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Abstract: Inthe paper, the authors establish identitiegftime differentiable functions and obtain some integrakjunalities in terms
of supremum norms af-time differentiable functions. These results generaliagrowski’s and Simpson'’s inequalities.

Keywords: integral inequality, differentiable function, identisgipremum norm, Ostrowski's inequality, Simpson’s ineijyal

1 Introduction
Throughout this paper, we use the following notations:

R=(—w,0), Rp=1[0,0), and R; = (0,).

In 1938, Ostrowski proved the following integral
inequality.

Theorem1 ([1,p.468]) Let f: 1 Cc R — R be a
differentiable mapping on°land let gb € 1° with a< b.
If f' : (ab) - R is bounded on (ab), ie,
[1'll0 = SURe(ap) [ T/ (1)] < oo, then

’f(x)—b—ia/:f(t)dt’

- }4_ 1 X_aH—b
14 (b—a)? 2

for x € (a,b) and the constani is sharp in the sense that
it can not be replaced by a smaller one.

In 1976, D. S. Mitrinovic and J. E. Petaric
generalized Ostrowski’s inequality.(l) to one forn-time
differentiable mappings, the case= 2 of which can be
formulated as follows.

Theorem 2 ([1, p. 470]) Let f: [a,b] - R be a twice
differentiable mapping such that”f: (a,b) — R is

)2] (b-a) e (1)

bounded on(a,b), i.e., || "[le = SURc(ap) | T"(t)] < oo,
then

_ _ b
‘f(x)+(x a)f(@)+(b-xf(b) 1a/a f(t)dt‘

b—

b e o

forall x € (a,b).

The following inequality is well-known in the
literature as Simpson’s inequality.

Theorem 3 ([1]) Let f: 1 Cc Rg — R be a four times
continuously differentiable mapping ora,b] and
[ £#1],, = SURe(apy| f@ ()] <. Then

@1 (x-252) i) 52 [ e

(b—a)*
<
— 2880
In [2], the authors presented the following inequalities.

Theorem 4 ([2, Theorem 3.1]) Let f: [a,b] = R be a
mapping such that (F-1)(x) is absolutely continuous on
[a,b] and ") € L ([a,b]). Then for all x€ [a,b] we have

[, @2
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n-1 b X)k+1+( 1)k(x_a)k+1

/ i dt_ (k+1)! 0
f
< ‘(’n_'—:l-’)tx!: [(X_a)n+l+ (b—X)nJrl}
Hf(n>Hm(b_a)n+1 (1.3)
- (n+1)! ’

where||f™|| = supcap |V (t)] < oo
Theorem 5 ([2, Corollary 3.3]) Assume that f is as in

Theoremd, then we have

n 1 b a)k+1 [f<k>(a)+(—1)kf<k>(b)]
k:O (k+1)! 2
e P
< 291 .
(n+1) W, n=2r+1.
For recent refinements, counterparts,

generalizations on this topic, please refer 3h [4], [5],

(6] [7], (8], [9], [10], [11], [12], [13], [14], [19], [16],

[17], [18], [19], [20], [2]] and closely related references

therein.

In this paper, by establishing identities fortime
differentiable functions, we will obtain some integra
inequalities in terms of supremum norms of functions.

2 Integral identities

In order to verify our theorems, the following lemma is

necessary.

Lemmal Let f: [a b] — R be amapping such that¥%)
is absolutely continuous da,b]. If A € R and (" exists
for n € N and is integrable offa, b], then

%a/b F(t)dt
n-1 (_1)k

+k;)m{()(—a)k[x_

- (x—b)k[x— b+ (k+1)A(b—a)]}f®

nl
/Kntx)\

Alf(a)+f(b)] -

— (k+1)A(b—a)]

®dt, (2.1)

where

w[t—a—n/\(b—

a)l;
a)l;

Proof. Whenn = 1, integrating by parts in the right-hand
side of @.1) gives

telax,
Kn(X,t;A) = (t—b)n_l

S lt—b+nA(b—

€ (x,b].

and

1

ml{/ax[t—a—)\(b—a)]f/(t)olt

+/Xb[t—b+)\(b—a)]f/(t)dt}

1 (x—a—A(b-

b—a
+A(b—a)]f(x)+A(b—a)f(b }—i/bf t)dt
— Alf(a)+ f(b)] + _—/ F(t

Whenn = 2, integrating by parts twice in the right-hand
side of @.1) leads to

a)]f(x)+A(b—a)f(a)— [x—b

(1—22)f

-1

M{LXG —a)[t —a—2A (b_a)] f//(t)dt

+/Xb(t —b)ft— b+2)\(b—a)]f”(t)dt}

m{(x_a)[x_a_z)\(b—a)]f’(X)
— (x—h)[x—b+2A (b—a)]f'(x)

—Z/X[t—a—)\(b—a)]f’(t)dt
—Z/b[t—bJr)\(b—a)]f/(t)dt}

2(b_— a) {x=

—b)[x—b+2A(b—

a)lx—a—2A(b—a)]
Q)}f'(x)

1 b
+(1—2)\)f(x)+)\[f(a)+f(b)]—m/a F(t)dt

Whenn=m-1 > 2, suppose that the identit@.Q) is

valid. Whenn = m, we have
ﬂ/x_m—l__ _afm
mb_a) t—a)™ t—a—mA(b—a)]f'™(t)dt
+/ —b+mA(b—a)f )(t)dt}
(-ym*

m{“ &)™ dx—a—mA (b—a)) ™ ¥

— (x—b)™x—b+mA(b—a) fM™Yx)}

X

{ [e-amdm- -
)+

( 1)m 1
" mi(b—a)
—mA(b—a))+ (t—a)] fM™Y(t)dt

UAS
+ (t—b)fm-t (t)dt}

B (_1)m—1
- mi(b—a)

m2

(m—1)(t—b+mA(b—a))

{(x—a)™x—a—mi(b—a)]
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— (X—b)™ x—b+mA (b—a)] } ™Y (x)

(-ym™2 X m-
M=ol AL
—(Mm=1)A(b— a)]f<m—1>(t)dt

+/ —b+ (m-1)A(b—a)] f<m1>(t)dt}
=A[f(a)+ f(b)] +m71(_71)k{(x—a)k[x—a
- k;) (k+1)!(b—a)

— (k+1)A (b—a)] — (x—b)Yx—b
(b—a)]}f

b
>(x)_b%a/a f(t)dt

This means that the identit® (1) holds also fon = m. By
induction, the identityZ.1) holds for alln € N. The proof
of Lemmal is complete.

+(k+1)A

Corollary 1 Under the conditions of Lemmiawe have

Af(a)+f(b ——/bf(t)dt
lb—a)k1l— (k+1)A]

+Z) k+1

e K ST
2.2)

f()(a)

Lb—a)k1+ (~DK[1-2(k+1)
& 2k+H1(k+1)!

_ eyt g bz n-
_n!(b—a){/a t-ay
x [t—a—nA(b—a)] fV(t)dt+

)\[f(a)+f(b)]+(1—2)‘)f(¥> _bi/
(%

)

b
/<a+b)/2(t—b) 1[t—b+n)‘(b—a)]f<)(t)dt},
and
Alf(a)+f(b ——/bf(t)dt
— (K+D)A]
+; k+1) (o) 23
(-

b
o, A e mb-al

where the sum above takésvhen n= 1.

Proof. These are special cases of Lemnia for

x = a, 3P brespectively.

Adding the identitiesZ.2) and .3) and then dividing
by 2 result in the following corollary.

Corollary 2 With the assumptions of Lemrhawe have

Alf(a)+f(b ——/ f(t
- — (k+ 1)A]

Zo k+1

_ n 1
B Z(m!(T—a)/a {(t—b)" Yt —b+nA(b—a)]
+(t—a it
b
B W—a)/a {(b—t)"*t—b+nA(b—a)]

+ (D)™ Yt—a)" t—a—nA(b—a) M (t)dt

[f9(@) + (~1)*F " (b)]

—a—nA(b—a)}f"(t

Corollary 3 Under the conditions of Lemmiawe have
__/ F(t
—i/ Ka(t,xA) /() dt
- b_a A ALPRAN )
b
ALf(8)+ (b)) + (1—21)f (3P —i/ F(t)dt
2 b—a a

Alf(a)+ f(b)]+ (1—2A)f

_ lea{/fm/z[t _a—A(b—a)f(t)dt

b
+ [t—b+)\(b—a)]f’(t)dt},

(ath)/2
/ (t
f'(x)

2
—_—1/bK (t,xA) " (t) dx
_b_a a 2 9 ] )

Alf(@)+ f(b)]+ (1—2))f
_(1—2)\)(2x a— b)

and

b
)\[f(a)+f(b)]+(1—2)\)f(%)> _lea/a f(t)dt

- (atb)/2
_Z(T—la){/a a2 -2t a) @)t

b
2 "
+ (a+b)/2[(t_b) + 22 (b—a)(t—b)]f (t)dt}. (2.4)

Proof. These follow from takingn=1,n=1 andx =
n=2,andn =2 andx = %b in Lemmal respectively.

The following Taylor-like formula with an integral
remainder also holds.
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Corollary 4 Let f: [a,y] — R be a mapping such that™
is absolutely continuous da, y], then for all x [a,y], we
have

fy) = f(a)+(y—aA[f'(a) + '(y)]+
n-1 /_1\k
> ((k+1i)'{(x—a)k[x—a—(k+1))\(y—a)]

0
(Xx—y)x—y+ (k+ DA (y—a) < (x)
+(_1)“/yKn(t,x;A)f<“+1>(t)dt. (2.5)

Proof. This can be deduced from replacirigoy f’ and
lettingb =y in Lemmal.

3 Someintegral inequalitiesin terms of
supremum norms

We are now in a position to establish some integral
inequalities in terms of supremum norms of differentiable
functions.

Theorem 6 Let f: [a,b] — R be an n-time differentiable
function such that -3 (x) is absolutely continuous on
[a,b] and f" € Lo ([a,b]). Then

b
Mf(a)+ f(b)]—b%a/a f(t)dt

(-1 K
+kzom{(x— a) [X— a— (k+ 1))\ (b—a)]

— (x—b)¥x—b+ (k+1)A (b—a)] } M (x)

e

= (n+1)!(b—a)
4n"[A (b— )]+ (b—x)" 1 4 (x—a)™+?
—(n+1A(b—a)[(b—x)"+ (x—a)",
0 <A < Am(Xn);
2n"[A (b—a)|"t

holds for all te [a,b], where ne N, x € [a,b], and

R X—a b—x
)\m(x,n)_mm{ nb—a)’ n(b—a)}’ (3.2)

) x—a b—x
)\M(x,n):max{ n(b—a)’n(b—a)}' (3.3)

Proof. Making use of the identityZ.1) yields

b
xf‘“()—bi £(t)dt
- a
1], /b
—ﬁ/ﬁ [Kn(t,x;A)|dt
F e [ /%0 s
:n!(b_a)Ua(t‘a) t—a—nA(b—a)|dt

/b(b—t)“—1|t —b+nA (b—a)|dt} . (3.4)

A straightforward computation gives

[t-art-a-mo-ad=
2n"[A (b— &)™+ (x—&)"[(x—a) — (n+ 1)A(b—a)]

penexoa, M7 |
(X—;)n b X—a
1 [(N+1)A(b—a)— (x—a)], /\>n(b—a)

and

/b(b_t)“ﬂt “b4nA(b—a)|dt =
2n"[A (b— &)™+ (b—X)"[(b—X) — (N+1)A (b—a)]

n+1 ’
X +n" (b —a)™ AR () — AR (X N)] 0<A < b—x
— (n+1)AM(b—a)" LAl (x;n) — Al )], b _)n ~n(b-a) o
Am(X;n) <A < Au(x;n); —X —a)—(b— —X
(n+D)A(b—a)[(b—x)"+ (x—a)] np1 (MFUAb-a)—(b=X] A>T,
— (b= + (x=a)™ Y, A >Au(xn)
[ ) ] N Substituting the above equations in84) leads to the first
< "]l (b—a) part of the inequality3.1).
-~ (n+1)! We observe thatx —a)" 1+ (b —x)"1 < (b—a)™*?
APATL L1 (NE DA, 0<A < Am(Xn) for all t € [a,b]. Consequently, the second part of the
R B T LS o D inequality @.1) follows. The proof of Theoren®b is
2n"ATTE AT (G N) — AT (X n)] complete
X — (n+1)AN"Ay (% N) — AR(X N, '
Am(X1) < A < A (X n); (3.1) Remark 1 If letting A = 0, then Theorent becomes
(n+DA -1 A >Au(xn) Theoren.
(@© 2015 NSP
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Corollary 5 Under the conditions of Theore@ywe have ‘)\ [f(a)+ f(b)]+(1—2A)f(x)— (-2 )(gx— a-b) f/(x)
b "
a+b 1 b 1 [ " [|eo
AltG@+ o)+ -2 (277) - 52 [ 5al, 0% < gy
160A (b—a))®+ (b—x)°+ (x—a)®
i nzl b a [1+ (—1)k] [1— 2(k+ 1))\] f(k) (a+ b) —3) (b a) [(b—X)Z—F (X— a)Z} ’
241(k+1)! 2 0<A < Am(X2);
£ (b—a)" . J8Ab- )]3+8gb—2a)3[)\|\3|(x;22)—/\%(x 2)]
S Thmenmn — 124 (b—a)’[Af (% 2) — AZ(x2)],
: Am(%2) <A < )\M(x; 2);
2M2AL L 1o 24 1A, 0<A < — 3 (b-a)[(b—x°+ (x—a)’]
x 1 2 (35) —[(b=x7+(x=2a), A>Au(x2)
2n+1A-1, Az 160%41-31, 0<A < An(X2);
3
Proof. The mappindi(x) = (x—a)"+ (b—x)" on [a,b] [ 7o (b — a)? 8’ +8[’\ng 2_) _’\m(z 2)}
has the property < 6 =122 [Au(%:2) = Ap(x2)]
Am(%2) <A <Am(%2);
. a+b b—a)" AA-1 A>Au(x2
infc o n(X) = hn< ! > _ Znil) ’ > (% 2),
and
so we obtaind.5) from (3.1) for x= %b, which completes atb
the proof. ’)\[f(a)+f(b)]+(1—2)\)f (T) - / ‘
Corollary 6 Under the conditions of Theoreywe have 1
11 £7]|eo(b— @)2 64A°+1—-6A, 0<A <=
1 b < I 0= 8" 1 46
Alf(a)+ f(b)]4+(1—2A f(x)—ml/a f(t)dt' 24 6A — 1, )\ZZ’
< 2|(g'|°°) whereAm(x;2) andAw (x; 2) arc defined in(3.2).
2 2 2 Proof. This follows from taking n = 1,2 in the
2/\C§2</\)\—i))(\b&a£)+(b— )"+ (x—a)7, inequality 3.5 and n = 2 in the inequality 8.1
= m tively.
(b— a2{2)\2+)\M(x 1) - A2(x 1) respectively
X =22 [AM(X% 1) — Am(x; 1) ]}, (3.6)  Corollary 8 Under the conditions of Corollarg, we have
Am(%1) <A <Am(x1);
2\ (b—a)?— [(b—x)2+ (x—a)?],
A > A(x: 1[), ) f(y)—f(a)— (y—a)A[f'(a)+ f'(y)]
Proof. This follows from choosingn = 1 in the Nl (_qp)k ‘
inequality B.1). —k;m{(X—a) [x—a—(k+1)A(y—a)]
Remark 2 A simple calculation shows that
—(x— WKy — _ (k+1)
X X—y+ (k+1)A a)| Hf X
(=t (b=x? _ (b= (X_ a+b>2 Oy (DA Gl R
2 4 2 )7 [F+D)|
Choosing A = 0 in (3.6, we obtain Ostrowski's - (n+1)!

inequality(1.2).

Corollary 7 Under the conditions of Theore®.1, we
have

A[f(a)+f(b)]+(1—2/\)f(%’)_b—faff(t)dt’
1

nn[)\ (y_ a)]n+1+ (y_ X)n+1+ (X— a)n+1
—(n+DAy-a)[(y—x)"+ (x—a),
0<A < Am(Xin);
n"[A(y—a)™*
+ nn+1(y a)n+1[)\ n+l( ) o )\r?”lJrl(X; n)]
—(n+1)An(y— a)”“[/\M (% N) = Ap(xn)],
Am(x;n) <A < AM(X; n);

< fll=(b—2) 8A2+1-4), 0<A <5 (n+1))\(Y—a)l[(y X)"+ (>1< a)"
B 4 a) —1 A > } - [(y_x)nJr +(X a)n+ ]
’ 2’ A > Am(xn)
(© 2015 NSP
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||f(n+l)H (y_a)nJrl
= [12]M. Z. Sarikaya and N. Aktan, Math. Comput.

B (n+1)! Modeling 54  (9-10),  2175-2182  (2011).
AnAML L1 (n+ DA, 0<A < An(xn); http://dx.doi.org/10.1016/j.mcm.2011.05.026
2N+l nn+1[)\|cl+1(x; n) _/\rrrm]+1(x; n)] [13]M. Z. Sarikaya, E. Set, and M. E.Ozdemir,
AN (x: AD(x: RGMIA Res. Rep. Coll.13, no. 2, Art. 2 (2010).
X —(N+DNAQAG ) = An(s )], http://rgmia.org/v13n2.php
Am(x;n) <A < Au(xn); [14] S.-H. Wang, B.-Y. Xi, and F. Qi, Int. J. Open Probl. Corhpu
(n+DA -1 A >Au(xn). Sci. Math.5 (4), 47-56 (2012).

[15] S.-H. Wang, B.-Y. Xi, and F. Qi, Analysis (Munict3g (3),
247-262 (2012)http://dx.doi.org/10.1524/anly.2012.1167
. [16] B.-Y. Xi, R.-F. Bai, and F. Qi,
4 Conclusions Aequationes Math. 84 (3), 261-269 (2012).
http://dx.doi.org/10.1007/s00010-011-0114-x
By establishing integral identities fortime differentiable  [17] B.-Y. Xi and F. Qi, Adv. Inequal. Appl2 (1), 1-15 (2013).
functions, the authors obtain several integral ineq@iti [18]B.-Y. Xi and F. Qi, J. Funct. Spaces Appl.

in terms of supremum norms ai-time differentiable 2012, Article ID 980438, 14 pages (2012).
functions. These newly established inequalities germrali http://dx.doi.org/10.1155/2012/9804.38
Ostrowski’s and Simpson’s inequalities. [19] B.-Y. Xi, S.-H. Wang, and F. Qi,

Appl. Math. 3 (12), 1898-1902 (2012).
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ACknOWledgementS Appl. Anal. 2014, Article ID 294739, 5 pages (2012).
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