl n
Yoo (F(noc+1 — B ey — & T T (G HE n,"‘)r(nl;H))t”“ =¥,
oo b’l d’l "
Yoo ( noc+1 — &5 et — O Foarn T (8 + 85 +n5) (noc+1))tm =%, ©)
o0 ( gl T a" e _sa_< F(EF+ 8% +£%) d" )t”a—o
n=0 \ Flnat1) ~ Pl Tlnat1) ~ 92 r(na+1 ) T na+1 1T O T &) Fluar) =Y,
I ln+l N b " _
n=0 (F(noc+1) er’ F(noc+1 63(11" o)~ 54 Farn T 5 Frarn) )tw =0.
By taking the first limit of the equation (9) we deduce that
a' =y — (Bf*+ Bs)a’,
=%+ B + &P’ — (&8 + &+ & ),
ol =W+ &0+ 5d° — (85 + 85 + 3, (10)

d' = Bra®+ E§b0+ 85" — (EF + 8 + ef)d’,

I'=ef'd®+ 868" + &0 — P,
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From Eq.(10), then Eq.(9) transformed to

at 1

Z:lo:l( T (no+1) (ﬁl +ﬁ2) mx+l )tna =0,

o n+1 n bH n
Yo (F(ZaJrl) By ,,(H] =& Fndot+l + (& + &+ &+ )Tm)t *=0,

oo o+l n n o n
- (F(na+l) — & e — O T +(5za+53a+’72a)m)f *=0, (1n

n

o qntl n b ar _
Yol (F(naJrl) — Bl Foan — & Frae — 9 Foaa + (67 O + €07 (rz(x+l))tna =0,

) m e d" oa__ " o_ b" " no _
Lo (r(na+1) &' Far — % Tharn — 54 Toarn T8 Foagmy )" =0

From Eq.(11), we note that /"* is impossible equal to zero but the coefficients that equal to zero and we can obtain values
of the constants a",b",c",d",[",andn =1,2,3,--- .

—(Bi*+ B)a",
b = Bl + & — (& + &+ EF )b,
= EFD" + 87d" — (85 + 8¢ + )", (12)
d" = Bla" + EFB 4 8" — (EF + 8 +eM)d”,
[ = g3 4 SN 4 EXBT — n@",
at n = 1 we get the following relation
— (B +B) (v - (B +BI).

— B (7 — (BE + B)a) + & (BRa® + E8B0 + 8¢ — (£ + 5 +£1)d)
(G et g g (8 + BEad+ 0 — (B8 + £+ EF + i),
2 = &8 (15 + Bfa® + E1d° — (B8 + B8+ &+ )0 + 8 (B + E0 + 800 — (6 + 5+ £)d°)

(87 85 4+ g ) (8 + E000+ 8%a° — (3¢ + 87+ n$)°),

- B (wf (B B)a) + & (1 -+ Bsia® + &d® — (&5 + £+ £+ )0
O (B0 + 610 — (8% + 8¢ +nE)e) — (&7 + 8+ £t ) (Bfra® + EM0 + 8" — (0 + 57 +ef ),

12:8;"< *a + EFDO + 670 — (5 + 67 + &t )do)+5°‘<}’“+§°‘b0+5°‘d0—(5°‘+5°‘+n§‘)co
& (1 + B+ B — (EF + 8+ EF + B ) — g (e + 830+ E0 — ngl°),

(13)
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also when n = 2 we obtain

@ = (B +B5) (v~ (Bf+ 1),

b = B (B -+ BE) (7 — (B + B)a®) + &7 [BE (v — (B + B’
(8 B + B — (B + &8+ EF+0EI0) + 88 (V8 + G0+ 20 — (8% + 8% +n)c)
— (&8 + e ) (B + £ + 85" — (& + 87+ e%)d° )|
(&g reg g ) [BE (v — (B + B)a®) + & (Bfia + EFHO + 850 — (5 + 57+ ef)d")
§ b8 EF ) (1 + B0+ E° — (EF + &8+ EF Y ),

¢ = &0 [ B (1 — (Bft+B)a" ) + & (BLa + &0+ 85" — (& + 6 + &f ")
S E ) (4 B+ B — (G 6 £ )
+8 [ B (v — (BE + BE)a® ) + &8 (8 + Ba® + E2d — (68 + £+ & + )
O (1 EFB0+ 810 — (85 + 8 + nF)c) — (&7 + 8 + £ ) (Bfra® + EX° + " — (& + 57 + £ ) |
— (8¢ 85+ g ) [ (1 + B + £ — (&5 + ¢+ EF + i)
80 (Bita® + &0 + 80— (EF+ 8 + (1)) — (88 + 8% + ) (8 + &0+ 6d° — (8 + 8¢+ &) |

& = BE (B + BE) (v — (B + B )a”) ] + E8 [ BE (v — (B + B’
60 (Bfa + E500+ 65 — (E8 + &0 + &+t ) (1 + Bfa® + Effa® — (&7 + &8+ EF + ) |
87 | &5 (18 + Bta® + Ed° — (EF + E8 + £+ n)0°) + 8 (BRal + £ + 870 — (67 + 57+ 7))
— (8¢ 68+ ng) (v + 6080+ 67d” — (85 + 8%+ ) )|
(& + 87+ o) B (Y — (BF + BE)a®) + 65 (18 + Ba® + Efd® — (&8 + E¢ + &+ )"
O (14 BB+ SFA0 — (88 + 8% + )0 ) — (6% + 57+ e ) (Blra® + &0+ 880 — (& + 57 + ) |

P = et [ B (1 — (B + Bf)a®) + &8 (1 + Bfia® + £ — (68 + E¢ + £+ i)
O (1 BB+ 50 — (88 + 88 + )0 ) — (E+ 87 + £ ) (Bfra® + EH0 + 880 — (E+ 5 + 1)) |
07 | &5 (18 + Bta®+ Ed° — (EF + E8 + £+ n)0°) + 8 (BRal + £ + 870 — (67 + 57+ 7))
(8¢ 08 +ng) (v + 6880+ 8%a° — (35 + 6% + )P ) |
L B (0 — (B4 Ba0) + & (B + E7H + 850 — (4 5 -f))
—(E8regrEr by ) (1 + B+ 6% — (£ + 8+ EF + i )|
g eff (Bra®+ EE0 + 8" — (B + 57 + €f')d”) + 6% (1 + EB0 + 5% — (8% + 8 + n)c”)
&8 (1 + B + a0 — (B + &8 + &+ b0 ) — g (efid + 830+ £ — gl ).

(14)
similarly by repeating the previous steps we get the another values of constants a*,b*,c¢*,d*, I*..................
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By substituting from equations (10) and (13) into Eq.(6) we obtain the following expression in the infinite series form

as

o t2(x t3(x t4a

t
U=d"+a +a? +a’ +a* +a° S RETTTTOTI ,

F(a+1) " TQRa+1) " TBa+l) = T'{@a+l) = TGatl)

o t2(x t3(x t4a

V=045 +b? +b? +b* + b F o, ,

F(a+1) ~TQRa+1) ~ TBa+l) = T{@a+l) =~ TGatl)

% t2a
W=y 2 3 4
T T TRar ) T TBax) T T@ar D) TGat)

t3a t4oc

o tZa t3a t4a

2 3 4 5

z=d"+d'

1o tZa t3a t4oc

2 3 4 5

M=+ I I I I .
Tt TRarD ' TGarD) | T@arl) | TGarl)

5.2 Implementing PCM on the Proposed Model

d d d d
TlatD) “Teary) “TGRar) “TharD “TGarl

We apply the PCM or Predict, Evaluate, Correct, Evaluate (PECE) method ([41,42,43,44,45]) on the fractional-order
breast cancer model (1) to illustrate the theoretical analysis. We explain the approximate solution of the FODEs by given

this algorithm in the following approach.
Let considered the general FODEs as the following

Dy(t) = f(t,y(t)), 0<t<T,

YOy =y, k=0,1,2,...[a] -1,

is equivalent to the Volterra integral equation

(] -1 X lk 1

(k) ' a1
t)= — = (t— dr.
0= Yot g D o
Assume that h = %, to=nh,n=0,1,...,N € Z". Then, Eq.(16) take the form as follows:

[a] - he he

n(tht1) Z ! mf()’f(tn+l))+r(a+2 Z ajns1f(n(t))).

Where
nt— (n—a)(n+1)% ifj=0
ajprt = (n=j+2)" 4 (=)o =2 —j+ 1" ifo<j<n,
1 ifji=n+1.
Also, the predicted value y? (¢, ) is determined by

[a]—1 tk n

k)'n
yg(tnﬂ): Z yE) H Z Jn+lf Yn t] ))s
=0

15)

(16)

a7

(18)

19)
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where

o

h
bjnir =~ ((n—=j+1)% = (n=j)%). (20)

This is show that the PCM is an approximation for the fractional-order integration. By applying the above approach,
system (1) transformed to

Uner = Up+ ol [ 1 — (B + BEYUL | + oy Ko [ — (B + B)U),

Vst =Vo+ mre5 a+2 [y"‘Jrﬁ;‘ P EXZE  — (EFHEFHEF+ ) ,,H}
+%ijoaj,n+l [72 T BIUj+ 72— (& + & + & + )Vj:|7

Wrz+l W0+ a+2 |:,},OC+‘€’3 n+l+8a n+1 (6a+8a+n2) I’l+l:|
+#(12)Zj:0aj,n+l [73 +&Vi+06{Z; — (87 + 65 + ng) J}’ ey

Znt1 = ZO+F0:+2 {ﬁla n+l+€2a n+1 50‘er+1 (51 +5a+81) n+l]
+ a7 L0 djnt1 [ﬁ, Uj+&Vi+87W; — (57 + 6 +€f")Zj],

My = M0+r(a+z){ n+l+6a n+1+‘§an+l n“M,fH}
+% Yi0ajn+i [81 Zj+88W;+ &V — M.

6 Numerical Simulation

In this section, the dynamical behavior of system (1) is investigated numerically to confirm our analytical results. So, the
numerical simulation for to suggested methods is considered by the following value of parameters y; = 5,7 = 20,73 =
11,81 =0.63,8,=0.56,&, =0.36,£,=0.35,£3,=0.62,£, =0.30,11; =0.5,1, =0.8,113 = 0.4,6, =0.42,8, =0.10, 63 =
0.30, & = 0.30, with initial conditions U (0) = 14,V (0) = 30,W(0) = 20,Z(0) = 10,M(0) = 10.

Figure 1 (a) and (b) shows that the first stage of breast cancer patients U descended from 14 to 4 patients in equilibrium
conditions. Similarly, the second stage of sub-populations V' dropped from 30 to 14 patients in equilibrium conditions. At
stage 3 the sub-population changes from 20 patients according to the initial condition to 19 patients, also stage 4 which
is called disease-free occurs slightly changes concerning stage 3 such that sub-populations change from 10 to 8 patients.
This shows that conditions of relative constant occur in stage 3 and disease-free sub-populations where in these cases,
no significant change in population. Furthermore, in the experience of cardiotoxic M, the population increased from the
initial condition of 10 patients to 32 patients in equilibrium conditions considering the equilibrium conditions at all stages
occur from the 7th time period.

Figures 2 (a) and (b) are carried out by reducing the value of the relapse rate & and & to 0.1 such that in this case
deduce that the free-disease sub-population Z increased to 19 patients and the cardiotoxic sub-population M arisen to 37
patients at equilibrium conditions but the other sub-populations U,V and W are relatively stable at the same as initial
conditions.

In Figures 3 (a) and (b), we display the simulation of reducing the cardiotoxic rate & and &3 to 0.1. We observed
that the free-disease sub-population increased slightly to 10 patients but the cardiotoxic sub-population decreased to 18
patients at the same time of equilibrium. Additionally, at stage 3 note that sub-population increased slightly compared to
the initial simulation given in Figure 1. Finally, in Figures 4 and 5, we show that the simulation results of populations at
different values of «.
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Fig. 1: The behavior of all breast cancer patients for the FOM (1) when & = 1, the left plot using GMLFM and the right

plot using PCM.
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Fig. 2: The behavior of all breast cancer patients for the FOM (1) at o« = 1 and &; = 6; = 0.1, the left plot using GMLFM

and the right plot using PCM.
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Fig. 3: The behavior of breast cancer patients of the FOM (1) at o = 1 and & = 63 = 0.1, the left plot using GMLFM and

the right plot using PCM.
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Fig. 4: Simulation result for system (1) at &« = 1,0.95,0.9 using GMLFM.
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Fig. 5: Simulation result for system (1) at &« = 1,0.95,0.9 using PCM.

7 Conclusion

In this paper, we have proposed an FOM with modified parameters that describes BCD. We have deduced the stable
equilibria for the fractional-order breast cancer system. We have illustrated the importance of the basic reproduction
number and its effects on this FOM. Moreover, we have analyzed the suggested model using an approximate method (i.e.,
GMLFM) and the numerical method (i.e., PCM). Furthermore, we have investigated change effective on the number of
patients when reducing both the disease-free patients rate who relapse back to sub-population V, the disease-free patients
rate who relapse back to sub-population W, the rate of stage V cancer chemotherapy patients who experience cardiotoxic
and the rate of stage W cancer chemotherapy patients who experience cardiotoxic. Our obtained results offer that the
fractional-order & plays a significant role in the dynamics behavior of the system (1). The numerical simulations have
been illustrated to confirm our obtained theoretical results.
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