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In this paper, systems of linear differential equations with crisp real coefficients and
with initial condition described by a vector of fuzzy numbers are studied. A new
method based on geometric representations of linear transformations is proposed to
find a solution. The most important difference between this method and methods of-
fered in other papers is that the solution is considered to be a fuzzy set of real vector-
functions rather than a vector of fuzzy functions. Each member of the solution set
satisfies the given system with a certain possibility. It is shown that at any time the so-
lution constitutes a fuzzy region in the coordinate space, alpha-cuts of which are nested
parallelepipeds. The proposed method is illustrated on examples.
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1 Introduction

Behaviors of many dynamic systems with uncertainty can be modelled effectively by
fuzzy systems of differential equations (FSDE). In particular, linear FSDEs appear in some
important applications. The approaches, proposed to solve FSDESs, use different definitions
for fuzzy derivative and fuzzy solution.

The concept of a fuzzy derivative was defined by Chang and Zadeh [11]. It was fol-
lowed up by Dubois and Prade [14], who used the extension principle. The term "fuzzy
differential equation” was introduced in 1987 by Kandel and Byatt [22, 23].
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There have been many suggestions for the definition of fuzzy derivative to study fuzzy
differential equations. One of the earliest suggestions was to generalize the Hukuhara
derivative [17] of a set-valued function. This generalization was made by Puri and Ralescu
[26] and studied by Kaleva [19,20]. It soon appeared that the solution of a fuzzy differential
equation defined by means of Hukuhara derivative has a deficiency: it becomes fuzzier as
time goes [13, 21]. Hence, behavior of the fuzzy solution is quite different from that of
the crisp solution. Seikkala [28] introduced the notion of fuzzy derivative as an extension
of the Hukuhara derivative, which was the same as what Dubois and Prade [14] proposed.
To circumvent problems arising in connection with Hukuhara derivativélemeier [18]
considered fuzzy differential equation as a family of differential inclusions. The main
downside of using differential inclusions is that we do not have an adequate definition for
derivative of a fuzzy-number-valued function.

The concept of strongly generalized differentiability was introduced in [3] and studied
in [4,5,9]. In[24] a generalized concept of higher-order differentiability for fuzzy functions
is presented to solv&'th-order fuzzy differential equations.

Buckley and Feuring [6, 7] and Buckley et al. [8] gave a very general formulation of
fuzzy initial value problem. They firstly find the crisp solution, fuzzify it and then check to
see if it satisfies the FSDE.

Rodriguez-Lopez [27] considered several comparison results for the solutions of FSDE
obtained through different methods using the Hukuhara derivative. Allahviranloo et al.
[1] applied differential transformation method by using generalized H-differentiability.
Mizukoshi et al. [25] showed that the solutions of the Cauchy problem obtained by the
Zadeh extension principle and by using a family of differential inclusions are same.

Xu et al. [29] used complex number representatiomvdével sets of a fuzzy system
and proved theorems that provide the solutions in this representation. Chalco-Cano and
Roman-Flores [10] studied the class of fuzzy differential equations where the dynamics is
given by a continuous fuzzy mapping which is obtained via Zadeh’s extension principle.

In this paper, we apply a geometric approach to fuzzy linear system of differential
equations (FLSDE) with crisp real coefficients and with initial condition described by a
vector of fuzzy numbers. We interpret a vector of fuzzy numbers as a rectangular prism in
dimensional space, and show that at any time the solution corresponds tiraensional
parallelepiped. Unlike earlier researches, we are not looking for solutions of FLSDE in the
form of vector of fuzzy functions. Instead, our solutions constitute a fuzzy set of real vector-
functions. Each member in the solution set satisfies the system with a certain possibility.
The most important difference of the approach proposed in the present paper from the
others will be explained in details later where the concept of the solution will be discussed.

In articles [15, 16], by using the same geometric approach an algorithm to solve linear
systems of algebraic equations with crisp coefficients and with fuzzy numbers on the right-
hand side is proposed. Here we adopt the approach to the fuzzy linear system of differential



486 Gasilov, Amrahov and Fatullayev

equations.

This paper is comprised of 6 sections including the Introduction. Preliminaries are
given in Section 2. In Section 3, we define FLSDE. In Section 4, we apply the geometric
approach to find the solution of FLSDE and present the main results. In Section 5, we solve
samples of FLSDE. In Section 6, we summarize the results.

2 Preliminaries

We define a fuzzy numberin parametric form according to [12].

Definition 1. A fuzzy numbera in parametric form is a paifu, @) of functions
u(r), u(r), 0 < r <1, which satisfy the following requirements:

1. u(r) is a bounded monotonic nondecreasing left continuous function[@var

2.1(r) is a bounded monotonic nonincreasing left continuous function [Oye}f

3ou(r) <a(r),0<r<1

A popular fuzzy number is the triangular number= (a, ¢,b) with the membership
function
[ = as<ese
ﬂ(x) = :%7b <

wherec # a andc # b. For triangular numbers we havgr) = a + (¢ — a)r and
u(r) =b+ (c—b)r.

We will denoteu= a anduz = bto indicate the left and the right limits af respectively.

We can represent a crisp numheby takingu(r) = u(r) = a,0 <r < 1.

For two arbitrary fuzzy numberg andv the equalityu = v means thau(r) = v(r)
andu(r) = u(r) for all re [0, 1].

For two arbitrary fuzzy numberg andv the following arithmetic operations are de-
fined:

a) Addition: @ + v = (u(r) + v(r), u(r) +v(r))

b) Multiplication by a real numbet:

0

k>
k<O

. { (ku(r), ka(r)).
(k(r), ku(r).

¢) Subtraction — v = u + (—1)v

A fuzzy subsetX of R" is characterized by its membership functjpn R™ — |0, 1].
It is denoted byE™ the space of fuzzy sets whose membership functions satisfy next four
conditions:

i) 1 is normal, that is there exists ag such thafu(xg) = 1;

ii) p is fuzzy convex, that is for alkk, y eR™ and0 < A < 1: p(Ax+ (1 — N)y) >
min {u(x), p(y)};
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iii) u is upper semicontinuous;

iv) the closure offx € R™ | u(x) > 0} is compact.

For0 < a < 1thea-level set of fuzzy seX is defined byX,, = {x €R" | u(x) > a}.

It can be seen that any<c E' is a fuzzy number in the sense of Definition 1.

Note thatE! x E' x ... x E! denotes the set of ali-dimension vectors whose
components are fuzzy numbers. Note also that # E! x E! x ... x E', namely
E™ is wider. For instance, leX be a fuzzy subset of?? with membership function
p(z,y) = max {1 — (22 +y?); 0}. Then, we haveX € E?, but X ¢ E' x E'.

3 Fuzzy linear systems of differential equations

Definition 2. Leta;;, 1 <4, j < n, be crisp numbersf;(¢), 1 < i < n, be given
crisp functions andi; = (u;(r),w;(r)), 0 < r <1, 1 < i < n, be fuzzy numbers. The
system

) (t) = a1121 + a12x2 + ... + a1pTn + f1(1)
xh(t) = ag121 + agexs + ... + agny + fa(t)

(3.1)
a:il(t) = Ap1T1 + Ap2T2 + ... + AppTy + fn(t)
with the fuzzy initial condition
iCl(tU) = ﬂl
wa(to) = Uz
. (3.2)
l’n(to) = ﬁn
is called a fuzzy linear system of differential equations (FLSDE).
One can rewrite the problem (3.1)-(3.2) as follows, using matrix notation.
X' =AX +F(¢
+E@) (3.3)
X(ty) =B

where A = [a;;] is ann x n crisp matrix, F'(t) = (f1(t), f2(t),..., f»(t))T is a crisp
vector-function and3 = (U1, Uz, . .., u,) 7T is a vector of fuzzy numbers.

If differential equations are considered to describe motion of a body, then fuzzy initial
conditions indicate some uncertainty regarding the location of the body atfime

We assume the solutioX of the system (3.1)-(3.2) be a fuzzy set of real vector-
functions such ag(t) = (z1(¢), z2(t), . . ., x,(t)). Each vector-functiox(t) must satisfy
the system (3.1) and must have an initial vak{é&) = (z1(t), z2(to), .., Zn(to)) from
the setB. We define the possibility (membership) of the vector-funckdt) to be equal
to the possibility of its initial valuex (o) in B.

The solutionX, defined above, can be interpreted as a fuzzy bunch of vector-functions.
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One can also interpret that we consider a FLSDE as a set of crisp Cauchy problems
whose initial values belong to the fuzzy det
Mathematically, the fuzzy solution sat can be defined as follows:

X:&wqm@wﬁy”mﬁm#:AmﬂlMm:meé}

with membership functiop ¢ (x(t)) = pz(x(to)).

The most of the studies on the system (3.1)-(3.2) are inspired by [8]. Let us highlight
the main difference between our concept of solution and the one, proposed in [8]. In [8]
the solution is assumed to be a vector, components of which are fuzzy functions. Under
this assumption, the valuié(t) of the solution at a timeis a vector of fuzzy numbers (i.e.
X(t)eEl x E' x ... x E') and, consequently, forms a rectangular prism in the coordinate
space. Therefore, as time goes if the solution set constitutes a body which is different
from prism, the assumption will fail. Differing from [8], in our approach, the condition

X (t)eE™ holds. This circumstance allows the solution to change its shape with time and,
as a result, our approach works even in the cases when [8] fails, as it will be seen later.

4 The solution method

In this section we develop a method to find the solution of the problem (3.1)-(3.2) (or,
(3.3) in matrix form) as a fuzzy set.

Without loss of generality, we pug = 0.

Let us write the initial value vector aB = b, + b, whereb,, is a vector with
possibility 1 and denotes the crisp part (the verte@oWhileE denotes the uncertain part
with vertex at the origin. It is easy to see that, the solution of the given system is of the
form X (¢) = x.,(t) + X(t) (crisp solution + uncertainty). Hete.,.() is a solution of the
non-homogeneous crisp problem

X' = AX + F(t)
X(0) = b,

while x(¢) is a solution of the homogeneous system with fuzzy initial condition

X' =AX
X0)=b

In regard to motion of a body, one could interpset.(t) as the main trajectoryx..,(t)
can be computed by means of analytical or numerical methods. Hence, (3.3) is reduced to
solving a homogeneous system with fuzzy initial condition.

The basis of our solution method is summarized below:

We shall make use of the following facts about linear transformations [2]:
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1. Allinear transformation maps the origin (zero vector) to the origin (zero vector).

2. A linear transformation maps a pair of parallel straight lines to a pair of parallel
straight lines (thus a pair of parallel faces to a pair of parallel faces). Consequently, a linear
transformation maps a parallelepiped to a parallelepiped.

In addition, we shall reference a property of fuzzy number vectors.

3. The fuzzy vectob forms a fuzzy region inRkR™, vertex of which is located at the
origin and boundary of which is a rectangular prism. Furthermoreytbets of the region
are rectangular prisms nested within one another.

The next three properties are in connection with the crisp initial value problem

x = Ax
4.1
{ x(0) =v (1)

4. By the existence and uniqueness theorem, two solutions with different initial points
have distinct values for any

5. The solution of (4.1) is of the form(t) = e4tv.

6. For afixedt = t,: x(t.) = e**x(0) = Mx(0), whereM is a fixed invertible
matrix. Hence, the value of the solution functiontat ¢, is determined by a linear
transformation described by .

The facts 1-6 bring us to the following conclusion: The set of initial points form a
rectangular prism (or more generally speaking, a parallelepiped) and, therefore, the solution
at any time forms a parallelepiped.

In particular, forn = 2, rectangular prism and parallelepiped turn into rectangle and
parallelogram, respectively. According to the discussion above, solution curves make up
nested surfaces extending alandirection (like a coaxial cable). Cross-sections of these
surfaces at any = t, are nested parallelograms.

We can liken the behavior of the solution:y plane to that of a cloud of dust. In the
cloud, there exists a point (“the center”) where the density of dust is the highest. As moving
away from the center, the density decreases along the parallelograms. In other words, the
level curves of the density are nested parallelograms. The motion of the center is governed
by the crisp solution. The cloud of dust moves along with the center, but the parameters of
the parallelograms (orientation, sides and their ratio) may change in time.

The foregoing discussion qualitatively indicates how the solution would behawe in
dimensional coordinate space, in general. Now, we shall find a formula for the solution.

Firstly, we consider the case where the initial values in (3.2) are triangular fuzzy num-
bersu; = (1;, m;,r;). We have(b..); = m; andgi = (Q,O,b:i) = (l; = m;,0,7m; — my).

Let us denotd = (b, O,E), whereb = (b1, ba,...,bn) andb = (E,E, . ,b:n).

One can express the vectdv:randﬁ through standard basis vecters es, . . ., e,:

b =bie; +bres + ...+ byey; ﬁziel—&—geg—i—...—&—bnen.
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Letv; = b;e; andu; = b:iei- Note thatv; andu; are vectors with all but-th coordinates
zero. Thei-th coordinate of; is negative, while theé-th coordinate ofu; is positive. Any
crisp vector fromR"™ can be expressed uniquely as a linear combination, with non-negative
coefficients, of the vectore; andu; (under the condition that only one of vectors, either
v; Or u; is used separately for each

The fuzzy initial vectob forms a rectangular prism in the coordinate space:

B:{z:alwl—i—ang—i—...—i—anwn|a¢€[0,l]; w; =V, 0rw; =u;}

with membership functiopg (z) = 1 — Jnax a;.
Let q;(t) = e*v; andp;(t) = eAtu,. Then the solution of FLSDE can be expressed
as follows:

X = {x(t) = xe(t) + aari(t) + agra(t) + ... + apry(¢)
| a; €[0,1]; r; = q; Oy = p;} (4.2)
px(x(t) =1— max o; (4.3)

If initial values (3.2) are triangular fuzzy numbers, then one could determire@ut of
the solution,X,, through geometric similarity (with coefficiefit— «) without additional
computation.
Below we give another representation for the solution and then we generalize the results
for the case where the initial values of the problem (3.3) are parametric fuzzy numbers.
The rectangular prism, corresponding to the initial values in the form of triangular fuzzy
numbers, and ita-cuts can also be represented as follows:

g:{k1e1+k292+...+knen\kie [g b:”

ba = {k1e1 T {(1 — )by, (1- a)b:iH

Letg;(t) = e’e;. Then we can obtain the following formulas farcuts of the solution
and the solution itself:

Xo = {X(t) = Xc7-(t) + ki1g1 (t) + kggz(t) + ...+ kngn(t)
ke (1= by, (1-a)bi] | (4.4)
- by, ki >
X = Xowith 5 (x(t)) =1 — max ;, wherey; = { ];;z-//l;)z.a 1: ;(()) (4.5)

For the case when initial values consist of parametric fuzzy numbess (u;(r), @;(r))
the solution can be represented as follows:

Xo = {x(t) =xcr(t) + k181(1) + k2g2(t) + ... + kngn(t)
’ k; € [ﬂ(a) — (ber)is Wi(ar) — (bcr)i]} (4.6)
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X =Xy 4.7
with
px(x(1) = min 5 (4.8)
i (si), s; > (1)
whereg; = 1, wi(l) <s; <w(l) . Heres; = (ber)i + k.
wpi(si), s <w(1)

Hence, to determine the solution set we need to calculaté =
[g1(t) g2(t) ... gn(t)]. Note thatg;(t) = e“’e; is the solution of the crisp homo-
geneous system with initial value vectgr In other words, we need to determindinear
independent solutions of the homogeneous system by taking each one of the basis vectors
e;, 1 <1 < n, asinitial value vector.

To summarize, the solution of the problem (3.1)-(3.2) is the fuzzy set of real vector-
functions (or, fuzzy bunch of vector-functions), which can be represented by the formulas
(4.6)-(4.8) in general case. If triangular fuzzy numbers describe initial conditions, the
formulas (4.4)-(4.5) can be applied. To determine the fuzzy solution set we only need to
work out the solution of crisp initial value problem for non-homogeneous system and to
calculatee?, or to findn solutionsg;(¢), 1 < i < n, of the crisp homogeneous system.

We note that if the initial values are in parametric form, then, in general, is not
unique. In this case, we can choose the componenks,oarbitrarily to the extent that
u; (1) < (ber)i < w;(1). Forinstance, we can plic, ); = (u;(1) +u;(1))/2.

5 Examples

Example 1. Solve the system

z/ 3 -1 T 5t2 — 15t — 25
L= + , (5.1)
Y 4 -2 Y 10t~ — 10t — 40
with the initial values #(0) = (14.5, 15, 16) . Find thea-cut of the solution for
y(0 (4, 6, 9)

a = 0.5.

Solution: Initial values, given by triangular fuzzy numbers, form a fuzzy region in
coordinate space. The boundary of this region (the rectaa@lé’' D) anda-cut for o =
0.5 is shown in Fig. 5.1. The vertex of the regidn,. = (15,6)7, is marked with a dot.

The problem could be solved in two steps:

1. We determine the crisp solution corresponding to the non-homogenous system with
the crisp initial values.
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Figure 5.1: ABC D is the boundary of the fuzzy region corresponding to the initial values. Dashed
parallelograms are the boundaries of the fuzzy region, corresponding to the solution cardts-
cut at timet = 0.25. Dotted parallelograms are the same, but for tinze 0.5. The thick line is the

crisp solution.
15 | .
= is
6

{ xcr(t) = 5(t + 2) + %e_t + 1?462t

z(0)

The solution of (5.1) with the initial valu% (0)
)

yer(t) = 512 + %64 + %e%
The solution is graphed with the thick line in Fig. 5.1.
2. We look for the solution corresponding to the homogeneous system with fuzzy initial

value, the vertex of which is at the origin.
This means that we are looking for the fuzzy solution of

HEkEIH

,7:(0) _ (—0.5, 0, 1)
l y(0) ] - l (-2 0.3) ] &)

(5.3) determines a rectangle, BoCy Dy which can be obtained by translation 4BC D
by the vector-b.,.. The vertices are:

with initial value

Ap(—0.5,3), Bo(1,3), Co(1,—2), Do(—0.5,—2)
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Figure 5.2: The same as in Fig. 5.1, but in thg-coordinate space.

The general solution of (5.2) is:

2(t) = cre7t + coe?
y(t) = dere™t + coe?t

For some initial pointP(a, b), the constants have the following values:

¢1 = (—a+b)/3andcy = (4a —b)/3

Based on the solution of (5.2), one could work olff, B, C;, the locations of4,,
By, Cy at timet, and hence obtain a parallelogram with three of its verticed{atB,

Cj{. If this parallelogram is translated by.(¢), we wind up with the boundary of region
(A’B’C'D") determined by the fuzzy solution at timéFig. 5.1).

Since the initial values are triangular numbers, one can findvariyt of the solution by
geometric similarity without having to do additional computations (Fig. 5.1). The formula
for a-cuts of the solution seX can be obtained from (4.4):

v - z(t) | | (16(t+2)+ (1 —a+ble "+ (14+4a—b)e*)/3

‘o y) || (1582 +4(1 —a+Dblet + (14 +4a — b)e*t)/3
—05(1—-a)<a<(1—aq)
—2(1—a)<b<3(1—a)

Solution curves make up nested surfaces inithecoordinate space (Fig. 5.2). Cross-
sections of these surfaces with a plane ¢, are nested parallelograms.

Example 2. Solve the initial value problem and find thecut of the solution for
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Figure 5.3: ABCD is the boundary of the fuzzy region corresponding to the initial values. Dashed
parallelograms are the boundaries of the fuzzy region, corresponding to the solution cardts-

cut at timet = 0.25. Dotted parallelograms are the same, but for time 0.5. The shaded regions
denoten = 1 cuts. The thick line is the crisp solution.

z' 3 -1 ||z 5t2 — 15t — 25
= +
Y 4 =2 ||y 10£2 — 10t — 40

(14.540.2r, 16 — 0.6r2) ] _ [ (a(r), a(r)) 1

(b(r), b(r))

Solution: We note that the given system is same as in Example 1, but with different
initial values, which are represented in parametric form.
Forr = 1 we have

(44 1.75r%, 9 —2.5/r) b

(a(1), a(n)) | | (147, 15.4)
( | (5.75, 6.50)

Therefore, we can arbitrarily choose the first and the second compondnts foém the
intervals[14.7, 15.4] and[5.75, 6.50], respectively. In the computations, we tdkg =
(15,6)7, as in Example 1. Hence, the formulas found in Example 1 are still valid.

To determinex-cut of the solution, firstly we need to calculate the lower and upper
limits of the corresponding-cut of the initial values. For = 0.5 we have

(a(0.5), @(0.5)) | _ | (14.600, 15.8500)
( b( T | (4.4375, 7.23223)
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The results of the computation are shown in Fig. 5.3. The values of the solution on the
shaded regions have the possibility 1.

In Fig. 5.3, the parallelograms, which are boundariesvafuts, are not similar to
the parallelogram corresponding to the solution. This is because the initial values are in
parametric form rather than triangular fuzzy numbers.

The formula fora-cuts of the solution seX can be obtained from (4.6):

X — () | | (15(t+2)+ (1 —a+be "+ (14 +4a — b)e*)/3
“ yt) | | ( 152 +4(1 —a+Dble t + (14 4 4a — b)e?")/3

0200 —05<a<1-0.6a2
1.75a2 —2<b < 3—2.5\/a

The following example is taken from [8].
Example 3. (Arms race model). Solve the initial value problem:

HEAEEIHEN

2(0) | [ (70, 100, 130)
y(0) | | (70, 100, 130)

Solution: We first determine the crisp solution. Consider the following:

x| B ) T 1
v | |3 4|y e
2(0) | [ 100
4(0) | 100

The solution is:
Zer(t) = % + 98%€_t + 1156 6t
Yer(t) = 3 + 9827 — Joe™0

MBI
i

We use the notation introduced in Example 1. Then,

Secondly, we consider:

Ao(—30,30), By(30,30), Co(30,—30), Do(—30,—30)
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A B

100 ‘ %%

504

t=1

=2

T
0 50 100

Figure 5.4: Rectangld BC D is the boundary of the fuzzy region corresponding to the initial values.
Dashed parallelogram is the boundary of the fuzzy region, corresponding to the solution at time
t = 0.2. Dotted parallelogram is the same, but for time 0.4. The thick line is the crisp solution.

The solution of the homogeneous system corresponding to initial pginth) is given
by:

rp(t) = cre”t + 2c0e~ %
yp(t) = cret — 3cpe
wherec; = (3a + 2b)/5 andcg = (a — b) /5.
As shown in Fig. 5.4, the fuzzy region corresponding to the solution at tignets
smaller ag increases, and shrinks down to a point approaches infinity.

Thea-cuts of the solution seX can be expressed by the following formula:

v x(t 2+ (98.6+0.6a +0.4b)e " + ( & + 0.4a — 0.4b)e~%
“ y(t) | | 3+ (98.6+0.6a+0.4b)e™" + (— 15 — 0.6a + 0.6b)e

—-30(1 — ) <a<30(1 —«)
—30(1 — a) < b < 30(1 — @)

6 Conclusion

In this paper, we dealt with systems of linear differential equations with crisp real co-
efficients and fuzzy initial condition. We proposed a geometric approach to solve the prob-
lem. Instead of looking for the solution as a vector of fuzzy functions, we determined the
solution as a fuzzy set of vector-functions, each of which satisfies FLSDE with some pos-
sibility. We showed that at a given time the solution formsiaimensional parallelepiped



A Geometric Approach to Solve FLSDE 497

in the coordinate space. We suggested an efficient method to compute the fuzzy solution
set. We illustrated the results with numerical examples.
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