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Abstract: In this manuscript, we study the uncertain attacking of some worms in wireless sensor network (WSNs). We established

a mathematical formulation for the WSNs model in the sense of Caputo fractional operator. Applying the fixed point theory, certain

theoretic solutions of existence and uniqueness are considered for the fractional model. In addition, to investigate reproduction number,

local stability and Hyers-Ulam stability of the proposed model. Furthermore, Corrector-Predictor algorithm is utilized for fractional

dynamics and numerical solutions.
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1 Introduction, motivation and preliminaries

A computer worm is a self-reprodusing program that is able to spread and copy itself without the help of any other
program. Worms use a software or operating system to replicate itself, relying on security holes or policy flaws on the
target software or operating systems to access it, such as the instinctive file receiving and sending attributes found on many
devices. It will use this device as a host to scan and infect the other machine. It can replicate itself very rapidly. Thus,
continuous replication and infection of this virus to other software programs can be harmfull for the computer users. A
worm can control and infect more and more machines in a short time. Moreover, new type viruses are continuously created
WSNs have obtained considerable attention because of their large number of applications in earthquake measurements
to warfare, military and civil areas [1]. The sensor nodes are alluring targets for software attacks.The reliability and
unification of the computer and WSNs is in danger due to the cyber attack by worm. Computer worms are also a type of
computer virus, but there are some aspects that differenciate computer worms from regular viruses. A main dissimilarity is
the fact that viruses propagate through human activity as opening a file, running a program, etc while computer worms can
replicate itself without human initiation [2,3,4] . Recently, the new type of worms exposure have seen which especially
targets movable devices, for instance laptops, mobile, etc. The new characteristic of these worms is that the internet
connection is not required for their replication. They can propagate itself through wireless network technology, such as
Private hotspot, Bluetooth or Wi-Fi [5,6]. The more use of malicious code to transfer large number of unnecessary email
for profit is also a thereat for WSNs. The model SEIR analysed by Yan and Liu [7] presumes that the recovery hosts
acuire permanent immunity which is not compatible with real state. In order to avoid this condition, a SEIRS model
with immune and latent periods proposed by Mishra and Saini [8], which can disclose common worm replication. In last
few years, fusion of virus propagation and is became a hot research topic for instance, quarantine [9,10,11] and virus
immunization [12,13,14].The replicating dynamics of a mobile sensor worm and local defending strategy to recover the
network is propagated from the microscopic point of view by Wang et al. [15]. The epidemic behavior and the effect of
digital worms with node distributed density and different communication radius by Akansha et al.[16]. They analysed the
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usefulness of epidemic model to transfering the data in WSNs and also studied the stability theory of proposed model.
The random jammming attacks can target media access control (MAC)/link layers and physical condition of all nodes
in a WSNss, nevertheless computing power of the machines. The effect of theses random jammming attacks in WSNs
is studied by Mishra et al. [17]. To study the effect of energy conservation in the situation of worm attacks in WSNs
a model on predator–prey dynamics is proposed by Mishra and Keshri[18]. They also established different equilibrium
points for stability conditions. The spread of worms of the type of PLC-PC a mathematical model is proposed by Yao et
al.[19] in ICS network and this model also can be used to explain the interaction between different defense strategies and
worm epidemics. The existence and local stability of endemic equilibrium of Hopf bifurcation is established by Zhang
et al.[20] by using the center manifold theorem and normal form theory. An optimal control approach is used to reduce
the propagation of malware in WSNs. The node-based epidemic modeling technique is used to study the malware trace-
patch model with geometrical boundaries for sensors by Muthukrishnan et al. [21]. The effect of the MAC apparatus on
virus replication in WSNs with limited communication capacity and uniform random distribution based on the Waxman
algorithm is studied by Jiang et al.[22]. Ganeshan and Selvan [23] discussed the analytical solution for the WSNs model
by using the Homotopy Perturbation Method. The solution of network access control model involving fractional derivative
is established with help of fractional natural decomposition method by Ilhan [24]. An optimal control strategy is used to
control the propegation of the virus and dynamic analysis of SEIR model is discussed by Liu et al. [25] with the help of
the Pontryagin maximum principle. The EU of soution is established with technique of contraction principle for fuzzy
fractional SIQR worm propagation WSNs model involving Caputo Atangana-Baleanu derivatives by Dong et al. [26]. The
different type of fractional differential equations and fractional order model under different conditions has been analysed
widely [27,28,29,30,31,32]. An epidemic model which express the generation dynamics of worm and consumption of
sensor nodes energy because of worm attack is proposed by Awasthi et al.[33]. The charging method of sensor nodes and
consumption of energy by sensor nodes due to worms attack in WSNs is discussed in this model.
Motivated by the above mention work, in this article, we describe the uncertain attacking nature of some worms in WSNs.
The proposed mathematical model advances the existing integer-order model on possible worms in WSNs. We solve
the projected model for analyzing the dynamical behaviour of worms propagation within the frame of Caputo fractional
derivative. The projected model can boost anti-virus power of the network and permit the system to modify elasticity
to various worms by initiating a preservation tool in the sleep nodes of WSNs. As in the cyber world immunization is
not permanent, the nodes are temporarily resistant and subsequently become susceptible towards the attainable attack of
worms. The EU of the solutions of the proposed model is analysed using the fixed point theorems. The projected model
will be significant to outline and examine the fact for WSNs and communication network. So the fractional-order model
presented in (1) is as follows:



























cDωS =A−βSI− µS−pS+ δR+ηV t ∈ [0,b],
cDωE = βSI− (µ +α)E
cDωI = αE− (µ + ε + γ)I
cDωR = γI− (µ + δ )R
cDωV = pS− (µ +η)V

(1)

with initial conditions

S(0) = S0 ≥ 0; I(0) = I0 ≥ 0; E(0) = E0 ≥ 0; R(0) =R0 ≥ 0; V(0) = V0 ≥ 0 and t ∈ [0,b], b ∈ R
+
.

The operator cDω denotes the Caputo fractional-order derivative of order 0 ≤ ω < 1. At time t, S(t) denote the number
of susceptible, E(t) represent the exposed nodes, infectious are represented by I(t), R(t) are recovered nodes and V(t)
is the number of vaccinated nodes. Also assume that N = S+E+I+R+V.

Description of model parameters Description of parameters involved in model (1) is given in the following table:

Now,
cDωN =A− µN− εI.

If we avoid attacks, then number of node approaches the transferring proportions A
µ . The fractional differential equation

for N gives the solution of (1) in region N, where

N= {(S,E,I,R,V) : S ≥ 0,E ≥ 0,I ≥ 0,R ≥ 0,V ≥ 0, S+E+I+R+V ≤
A

µ
}.
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Table 1: Description of Parameters involved in model (1).

Parameter Description
A is the involvement of new sensor nodes to the population,

γ is the recovery rate,

p is the rate coefficient of vaccination for the susceptible nodes,

ε the crashing rate due to attack of worms,

η represent the rate of transmission from V-class to S-class,

β denotes the infectivity contact rate,

δ is the transfering rate from R-class to S-class,

µ is the rate of crash of the sensor nodes because of hardware/software problem,

α is the rate of transmission from E-class to I-class,

This article is arranged as: Section 2nd discusses the essential preliminaries and some important results. In the next
section, we establish the EU results of the model (1). Section 4th and Section 5th are devoted to examining the local
and Ulam-Hyers stability of the model (1) using the concept of basic reproduction number R0 and Ulam-Hyers stability
criteria, respectively. In the final analysis, we perform numerical simulations using the Corrector-Predictor algorithm and
discuss obtained results with the help of graphs.

2 Auxiliary results

Here, we offer desired lemmas, theorems and some definitions, which are important in obtaining the existence of solutions.
Definition 2.1.[34] For a function θ ∗ : (0,+∞)−→ R, Riemann-Liouville integral of fractional order δ > 0 is defined as

Iδ θ ∗(t) =
1

Γ (δ )

∫ t

0
(t−ν)δ−1θ ∗(ν)dν, δ > 0,

provided, that right side of the above equation is pointwise defined on(0,+∞).

Definition 2.2.[34] For real valued function θ ∗ : (0,+∞)−→R, the Caputo’s derivative of fractional order δ ∈R (δ > 0),
is defined as

cDδ θ ∗(t) =
1

Γ (m− δ )

∫ t

0
(t−ν)m−δ−1(θ ∗)m(ν)dν, m− 1< δ <m, m= [δ ]+ 1,

where integral exist on (0,+∞) and [δ ] represent the greatest-integer, provided that θ ∗ is m-times continuously
differentiable on (0,+∞).

Lemma 2.1.[35] Let θ ∗(t) ∈Cm−1 and κ ∈ (m− 1,m], then

IκDκθ ∗(ν) = θ ∗(ν)+a0+a1ν +a2ν2+a3ν3+ ...+am−1ν
m−1

,

for the aj ∈ R where j = 0,1,2, ...,m− 1.

Lemma 2.2.[36]Generalized Mean Value Theorem: Let f(t) ∈C[a,b] and Dω
t f(t) ∈ (a,b]. Then for 0 < ω ≤ 1,

f(t)− f(a) =
1

Γ (ω)
Dω

t f(η)(t−a)ω
, 0 ≤ η ≤ t,∀t ∈ (a,b].

Theorem 2.1. (Krasnoselkii Fixed Point Theorem)[37] Let S is a nonempty, closed, bounded and convex subset of a
Banach space E. Let A1,A2 be the operators from S to E such that:
(i) A1x+A2y ∈ S whenever x,y ∈ S;
(ii) A1 is continuous and compact;
(iii) A2 is a contraction map.
Then there exists z ∈ S such that z = A1z+A2z.
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3 Existence of solutions

Here we establish the EU result of model (1) with help of fixed point theorems. Let us reformulated the system (1) in
compact form for easy description. Let

ℵ(t) = [S(t),E(t),I(t),R(t),V(t)]T and

H
(

t,ℵ(t)
)

= [Ψ1(t,ℵ(t)),Ψ2(t,ℵ(t)),Ψ3(t,ℵ(t)),Ψ4(t,ℵ(t)),Ψ5(t,ℵ(t))]T ,

where
Ψ1(t,ℵ(t)) =A−βSI− µS−pS+ δR+ηV

Ψ2(t,ℵ(t)) = βSI− (µ +α)E

Ψ3(t,ℵ(t)) = αE− (µ + ε + γ)I

Ψ4(t,ℵ(t)) = γI− (µ + δ )R

Ψ5(t,ℵ(t)) = pS− (µ +η)V

So the dynamical system of equation (1) can be write as:

cDωℵ(t) =H
(

t,ℵ(t)
)

; ℵ(0) = ℵ0 ≥ 0, t ∈ [0,b], 0 < ω ≤ 1. (2)

Applying the integral operator Iω on equation (3). Then equation (3) is equivalent to the integral equation

ℵ(t) = ℵ0 +
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ(ς)
)

dς . (3)

Lemma 3.1. The function H
(

t,ℵ(t)
)

defined above satisfies

|H(t,ℵ)−H(t,ℵ̄)| ≤LH|ℵ− ℵ̄|, t ∈ [0,b],

for some LH ≥ 0.
Proof. By the definition of function H

(

t,ℵ(t)
)

,

‖H
(

t,ℵ(t)
)

−H
(

t,ℵ̄(t)
)

‖= sup
t∈[0,b]

5

∑
i=1

∣

∣

∣Ψi(t,ℵ(t))−Ψi(t,ℵ̄(t))
∣

∣

∣ (4)

First we find the,

∣

∣Ψi(t,ℵ(t))−Ψi(t,ℵ̄(t))
∣

∣≤ β |SI− S̄Ī|+(µ +p)|S− S̄|+ δ |R− R̄|+η |V− V̄| (5)

However
|SI− S̄Ī|= |SI− S̄Ī−SĪ+SĪ|

≤ f1|I− Ī|+ f2|S− S̄|

with f1 = sup
t∈[0,b]

|S(t)| and f2 = sup
t∈[0,b]

|Ī(t)|

Therefore Equ. (5) implies that

∣

∣Ψ1(t,ℵ(t))−Ψ1(t,ℵ̄(t))
∣

∣ ≤ β
(

f1|I− Ī|+ f2|S− S̄|
)

+(µ +p)|S− S̄|+ δ |R− R̄|+η |V− V̄|

≤
(

β f2 + µ +p
)

|S− S̄|+β f1|I− Ī|+ δ |R− R̄|+η |V− V̄|.

∣

∣Ψ1(t,ℵ(t))−Ψ1(t,ℵ̄(t))
∣

∣≤L1

(

|S− S̄|+ |I− Ī|+ |R− R̄|+ |V− V̄|
)

,

where,

L1 = sup
t∈[0,b]

{

β f1 +β f2

}

+ µ +p+ δ +η .
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Similarly,
∣

∣Ψ2(t,ℵ(t))−Ψ2(t,ℵ̄(t))
∣

∣≤L2

(

|S− S̄|+ |I− Ī|+ |E− Ē|
)

;

∣

∣Ψ3(t,ℵ(t))−Ψ3(t,ℵ̄(t))
∣

∣≤L3

(

|I− Ī|+ |E− Ē|
)

;

∣

∣Ψ4(t,ℵ(t))−Ψ4(t,ℵ̄(t))
∣

∣≤L4

(

|I− Ī|+ |R− R̄|
)

;

∣

∣Ψ5(t,ℵ(t))−Ψ5(t,ℵ̄(t))
∣

∣≤L5

(

|S− S̄|+ |V− V̄|
)

;

where,

L2 = sup
t∈[0,b]

{

β f1 +β f2

}

+ µ +α;

L3 = µ + ε + γ +α;

L4 = µ + δ + γ;

L5 = µ +η +p.

Consequently,

‖H
(

t,ℵ(t)
)

−H
(

t,ℵ̄(t)
)

‖= sup
t∈[0,b]

{

L1 +L2 +L3 +L4 +L5

}

[

|S− S̄|+ |E− Ē|

+ |I− Ī|+ |R− R̄|+ |V− V̄|
]

≤LH‖ℵ− ℵ̄‖,

with LH =L1 +L2 +L3 +L4 +L5.
This complete the proof.
Theorem 3.1. Let us consider that Lemma 3.1. holds. Then problem (1) has at least one solution defined on J= [0,b].
Proof We shall examine the model (1) in the form of integral equation. For this aim, let X =C

(

[0,b],R
)

; X denote the
Banach space of all functions from [0,b] to R, which are continuous and endowed with the norm

‖ℵ‖X = sup
t∈[0,b]

{|ℵ(t)|},

where

|ℵ(t)|= |S(t)|+ |E(t)|+ |I(t)|+ |R(t)|+ |V(t)|.

Consider BΩ = {ℵ : ‖ℵ‖ ≤ Ω} is closed, bounded and convex set with Ω ≥
‖ℵ0‖+H0Λ

1−LHΛ
,

where Λ =
(b)ω

Γ (ω + 1)
.

Define an operator F : X −→X as

Fℵ(t) = ℵ0 +
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ(ς)
)

dς . (6)

Also, define two operator F1andF2 as

F1ℵ(t) = ℵ0, t ∈ J.

F2ℵ(t) =
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ(ς)
)

dς .

Now we will show that operator F1 and F2 satisfy all requirements of Theorem 2.1. To achieve this goal we offer the
proof in following steps as:

1.To prove F1ℵ1 +F2ℵ2 ∈ BΩ .
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‖F1ℵ1 +F2ℵ2‖ ≤ Ω where Ω ∈ BΩ ,

For any ℵ1,ℵ2 ∈ BΩ

‖F1ℵ1 +F2ℵ2‖

= sup
t∈[0,b]

{∣

∣

∣

∣

ℵ0 +
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ2(ς)
)

dς

∣

∣

∣

∣

≤ sup
t∈[0,b]

{

∣

∣ℵ0

∣

∣+
1

Γ (ω)

∫ t

0
(t− ς)ω−1

∣

∣

∣H
(

ς ,ℵ2(ς)−H
(

ς ,ℵ2(ς)−H
(

ς ,ℵ2(ς)
)

∣

∣

∣dς

}

≤ ‖ℵ0‖+
(

LH‖ℵ2‖+H0

)

sup
t∈[0,b]

{

1

Γ (ω)

∫ t

0
(t− ς)ω−1dς

}

≤ ‖ℵ0‖+

(

LH‖ℵ2‖+H0

)

Γ (ω + 1)
(b)ω

≤ ‖ℵ0‖+

(

LHΩ +H0

)

Γ (ω + 1)
(b)ω

≤ Ω .

This confirms that F1ℵ1 +F2ℵ2 ∈ BΩ .

It is obvious, F1 is contraction map.
2.We show that F2 is relatively compact.

To prove F2 is relatively compact. We show that F2 is continuous, uniform bounded and equicontinuous.
ℵ(t) is continuous, then F2ℵ(t) is continuous.
Next, ℵ(t) ∈ BΩ , we have

‖F2ℵ‖= sup
t∈[0,b]

{∣

∣

∣

∣

1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ(ς)
)

dς

∣

∣

∣

∣

}

≤ sup
t∈[0,b]

{

1

Γ (ω)

∫ t

0
(t− ς)ω−1

∣

∣

∣H
(

ς ,ℵ(ς)−H
(

ς ,ℵ(ς)−H
(

ς ,ℵ(ς)
)

∣

∣

∣dς

}

≤
(

LH‖ℵ‖+H0

)

sup
t∈[0,b]

{

1

Γ (ω)

∫ t

0
(t− ς)ω−1dς

}

≤

(

LH‖ℵ‖+H0

)

Γ (ω + 1)
(b)ω

≤

(

LHΩ +H0

)

Γ (ω + 1)
(b)ω

< ∞.

which shows that F2 is bounded on BΩ .
For any 0 < t1 < t2 < t < 1, we have

‖F2ℵ(t2)−F2ℵ(t1)‖

≤
1

Γ (ω)

∫ t2

t1

(t2− ς)ω−1
∣

∣H
(

ς ,ℵ(ς)
)∣

∣dς +
1

Γ (ω)

∫ t1

0
(t1− ς)ω−1 − (t2− ς)ω−1|H

(

ς ,ℵ(ς)
)∣

∣dς

≤

(

LHΩ +H0

)

Γ (ω + 1)
[(t2− t1)

ω +(tω
1 − tω

2 )+ (t2− t1)
ω ],

‖F2ℵ(t2)−F2ℵ(t1)‖ −→ 0 as t2 −→ t1. Consequently, F2 is equicontinuous operator on BΩ . Therefore by the
Arzela-Ascoli theorem F2 is relatively compact on BΩ . Hence by theorem (2.1) F has at least one fixed point. Thus
ℵ is that fixed point of F. Consequently, u is solution of equ. (1).
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3.1 Uniqueness result

Here, we will investigate the uniqueness of solutions of equation (1). Then the problem (1) reduce to the second kind
hybrid fractional differential equation

Theorem 3.2. Let us assume that Lemma(3.1) holds. Then the projected model (1) has unique solution on [0,b], if

LH
(b)ω

Γ (ω + 1)
=LHΛ < 1, (7)

holds and LH =L1 +L2 +L3 +L4 +L5.
Proof. Let the operator F : X −→X defined by (6)

We show that F is uniform bounded operator. Next, ℵ(t) ∈ BΩ , we have

‖Fℵ‖ = sup
t∈[0,b]

{∣

∣

∣

∣

1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ(ς)
)

dς

∣

∣

∣

∣

}

≤ sup
t∈[0,b]

{

ℵ0 +
1

Γ (ω)

∫ t

0
(t− ς)ω−1

∣

∣

∣H
(

ς ,ℵ(ς)−H
(

ς ,ℵ(ς)−H
(

ς ,ℵ(ς)
)

∣

∣

∣dς

}

≤ ‖ℵ0‖+
(

LH‖ℵ‖+H0

)

sup
t∈[0,b]

{

1

Γ (ω)

∫ t

0
(t− ς)ω−1dς

}

≤ ℵ0 ++

(

LH‖ℵ‖+H0

)

Γ (ω + 1)
(b)ω

≤ ℵ0 ++

(

LHΩ +H0

)

Γ (ω + 1)
(b)ω

< ∞.

which shows that F is bounded on BΩ .
Next, we show that F is contraction map.
For each ℵ,ℵ1 ∈X and using Lemma (3.1), we have

‖Fℵ1 −Fℵ2‖= sup
t∈[0,b]

{∣

∣

∣

∣

ℵ0 +
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ1(ς)
)

dς −ℵ0 −
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ2(ς)
)

dς

∣

∣

∣

∣

}

≤ sup
t∈[0,b]

{

1

Γ (ω)

∫ t

0
(t− ς)ω−1

∣

∣

∣H
(

ς ,ℵ1(ς)−H
(

ς ,ℵ2(ς)
)

∣

∣

∣dς

}

≤
(

LH‖ℵ1 −ℵ2‖
)

sup
t∈[0,b]

{

1

Γ (ω)

∫ t

0
(t− ς)ω−1dς

}

≤LH
(b)ω

Γ (ω + 1)
‖ℵ1 −ℵ2‖

=LHΛ‖ℵ1 −ℵ2‖,

but in (7) assumed that LH =L1 +L2 +L3 +L4 +L5. Hence by (7), F is contraction map. Consequently, Banach
contraction mapping principle implies that F has a unique fixed point, which is unique solution for projected model 1.

4 Worm free equilibrium

For WFE, we have cDωS = 0, cDωE = 0, cDωI = 0, cDωR = 0 and cDωV = 0 and after solving , we have WFE

point as: P =
(

A(µ+η)
µ(µ+η+p) ,0,0,0,

pA
(µ+δ )(µ+p)−pη

)

for worm free state. Here we examine local asymptomatic stability of

the disease model (1) with the help of basic reproduction number R0. The infected subsystem of model (1) can be written
as

cDωℵ = F−V,

where,

F=

(

0 β
0 0

)

,
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and

V =

(

µ +α β
−α µ + ε + γ

)

.

The basic reproduction number R0 is the largest eigen value of the matrix FV
−1. We compute FV−1 as:

FV
−1 =







β α

(µ +α)(µ + ε + γ)

β (µ +α)

(µ +α)(µ + ε + γ)

0 0






.

The characteristic polynomial of above matrix is

λ 2 −
β α

(µ +α)(µ + ε + γ)
λ = 0

The basic reproduction number R0 = max{λ1,λ2} is given by

R0 =
β α

(µ +α)(µ + ε + γ)
. (8)

Theorem 4.1 The WFE of the projected model (1) is locally asymptomatically stable whenever R0 < 1
Proof. At WFE point P, the Jacobian matrix is

J=











































−(µ +p) 0
−βA(µ +η)

µ(µ +η +p)
δ η

0 −(µ +α)
−βA(µ +η)

µ(µ +η +p)
0 0

0 α −(µ +η +p) 0 0

0 0 γ −(µ + δ ) 0

p 0 0 0 −(µ +η)











































. (9)

Since eigen values of (9) are:

−(µ +p),−(µ +η +p),−(µ +α),−(µ + δ ) and − (µ +η)

Hence all eigen values are negative. As a result of Routh-Hurwirtz criteria, all the eigen values of Jacobian matrix J in (9)
have a negative real part. Therefore R0 < 1. Hence the proposed model (1) is locally asymptotically stable at equilibrium
point P.

5 HU-stability

Following [36], in this section, we check out fractional-order model (1) for the global stability, within the frame of Ulam-
Hyers stability criteria.
Definition 5.1[38] The system (1) is HU stable if ∃ ∆∗ > 0 and following hold true: for some ε∗

If,
∣

∣

cDω ℵ(t)−H
(

t,ℵ(t)
)∣

∣≤ ε∗, (10)

then ∃ a continuous function ℵ̄(t), which satisfy the model (1) with intial condition:

ℵ(0) = ℵ̄(0) (11)

such that
|ℵ(t)− ℵ̄(t)| ≤ ∆∗ε∗. (12)
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A function ℵ̄ is a solution of Equ. (10), if there exist g(t) ∈C[0,b] such that g(0) = 0 with the following properties.

|g(t)| ≤ ε∗1 , for t ∈ [0,b] and ε∗1 > 0

Lemma 5.1 The solution of the problem

cDω ℵ̄(t) =H
(

t,ℵ̄(t)
)

+g(t),

ℵ̄(0) = ℵ̄0

(13)

satisfies the given relation

|ℵ(t)− ℵ̄(t)| ≤ ∆∗ε∗.

Theorem 5.2. Consider that Lemma(3.1) holds. Then the model 1 will be HU stable.
Proof: For the HU stability of the problem (1). Let ℵ̄(t) ∈ X be the solution of the inequality 10 and the function
ℵ(t) ∈X is a unique solution of (1) with the condition

ℵ̄(0) = ℵ(0). (14)

That is

ℵ(t) = ℵ0 +
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ(ς)
)

dς . (15)

Due to (14), ℵ̄(0) = ℵ(0), then the equ. (15) becomes

ℵ(t) = ℵ̄0 +
1

Γ (ω)

∫ t

0
(t− ς)ω−1H

(

ς ,ℵ(ς)
)

dς .

|ℵ̄(t)−ℵ(t)| ≤ |ℵ̄0 −ℵ0|+ sup
t∈[0,b]

{

1

Γ (ω)

∫ t

0
(t− ς)ω−1|H

(

ς ,ℵ̄(ς)−H
(

ς ,ℵ(ς)|
)

dς

+
1

Γ (ω)

∫ t

0
(t− ς)ω−1|g(ς)|dς

}

≤LH
(b)ω

Γ (ω + 1)
‖ℵ̄−ℵ‖+

bω

Γ (ω + 1)
ε∗1 ||

=LHΛ‖ℵ̄−ℵ‖+Λε∗1 ,

which implies that

‖ℵ̄−ℵ‖ ≤
Λε∗1

1−LHΛ
.

Due to equ.(7), LHΛ < 1. For λ =
Λ

1−LHΛ
,

we have

‖ℵ̄−ℵ‖ ≤ λ ε∗1 .

Hence the model (1) is HU stable.

6 Numerical solution of the projected model using predictor-corrector algorithm

In this section, we find numerical solution of the model (1) in Caputo’s sense using Adams type Predictor-Corrector
iterative scheme [39,40]. The proposed model is defined as

cDωℵ(t) =H
(

t,ℵ(t)
)

; ℵ(0) = ℵ0 ≥ 0, t ∈ [0,b], 0 < ω ≤ 1. (16)

Consider the uniform grid {tn = nh; n = 0,1,2, · · · ,N} where n and N are integers such that h =
b

n
denotes the step size.

Suppose we have already calculated the approximations ℵh(ti) ≈ ℵ(ti), i = 0,1,2, · · · ,n. We calculate ℵh(tn+1) using
the integral equation equivalent to the Eq.(16).
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ℵh(tn+1) =
[ω]−1

∑
k=0

tk
n+1ℵk

0

k!
+

hω

Γ (ω + 2)

[

H
(

tn+1,ℵ
p
h(tn+1)

)

+
n

∑
i=0

pi,n+1H
(

ti,ℵh(ti)
)

]

,

where

pi,n+1 =











nω+1 − (n−ω)(n+ 1)ω , if i = 0,

(n− i+ 2)ω+1 +(n− i)ω+1 − 2(n− i+ 1)ω+1, if 1 ≤ i ≤ n,

1, if i = n+ 1.

The Predictor-formula is derived as:

ℵ
p
h(tn+1) =

[ω]−1

∑
k=0

tk
n+1

k!
+

1

Γ (ω)

n

∑
i=0

qi,n+1H(ti,ℵh(ti)),

where

qi,n+1 =
hω

ω

[

(n− i+ 1)ω − (n− i)ω
]

.

Thus the corrector formula for the projected model (1.1) is

Sh(tn+1) =
[ω]−1

∑
k=0

tk
n+1S

k
0

k!
+

hω

Γ (ω + 2)

[

Ψ1

(

tn+1,S
p
h (tn+1)

)

+
n

∑
i=0

pi,n+1Ψ1

(

ti,Sh(ti)
)

]

,

Eh(tn+1) =
[ω]−1

∑
k=0

tk
n+1E

k
0

k!
+

hω

Γ (ω + 2)

[

Ψ3

(

tn+1,E
p

h (tn+1)
)

+
n

∑
i=0

pi,n+1Ψ3

(

ti,Eh(ti)
)

]

,

Ih(tn+1) =
[ω]−1

∑
k=0

tk
n+1I

k
0

k!
+

hω

Γ (ω + 2)

[

Ψ2

(

tn+1,I
p
h (tn+1)

)

+
n

∑
i=0

pi,n+1Ψ2

(

ti, Ih(ti)
)

]

,

Rh(tn+1) =
[ω]−1

∑
k=0

tk
n+1Rk

0

k!
+

hω

Γ (ω + 2)

[

Ψ4

(

tn+1,R
p
h (tn+1)

)

+
n

∑
i=0

pi,n+1Ψ4

(

ti,Rh(ti)
)

]

,

Vh(tn+1) =
[ω]−1

∑
k=0

tk
n+1V

k
0

k!
+

hω

Γ (ω + 2)

[

Ψ5

(

tn+1,V
p

h (tn+1)
)

+
n

∑
i=0

pi,n+1Ψ5

(

ti,Vh(ti)
)

]

,

where

S
p
h (tn+1) =

[ω]−1

∑
k=0

tk
n+1

k!
+

1

Γ (ω)

n

∑
i=0

qi,n+1Ψ1(ti,Sh(ti)),

E
p
h (tn+1) =

[ω]−1

∑
k=0

tk
n+1

k!
+

1

Γ (ω)

n

∑
i=0

qi,n+1Ψ3(ti,Eh(ti)),

I
p
h (tn+1) =

[ω]−1

∑
k=0

tk
n+1

k!
+

1

Γ (ω)

n

∑
i=0

qi,n+1Ψ2(ti,Ih(ti)),

R
p
h (tn+1) =

[ω]−1

∑
k=0

tk
n+1

k!
+

1

Γ (ω)

n

∑
i=0

qi,n+1Ψ4(ti,Rh(ti)),

V
p

h (tn+1) =
[ω]−1

∑
k=0

tk
n+1

k!
+

1

Γ (ω)

n

∑
i=0

qi,n+1Ψ5(ti,Vh(ti)).

7 Computational discussion of the model

In this section, using variable and parameter values, we investigate the computational behavior of solutions of fractional
order WSNs model. The WSNs can be utilized for a variety of objectives, including monitoring terrorist activities in
remote locations and force protection. These networks, which are outfitted with suitable sensors, can detect hostile
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movement, identify enemy forces, and analyze their movement and progress. Recently, WSNs is widely used in different
areas such as healthcare, precision agriculture and smart cities. We check the dynamical behavior of fractional order
WSNs model by using different values of fractional order and parameter values by the use of Predictor-Corrector method
in sense of Caputo operator.
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Fig. 1: A combine numerical computation of all classes for the WSNs model.

In Fig.1, Numerical plotting of combine classes, where S susceptible class, E class of exposed individual, I infected
papulation, R recovered rate, V vaccinated size. Assuming the WSNs model’s parametric parameters such,
A = 0.33, µ = 0.003, β = 0.1, p = 0.15, η = 0.06, δ = 0.3, α = 0.25, ε = 0.07, γ = 0.4 and assuming initial
conditions for S(0) = 100, E(0) = 3, I(0) = 1, R(0) = 0 and V(0) = 0. In Fig.2, Numerical plotting of susceptible
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Fig. 2: Computational comparison of susceptible class with the real data in the fractional order WSNs model.

class. As the fractional order ω = 0.940,0.960,0.980 increasing we see the effect of fractional order operator that the
graph curve going close to real data. By using the parametric values in the Caputo fractional order WSNs model the
parameter values, A = 0.33, µ = 0.003, β = 0.1, p = 0.15, η = 0.06, δ = 0.3, α = 0.25, ε = 0.07, γ = 0.4 and
assuming initial conditions for S(0) = 100, E(0) = 3, I(0) = 1, R(0) = 0 and V(0) = 0. In Fig.3, Numerical plotting
of exposed class. As the fractional order ω = 0.940,0.960,0.980 increasing we see the effect of fractional order operator
that the graph curve going close to real data. By using the parametric values in the Caputo fractional order WSNs model
the parameter values, A = 0.33, µ = 0.003, β = 0.1, p = 0.15, η = 0.06, δ = 0.3, α = 0.25, ε = 0.07, γ = 0.4
and assuming initial conditions for S(0) = 100, E(0) = 3, I(0) = 1, R(0) = 0 and V(0) = 0. In Fig.4, Numerical
plotting of infected class. As the fractional order ω = 0.940,0.960,0.980 increasing we see the effect of fractional order
operator that the graph curve going close to real data. By using the parametric values in the Caputo fractional order
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WSNs model the parameter values,
A = 0.33, µ = 0.003, β = 0.1, p = 0.15, η = 0.06, δ = 0.3, α = 0.25, ε = 0.07, γ = 0.4 and assuming initial
conditions for S(0) = 100, E(0) = 3, I(0) = 1, R(0) = 0 and V(0) = 0. In Fig.5, Numerical plotting of recovered
class. As the fractional order ω = 0.940,0.960,0.980 increasing we see the effect of fractional order operator that the
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Fig. 3: Computational comparison of exposed class with the real data in the fractional order WSNs model.
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Fig. 4: Computational comparison of infected class with the real data in the fractional order WSNs model.
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Fig. 5: Computational comparison of infected class with the real data in the fractional order WSNs model.
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graph curve going close to real data. By using the parametric values in the Caputo fractional order WSNs model the
parameter values, A = 0.33, µ = 0.003, β = 0.1, p = 0.15, η = 0.06, δ = 0.3, α = 0.25, ε = 0.07, γ = 0.4 and
assuming initial conditions for S(0) = 100, E(0) = 3, I(0) = 1, R(0) = 0 and V(0) = 0
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Fig. 6: Computational comparison of vaccinated class with the real data in the fractional order WSNs model.

In Fig.6, Numerical plotting of vaccinated class. As the fractional order ω = 0.940,0.960,0.980 increasing we see
the effect of fractional order operator that the graph curve going close to real data. By using the parametric values in the
Caputo fractional order WSNs model the parameter values,
A = 0.33, µ = 0.003, β = 0.1, p = 0.15, η = 0.06, δ = 0.3, α = 0.25, ε = 0.07, γ = 0.4 and assuming initial
conditions for S(0) = 100, E(0) = 3, I(0) = 1, R(0) = 0 and V(0) = 0.

8 Conclusion

In this article, based on the compartmental model of biological epidemics, we consider fractional order WSNs model of
worms attacking on the sensor nodes. Reproduction number is obtained to understand the spreading and fading of the
worms in the sensor field. We establish that the WFE is asymptotically stable, if reproduction number R0 < 1. Also the
proposed model checked for the Hyres-Ulam stability. The results were simulated using Caputo operator and Corrector-
Predictor method. In the above graphs, different fractional orders have been considered for the results. Furthermore,
some results have been obtained regarding the EU and stability of solutions to the projected model. Finally, numerical
simulations were carried out to show the dynamical behaviours of the fractional-order model using MATLAB. Study
results will assist the software organization develop highly effective antivirus software to minimize attacks of malicious
signals on the sensor nodes. Moreover, study results will provide users with guidelines on proper vaccination and regular
use of antivirus software for preventing malicious attacks from harming their systems.
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