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Abstract: The aim of this paper is to analyze the dynamics of a four dimensional system described in [Appl. Math. Let., 23, 836-838,
(2010)], which generalizes the classical Cournot competition in a local way. In particular, by considering an aggregation parameter of
production costs, we are able to describe for some ranges of the parameter: the periodic structure, the asymptotic dynamics and the
chaotic properties of the system via the study of its topological entropy and the Li and Yorke chaos.
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1 Introduction

The Cournot duopoly is a competitive game devised in
the early part of last century and named after Augustin
Cournot [6], who is considered one of the forerunners of
modern microeconomics. This economic process is based
on two firms which produce an identical product, good
and compete for control of the market. In each step of the
game the firms decide on the amount of the product to be
introduced onto the market in the next step. In order to
take this decision, both firms know the amount of the
product introduced onto the market in the previous step
by the rival firm. This economic interaction is
deterministic and is thus modeled by the iteration of the
following two dimensional system

F(x,y) = (g(y), f (x)), (1)

where both f and g are continuous self–maps defined on a
compact interval which can be considered, without loss of
generality, by normalization to be defined on [0,1]. Here,
the maps f and g are called the reaction functions and they
force the decisions taken by the firms.

Note that if firm A releases α0 product onto the
market at the beginning of the game and firm B releases
β0 product, in the next step of the game firm A will
produce g(β0), i.e. an amount of product which directly
depends on the production level of firm B in the previous

step, and firm B will produce f (α0) and so on. Therefore,
the whole process is governed by the dynamics of system
(1), which strongly depends on the dynamics of the one
dimensional maps f and g.

A duopoly is an intermediate situation between a
monopoly and a perfect competition, and analytically it is
a more complicated case. The reason for this is that an
oligopolist must consider not only the behavior of the
customers, but also those of the competitors and their
reactions. This classical model has been extensively
studied in the literature from different points of view, see
for instance [2], [7], [8], [12], [13], [16], [17] and [18].

Given a model, economists want to make predictions
on the asymptotic behavior of the system, i.e. how the
model will behave in the future. To do this it is essential
to have a tool to measure the dynamical complexity of the
model. It is known from the literature that there are plenty
of examples of seemingly simple systems which have
very complicated dynamics, where it is very difficult to
deduce reliable information on the future of the system
(see for instance papers [18], [19], [20] where some
models are analyzed from a numerical point of view).

In [5], a topological characterization for the
dynamical complexity of (1) was given. The precise result
was the generalization for two dimensional maps of the
form (x,y) 7→ (g(y), f (x)) on the one hand of the one
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dimensional Misiurewicz’s theorem (see [15], (1)⇔ (2))
and on the other hand of certain results proved by
Sharkovskiı̆ in the nineteen–sixties (see [21],
(1) ⇔ (3) ⇔ (4)). Denote by htop(·), UR(·), Rec(·) and
AP(·) the topological entropy and the sets of uniformly
recurrent, recurrent and almost periodic points,
respectively (for definitions see [4]).

Proposition 1(Misiurewicz, Sharkovskiı̆). Let
ϕ : [0,1]→ [0,1] be a continuous map. Then the following
properties are equivalent:

(1)htop([0,1],ϕ) = 0,
(2)the period of any periodic point for ([0,1],ϕ) is a

power of two,
(3)UR([0,1],ϕ) = Rec([0,1],ϕ) and

(4)AP([0,1],ϕ) =
{

x ∈ [0,1] : lim
n→+∞

ϕ 2n
(x) = x

}
.

Note that the previous characterization of dynamical
simplicity is given in terms of the property “to have zero
topological entropy”. From a dynamic point of view when
a system has zero topological entropy its dynamics are
simple, and therefore predictions on its future behavior
can be done in some sense, see [4]. Moreover, from the
viewpoint of dynamics this type of result is the best
possible, as we can check if the behavior of the system is
simple or not by confirming the validity of one of the
properties (1)–(4).

While dynamical properties of duopolies have been
extensively studied, adjustment dynamics in Cournot
processes with more than two players have received much
less attention as a consequence of the difficulties which
appear for studying systems with more than two
dimensions. The direct generalization of the Cournot
duopoly situation is the Cournot oligopoly, i.e. consider n
firms which produce an identical good and in each step of
the process any firm knows the amount of product
generated by the n − 1 rival firms in the previous step.
Thus, the system which models the situation is of the
form F(x1, · · · ,xn) equal to

( f1(x2,x3, · · · ,xn), f2(x1,x3, · · · ,xn), · · · ,
fn(x1,x2, · · · ,xn−1)) ,

(2)

where each fi : [0,1]n−1 → [0,1] is a continuous map. We
note that the reaction function fi depends on n − 1
variables of indices j ∈ {1, · · · ,n}, j ̸= i.

For a system like (2) a characterization of dynamical
simplicity does not exist in the way of Theorem 1 and is
far from being obtained due to ignoring of the topological
dynamics of n dimensional systems with n > 2 (e.g. note
that for these types of systems the possible ω–limit sets of
the orbits are not even characterized).

Thus, if we want to measure its dynamical
complexity, we need to simplify the system at the cost of
losing information by the firms on the production level of
the rivals. In [10] the following model called a
Cournot–like system is introduced:

Definition 1.A map ϕ from [0,1]n into itself is Cournot–
like if it is of the form:

ϕ(x1, · · · ,xn) =
(
ϕσ(1)(xσ(1)), · · · ,ϕσ(n)(xσ(n))

)
,

where each ϕi : [0,1] → [0,1] is continuous and σ is a
cyclic permutation of {1, · · · ,n}.

In the economic situation described by the iteration of
this type of model the level of information of each player
is quite limited because each firm only has information on
the production level of one of the other firms in the
previous step of the process. It is proved in [10] that
Theorem 1 works similarly for these kind of systems.

From our point of view Cournot–like models do not
represent a real economic situation since it is very
difficult to explain the fact that each player firm can only
have information on another firm and completely ignoring
the rest of the other firms’ behavior. For that reason
Guirao et al. [11] introduced a new model where the
information level is higher than that in Cournot–like ones
and where it is possible to explain using a mathematical
approach its dynamical complexity.

1.1 Our model: local competition “à la
Cournot”

Let N = {1, · · · ,n} be the set of firms (i.e. rival firms
which produce an identical good) and assume that they
are physically located around a circle or a line. We
assume that the firms compete “à la Cournot” in a local
way, i.e. each firm i ∈ N competes with its closest
neighbour in the right and left direction. Let Bα

i ⊆ N be
the neighbor located at a distance less or equal to α of the
firm i in the right and left direction. If we denote by
(x1, · · · ,xn) the production of the firms at some moment
in time and by (c1, · · · ,cn) their production costs (and so
we assume ci > 0 for each i = 1, · · · ,n), the best response
function for the firm i will have the form√

∑k∈Bα
i

xk

ci
− ∑

k∈Bα
i

xk (denoted by ϕi(xBα
i
)).

Therefore our model is governed by

F(x1, · · · ,xn) =
(

ϕ1(xBα
1
), · · · ,ϕn(xBα

n )
)
. (3)

Note that in this model the dimension of the reaction
functions depends on the number of firms and on the size
of the influence of neighboring set Bα

i . For example,
considering Bα

i composed of the left and right neighbor,
i.e. α = 1, in this case, if n = 2 then we have the classical
situation of the Cournot duopoly. Note that the model
considers a situation where a price discrimination exists
in the sense that the same product could have different
prices depending on the market. Recall that here the
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market is composed of the central firm plus the influence
of its neighbors given by the size of α .

Compared with Cournot–like models, from an
economic point of view these types of systems with local
competition in a Cournot sense are more realistic, which
presents a more paradoxical situation. [11] proposes to
analyze these systems from a mathematical point of view
with the methods coming from the topological dynamics
theory to obtain a deep understanding of them. In this
sense [9] studied some aspects of the dynamics of the
model (3) in the case of α = 1 and n = 3.

1.2 Statements of our main results

Observe that our model is governed by (3), which is
defined from the viewpoint of mathematics on a subset of(x1, · · · ,xn) ∈ Rn : ∑

k∈Bα
i

xk ≥ 0 for each i = 1, · · · ,n

 .

(4)
Though in a real economic situation each variable
x1, · · · ,xn should be non-negative, we are willing to
manage our model in a more general setting of allowing
negative x1, · · · ,xn under the assumption (4) from a purely
mathematical viewpoint.

The aim of this paper is to present a complete study of
the dynamics of the system F4(x,y,z,w) given by(√

y+w
c1

− (y+w),
√

x+z
c2

− (x+ z),√
y+w
c3

− (y+w),
√

x+z
c4

− (x+ z)
)
,

defined on a subset of

Ω 1
4 := {(x,y,z,w) ∈ R4 : y+w ≥ 0,x+ z ≥ 0}, (5)

which is obtained from (3) for α = 1 and n = 4, for
convenience we also denote it by

(F4,1(x,y,z,w),F4,2(x,y,z,w),
F4,3(x,y,z,w),F4,4(x,y,z,w)) .

(6)

From the dynamical viewpoint, our model is well defined
over

(0,0,0,0) ∈ Ω4 := the closure of
+∞∩

n=−∞
Fn

4 Ω 1
4 in R4. (7)

To simplify our study we consider the following
aggregated parameters of the production costs in terms of
which we shall discuss the dynamics of the model. Let
a1 = 1/

√
c1 + 1/

√
c3 > 0,a2 = 1/

√
c2 + 1/

√
c4 > 0 and

let a > 0 be such that a1 = aa2. In this setting we are

going to distinguish in our study between two different
cases:

1. a ∈

[
5
√

2
8

,
8

5
√

2

]
and

2. a ∈

{√
2

2
,
√

2

}
.

Our main results are stated as follows.

Theorem 1.(F4,Ω4) generates a discrete dynamical
system in the sense that F4(Ω4) ⊆ Ω4 and Ω4 is a
compact subset of R4.

For 5
√

2/8 ≤ a ≤ 8/5
√

2 let us introduce P1, · · · ,P6
as at the beginning of Section 4. Note here that P1, · · · ,P6
need not be six different points. Then the asymptotic
behavior of the model can be characterized as follows.

Theorem 2.Assume 5
√

2/8 ≤ a ≤ 8/5
√

2. Then the
period of any periodic point of (Ω4,F4) is at most 2. In
fact, {(0,0,0,0)}∪{Pi : i = 1, · · · ,6} is just the set of all
periodic points of (Ω4,F4) and F4(0,0,0,0) = (0,0,0,0),

F4(P1) = P4,F4(P4) = P1,F4(P2) = P5,

F4(P5) = P2,F4(P3) = P6,F4(P6) = P3.

Theorem 3.Assume 5
√

2/8 ≤ a ≤ 8/5
√

2 and let
p = (x,y,z,w) ∈ Ω4.

1.If x+ z = 0 = y+w then Fn
4 (p) = (0,0,0,0) for each

n ∈ N.
2.If x+z = 0 < y+w then F2n

4 (p)→ P6 and F2n+1
4 (p)→

P3 as n →+∞.
3.If x+z > 0 = y+w then F2n

4 (p)→ P5 and F2n+1
4 (p)→

P2 as n →+∞.
4.If x+z > 0 < y+w then F2n

4 (p)→ P4 and F2n+1
4 (p)→

P1 as n →+∞.

Let (X ,d) be a compact metric space and T : X → X
a continuous map. We say (X ,T ) is Li-Yorke chaotic [3],
[14] if an uncountable subset S ⊆ X exits such that, for
each pair (x1,x2) from S2 with x1 ̸= x2, one has

liminf
n→+∞

d(T nx1,T nx2) = 0

whereas
limsup
n→+∞

d(T nx1,T nx2)> 0.

Based on the above discussions, we have:

Theorem 4.The system (Ω4,F4) has positive topological
entropy and is Li-Yorke chaotic if a =

√
2/2 or

√
2, and

has zero topological entropy and is not Li-Yorke chaotic if
5
√

2/8 ≤ a ≤ 8/5
√

2.
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The structure of the paper is organized as follows.
In Section 2 we present the proof of Theorem 1

jointly with some generic results on the model. Related to
our model in Section 3 we analyze the dynamics of fa
with the parameter

√
2/2 ≤ a ≤

√
2 in preparation, for the

definition of fa see (10). Then with the help of
discussions in Section 3 we prove Theorem 2, Theorem 3
and Theorem 4 in Section 4 and Section 5, respectively.

2 Rewriting the model F4

In this section, we shall give some generic analysis about
the model F4.

First, let us prove Theorem 1.

Proof(Proof of Theorem 1). Recalling Ω 1
4 from (5), we

have directly

F4(Ω 1
4 )⊆

(
−∞, 1

4c1

]
×
(
−∞, 1

4c2

]
×

×
(
−∞, 1

4c3

]
×
(
−∞, 1

4c4

]
,

and so Ω 1
4 ∩F4(Ω 1

4 ) is a bounded subset of R4.
To prove the conclusion, as the map F4 is continuous

on Ω 1
4 , by the construction (7), Ω4 ⊆ Ω 1

4 is the closure of
Ω 2

4 in R4, where

(0,0,0,0) ∈ Ω 2
4 =

+∞∩
n=−∞

Fn
4 Ω 1

4 , (8)

we only need prove that F4(Ω 2
4 ) ⊆ Ω 2

4 and Ω 2
4 is a

bounded subset of R4. It is simple to check F4(Ω 2
4 )⊆ Ω 2

4 ,
and the boundedness of Ω 2

4 follows directly from that of
Ω 1

4 ∩F4(Ω 1
4 ), as Ω 2

4 ⊆ Ω 1
4 ∩F4(Ω 1

4 ). This completes the
proof.

Related to F4, now let us consider the following model

F∗
4 : (X ,Y ) 7→

(
a1
√

Y −2Y,a2
√

X −2X
)
.

By direct calculations G(X ,Y ) := (F∗
4 )

2(X ,Y ) =(
a1

√
a2
√

X −2X −2
(
a2
√

X −2X
)
,

a2

√
a1
√

Y −2Y −2
(
a1
√

Y −2Y
))

.

Recalling a = a1/a2 > 0, to simplify the calculations,
it is not hard to obtain:

Lemma 1.The model G can be normalized by the map ϕ :
(X ,Y ) 7→ (X/a2

1,Y/a2
2) as

Fa : (x,y) 7→
(√

a−1√x−2x−2
(
a−1√x−2x

)
,√

a
√

y−2y−2
(
a
√

y−2y
))

,
(9)

that is, the models G and Fa are equivalent in the sense of
ϕ ◦G = Fa ◦ϕ .

Observe that, for each a > 0 from (9) one has
Fa : (x,y) 7→ ( fa−1(x), fa(y)), where

fa : x 7→
√

a
√

x−2x−2(a
√

x−2x). (10)

To understand the dynamics of G, by Lemma 1 we only
need to study the map Fa for all a > 0, equivalently, the
map fa for all a > 0.

When
√

2/2 ≤ a ≤
√

2, it is not hard to check that fa
is well defined on [0,1/8], and once fa(x) is well defined
for some x ∈ R then fa(x) ∈ [0,1/8], as

fa(x) =−2

(√
−2
(√

x− a
4

)2
+

a2

8
− 1

4

)2

+
1
8
,

which implies

Ω4 ⊆
{
(x,y,z,w) ∈ R4 : 0 ≤ x+ z ≤ a2

1
8
,0 ≤ y+w ≤ a2

2
8

}
.

(11)
Thus in the following, under the assumption of

√
2/2 ≤

a ≤
√

2, we are to study the dynamics of fa on [0,1/8],
which contains all the information about the dynamics of
(Ω4,F4) via the normalization by Proposition 1.

In Figure 1 we present the morphology of fa for
different values of the parameter a.

3 The dynamics of fa,
√

2/2 ≤ a ≤
√

2

In this section, we shall discuss the dynamics of fa
(especially its asymptotic behavior) when the parameter√

2/2 ≤ a ≤
√

2 in preparation for the following sections.

First, we have:

Lemma 2. When a =
√

2 or
√

2/2, ([0,1/8], fa) has
positive topological entropy.

Proof. As the proof is similar, we only discuss the case
of a =

√
2/2. When a =

√
2/2, by direct calculations it is

easy to check that

(i) fa(0) = 0 = fa(1/8), fa(1/32) = 1/8 and
(ii) fa(x) increases on [0,1/32] and decreases on

[1/32,1/8].

From this it is well known in one dimensional dynamics
that the system ([0,1/8], fa) has positive topological
entropy, see for example [15].

We also need the following result.

Lemma 3. Assume 5
√

2/8 ≤ a ≤ 8/5
√

2. Then
([0,1/8], fa) has exactly two fixed points 0 and
λa ∈ [a2/16,1/8] such that lim

n→+∞
f n
a (x) = λa whenever

x ∈ (0,1/8].

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 3, 857-865 (2013) / www.naturalspublishing.com/Journals.asp 861

(a) (b)

(c) (d)

(e) (f)

Fig. 1: Morphology of fa for some values of the parameter.
Case (a) corresponds to a = 5

√
2/8, case (b) corresponds

to a = 1, case (c) corresponds to a = 6/5, case (d)
corresponds to a = 4/3, case (e) corresponds to a =

√
2

and case (f) corresponds to a =
√

2/2.

In order to prove Lemma 3, we need the following
instrumental results.

Lemma 4. Assume
√

2/2 ≤ a ≤ 8/5
√

2. Then

1.in [0,1/8], fa has exactly two fixed points 0 and λa ∈
[a2/16,1/8], moreover, λa = a2/16 if and only if a =

8/5
√

2 and λa = 1/8 if and only if a = 5
√

2/8, λ1 =
1/9.

2.for each 0 < x < λa, either f n
a (x)≥ λa for some n ∈ N

or lim
n→+∞

f n
a (x) = λa.

Proof.Let 0 ≤ x ≤ 1/8 and say X =
√

x ∈ [0,
√

2/4]. It is
easy to check that fa(x) = x if and only if f (X) := 9X3 +
(4a2 +2)X −12aX2 −a = 0 or x = 0. Whereas,

(i) f (0) = −a < 0, f (a/4) = a(25a2 − 32)/64 ≤ 0,

f
(√

2/4
)
=
√

2
(

a−5
√

2/8
)2

≥ 0,
(ii) f (Y ) tends to +∞ as Y tends to +∞ and

(iii) f ′(Y ) = 27Y 2 + (4a2 + 2) − 24aY =

27(Y −12a/27)2 +
(
2−4a2/3

)
> 0 for all Y .

Thus, in [0,1/8] a unique λa exists such that f (
√

λa) = 0
(and so fa(λa) = λa), moreover, λa ∈ [a2/16,1/8]. From
this we know that, in [0,1/8], fa has exactly two fixed
points (and they are just 0 and λa).

Moreover, by direct calculations, it is not hard to check
that λa = a2/16 if and only if a = 8/5

√
2, λa = 1/8 if and

only if a = 5
√

2/8 and λ1 = 1/9. This proves (1).
In fact, the above discussions also tell us that, for

0 < x < λa, f (
√

x) < 0 which is equivalent to fa(x) > x.
Now let 0 < x < λa. If f n

a (x)< λa for each n ∈ N then the
sequence f m

a (x)↗ z > 0 for some z ≤ λa as m ↗+∞, and
so fa(z) = z, thus z = λa follows from (1), this proves (2).

Lemma 5. Assume 5
√

2/8 ≤ a ≤ 8/5
√

2. Then
fa(x)≥ a2/16 for each a2/16 ≤ x ≤ 1/8.

Proof.It suffices to prove that fa is increasing on
[a2/16,1/8] and fa

(
a2/16

)
≥ a2/16.

Note that a ≤ 8/5
√

2. So, it is easy to check

fa

(
a2

16

)
=

√
2a−a2

4
≥ a2

16
.

Now for x ∈ [a2/16,1/8], a
√

x−2x ∈ [(
√

2a−1)/4,a2/8]
and so (recall 5

√
2/8 ≤ a)

a
2
√

x
−2≤ 0 and

1

2
√

a
√

x−2x
−2 ≤ 1√√

2a−1
−2 ≤ 0,

thus

f ′a(x) =
(

a
2
√

x
−2
)(

1

2
√

a
√

x−2x
−2

)
≥ 0.

That is, fa is increasing on [a2/16,1/8]. This completes
the proof.

Lemma 6. Assume 5
√

2/8 ≤ a <
√

2. Then fa is a
contraction on [a2/16,1/8], that is, there exists γa ∈ (0,1)
such that | fa(x1) − fa(x2)| ≤ γa|x1 − x2| whenever
a2/16 ≤ x1,x2 ≤ 1/8.

Proof.The proof is completed by estimating | f ′a(x)| on
[a2/16,1/8].

Recall that
√

2/2 < a <
√

2, for x ∈ [a2/16,1/8],
a
√

x−2x ∈ [(
√

2a−1)/4,a2/8] and

−1 <
√

2a−2 ≤ a
2
√

x
−2 ≤ 0, (12)

and so
√

2
a

−2 ≤ 1

2
√

a
√

x−2x
−2 ≤ 1√√

2a−1
−2, (13)
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thus

| f ′a(x)| =
∣∣∣∣ a
2
√

x
−2
∣∣∣∣ ·
∣∣∣∣∣ 1

2
√

a
√

x−2x
−2

∣∣∣∣∣
≤
(

2−
√

2a
)

max

{∣∣∣∣∣
√

2
a

−2

∣∣∣∣∣ ,
∣∣∣∣∣ 1√√

2a−1
−2

∣∣∣∣∣
}

(using (12) and (13)). Denote by γa the constant in the last
inequality. Recall 5

√
2/8 ≤ a <

√
2, then

0 <
(

2−
√

2a
)∣∣∣∣∣

√
2

a
−2

∣∣∣∣∣< 1

and

−1 <
1√√
2a−1

−2 ≤ 0,

and so γa ∈ (0,1). This completes our proof.

Now we are ready to present the proof of Lemma 3.

Proof(Proof of Lemma 3). Observe 5
√

2/8 ≤ a ≤ 8/5
√

2.
By Lemma 4, ([0,1/8], fa) has exactly two fixed points 0
and λa ∈ [a2/16,1/8]. Now let x ∈ (0,1/8].

Possibility 1: x ∈ [a2/16,1/8]. By Lemma 5 and Lemma
6, fa : [a2/16,1/8]→ [a2/16,1/8] is a contraction, that is,
there exists γa ∈ (0,1) such that
| fa(x1) − fa(x2)| ≤ γa|x1 − x2| whenever
a2/16 ≤ x1,x2 ≤ 1/8, recalling λa ∈ [a2/16,1/8], then
| f n

a (x) − λa| = | f n
a (x) − f n

a (λa)| ≤ γn
a |x − λa|, and so

lim
n→+∞

f n
a (x) = λa.

Possibility 2: x ∈
(
0,a2/16

)
. As x < λa, by Lemma 4

either f N
a (x) ≥ λa for some N ∈ N or lim

n→+∞
f n
a (x) = λa. If

lim
n→+∞

f n
a (x) = λa then we are done, if

f N
a (x) ≥ λa ≥ a2/16 for some N ∈ N then
lim

n→+∞
f n
a (x) = lim

n→+∞
f N+n
a (x) = λa by Possibility 1.

Summing up, lim
n→+∞

f n
a (x) = λa, completing the proof

of the conclusion.

4 Proofs of Theorem 2 and Theorem 3

In this section, we aim to prove Theorem 2 and Theorem 3,
and so we shall assume 5

√
2/8 ≤ a ≤ 8/5

√
2 throughout

the whole section.

As shown by Lemma 3, fa : [0,1/8] → [0,1/8] has
exactly two fixed points 0 and λa ∈ [a2/16,1/8]. Let us

introduce:

P1 =

(
a2

√
λa

c1
−a2

2λa,a1

√
λa−1

c2
−a2

1λa−1 ,

a2

√
λa

c3
−a2

2λa,a1

√
λa−1

c4
−a2

1λa−1

)
,

P2 =

(
0,a1

√
λa−1

c2
−a2

1λa−1 ,0,a1

√
λa−1

c4
−a2

1λa−1

)
,

P3 =

(
a2

√
λa

c1
−a2

2λa,0,a2

√
λa

c3
−a2

2λa,0

)
,

P4 =

a1

√
a−1
√

λa−1 −2λa−1

c1
−a2

1

(
a−1
√

λa−1 −2λa−1

)
,

a2

√
a
√

λa −2λa

c2
−a2

2

(
a
√

λa −2λa

)
,

a1

√
a−1
√

λa−1 −2λa−1

c3
−a2

1

(
a−1
√

λa−1 −2λa−1

)
,

a2

√
a
√

λa −2λa

c4
−a2

2

(
a
√

λa −2λa

) ,

P5 =

a1

√
a−1
√

λa−1 −2λa−1

c1
−a2

1

(
a−1
√

λa−1 −2λa−1

)
,0,

a1

√
a−1
√

λa−1 −2λa−1

c3
−a2

1

(
a−1
√

λa−1 −2λa−1

)
,0

 ,

P6 =

0,a2

√
a
√

λa −2λa

c2
−a2

2

(
a
√

λa −2λa

)
,

0,a2

√
a
√

λa −2λa

c4
−a2

2

(
a
√

λa −2λa

) .

Observe that the introduced P1, · · · ,P6 need not to be
pairwise different. In fact, we have proved in Lemma 4
that λ1 = 1/9, and so in the case of a = 1 one has a1 = a2
and hence

P1 = P4 =

(
a1

9

(
2

√
c1

− 1
√

c3

)
,

a2

9

(
2

√
c2

− 1
√

c4

)
,

a1

9

(
2

√
c3

− 1
√

c1

)
,

a2

9

(
2

√
c4

− 1
√

c2

))
,

P2 =P6 =

(
0,

a2

9

(
2

√
c2

− 1
√

c4

)
,0,

a2

9

(
2

√
c4

− 1
√

c2

))
,

P3 =P5 =

(
a1

9

(
2

√
c1

− 1
√

c3

)
,0,

a1

9

(
2

√
c3

− 1
√

c1

)
,0
)
.

Now let’s present the proofs of Theorem 2 and
Theorem 3 stated at the beginning of the paper, which
explore the asymptotic behavior of the model.
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Proof(Proof of Theorem 2). Denote by Per(Ω4,F4) the set
of all periodic points of (Ω4,F4).

Note that 5
√

2/8 ≤ a ≤ 8/5
√

2 and
fa(λa) = λa, fa−1(λa−1) = λa−1 , by direct calculations it is
not hard to obtain

1.Per(Ω4,F4) ⊇ {(0,0,0,0)} ∪ {Pi : i = 1, · · · ,6}
(denoted by P) and

2.F4(P1) = P4,F4(P4) = P1,F4(P2) = P5,F4(P5) =
P2,F4(P3) = P6,F4(P6) = P3 and
F4(0,0,0,0) = (0,0,0,0).

Now we aim to complete our proof by claiming
Per(Ω4,F4)⊆ P .

In fact, say (x,y,z,w) ∈ Per(Ω4,F4), then
(x + z,y + w) is a periodic point of F∗

4 and hence a
periodic point of G (by the constructions of F∗

4 and G),
thus

(
(x+ z)/a2

1,(y+w)/a2
2
)

is a periodic point of Fa
(using Lemma 1). As Fa : (x′,y′) 7→ ( fa−1(x′), fa(y′)),
(x+ z)/a2

1 and (y+w)/a2
2 are periodic points of fa−1 and

fa, respectively. Recalling 5
√

2/8 ≤ a ≤ 8/5
√

2, by (11)
and Lemma 3 we have (x + z)/a2

1 ∈ {0,λa−1} and
(y + w)/a2

2 ∈ {0,λa}, and so by direct calculations
(combined with the fact that (x,y,z,w) is a periodic point
of (Ω4,F4)) it is not hard to obtain (x,y,z,w) ∈ P , which
completes the proof.

Proof(Proof of Theorem 3). As the proof is similar, we
only need prove the second item.

Let π : (x,y,z,w) 7→ (x+z,y+w). Then π ◦F4 = F∗
4 ◦π

from the construction of F∗
4 . Recall ϕ ◦G = Fa ◦ ϕ from

Lemma 1, we have ϕ ◦π ◦ (F2
4 )

n = Fn
a ◦ϕ ◦π for each n ∈

N. Now recall F4,1,F4,2,F4,3,F4,4 from (6), one has

F4,2(F2n+1
4 (x,y,z,w))+F4,4(F2n+1

4 (x,y,z,w)) =

= a2
2 f n+1

a

(
y+w

a2
2

)
and

F4,1(F2n+1
4 (x,y,z,w))+F4,3(F2n+1

4 (x,y,z,w)) =

= a2
1 f n+1

a−1

(
x+ z
a2

1

)
for each n ∈ N. As x + z = 0 < y + w, using (11) and
Lemma 3 we obtain

F4,1(F2n+1
4 (x,y,z,w))+F4,3(F2n+1

4 (x,y,z,w)) = 0

for each n ∈ N and

lim
n→+∞

[
F4,2(F2n+1

4 (x,y,z,w))+F4,4(F2n+1
4 (x,y,z,w))

]
=

= a2
2λa,

and hence

lim
n→+∞

F2n+1
4 (x,y,z,w) = P3 and lim

n→+∞
F2n

4 (x,y,z,w) = P6.

This completes the proof.

5 Proof of Theorem 4

In this section, we aim to discuss the topological entropy of
the model with the parameter a=

√
2 or

√
2/2 or 5

√
2/8≤

a ≤ 8/5
√

2.

The following result is well known, see for example
[3], [22].

Proposition 2. Let (X ,d) be a compact metric space
and T : X → X a continuous map. Assume htop(X ,T )> 0.
Then (X ,T ) is Li-Yorke chaotic.

We also need the following result with Ω 2
4 introduced

by (8) in Section 2.

Lemma 7. Assume
√

2/2 ≤ a ≤
√

2 and
0 ≤ A1 ≤ a2

1/8,0 ≤ A2 ≤ a2
2/8. Then there exists

(x,y,z,w) ∈ Ω 2
4 such that x+ z = A1 and y+w = A2.

To prove Lemma 7, we need the following easy
observation.

Lemma 8. Assume
√

2/2 ≤ a ≤
√

2. Then /0 ̸= Ω 3
4 ⊆

F4(Ω 3
4 ), where Ω 3

4 denotes the set of all (x,y,z,w) ∈ Ω 1
4

satisfying

0 ≤ x+ z ≤ a2
1

8
and

x− z =
(

1
√

c1
− 1

√
c3

)a1

4
−

√
a2

1
16

− x+ z
2

 ,

0 ≤ y+w ≤ a2
2

8
and

y−w =

(
1

√
c2

− 1
√

c4

)a2

4
−

√
a2

2
16

− y+w
2

 .

Proof. Obviously Ω 3
4 ̸= /0. Recall

√
2/2≤ a1/a2 ≤

√
2

from the assumption. Now let (x,y,z,w) ∈ Ω 3
4 , it is easy to

see that there exists (x′,y′,z′,w′) ∈ Ω 3
4 satisfying

y′+w′ =

a1

4
−

√
a2

1
16

− x+ z
2

2

and

x′+ z′ =

a2

4
−

√
a2

2
16

− y+w
2

2

.

By direct calculation F4(x′,y′,z′,w′) = (x,y,z,w), which
completes the proof.
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Proof(Proof of Proposition 7). Using (8), we only need to
show that there exists (x,y,z,w) ∈ R4 such that x + z =
A1,y+w = A2 and (x,y,z,w) ∈ Fn

4 Ω 1
4 for all n ∈ Z.

As
√

2/2≤ a≤
√

2 and 0≤A1 ≤ a2
1/8,0≤A2 ≤ a2

2/8,
it is easy to check

{(x,y,z,w)∈R4 : x+z = A1,y+w = A2} ⊆
0∩

n=−∞
Fn

4 (Ω
1
4 ).

(14)
Let Ω 3

4 be the subset introduced by Lemma 8. Then we
have

Ω 3
4 ⊆

+∞∩
n=1

Fn
4 (Ω

1
4 ).

Combined with (14), /0 ̸= Ω 3
4 ∩{(x,y,z,w) ∈ R4 : x+ z =

A1,y+w = A2} ⊆ Ω 2
4 .

With the above preparation, now we can present the
proof of Theorem 4.

Proof(Proof of Theorem 4). First we consider the case of
a =

√
2 or

√
2/2.

From the construction of F∗
4 (and combined with (11)),

we have that the system
([

0,a2
1/8
]
×
[
0,a2

2/8
]
,F∗

4
)

is a
factor of (Ω4,F4) in the sense of π ◦F4 = F∗

4 ◦π , where

π : Ω4 →
[

0,
a2

1
8

]
×
[

0,
a2

2
8

]
,(x,y,z,w) 7→ (x+ z,y+w)

is a continuous surjection (using Lemma 7), by [1,
Theorem 5],

htop(Ω4,F4)≥ htop

([
0,

a2
1

8

]
×
[

0,
a2

2
8

]
,F∗

4

)
. (15)

Whereas, using Lemma 1 the system([
0,a2

1/8
]
×
[
0,a2

2/8
]
,G
)

allows a factor
([0,1/8]× [0,1/8], fa−1 × fa) via the normalization map
(X ,Y ) 7→ (X/a2

1,Y/a2
2), thus

0 < htop

([
0,

1
8

]
×
[

0,
1
8

]
, fa−1 × fa

)
(using Lemma 2 and [1, Theorem 3])

≤ htop

([
0,

a2
1

8

]
×
[

0,
a2

2
8

]
,G
)

(applying [1, Theorem 5] again)

= 2htop

([
0,

a2
1

8

]
×
[

0,
a2

2
8

]
,F∗

4

)
(by [1, Theorem 2]).

We obtain that htop(Ω4,F4)> 0 by (15) and (Ω4,F4) is Li-
Yorke chaotic by Proposition 2.

Now let us consider the case of 5
√

2/8 ≤ a ≤ 8/5
√

2.
Denote by A j the set of all points in Ω4 satisfying ( j) of

Theorem 3, j = 1,2,3,4. Let d be the Euclidean metric on

Ω4. Then, for any five points (xi,yi,zi,wi), i = 1,2,3,4,5
from Ω4, there exist j ∈ {1,2,3,4} and 1 ≤ k < l ≤ 5 such
that both (xk,yk,zk,wk) and (xl ,yl ,zl ,wl) are contained in
A j and hence (using Theorem 3)

lim
n→+∞

d(Fn
4 (xk,yk,zk,wk),Fn

4 (xl ,yl ,zl ,wl)) = 0.

In other words, for the compact metric space Ω4, it is
simple to check that F4 : Ω4 → Ω4 is continuous. From
the above discussions, there is no uncountable subset S ⊆
Ω4 such that, for each pair ((x1,y1,z1,w1),(x2,y2,z2,w2))
from S2 with (x1,y1,z1,w1) ̸= (x2,y2,z2,w2), one has

liminf
n→+∞

d(Fn
4 (x1,y1,z1,w1),Fn

4 (x2,y2,z2,w2)) = 0 whereas

limsup
n→+∞

d(Fn
4 (x1,y1,z1,w1),Fn

4 (x2,y2,z2,w2))> 0.

This implies that (Ω4,F4) is not Li–Yorke chaotic and
htop(Ω4,F4) = 0 thus ending the proof.
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