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Abstract: This paper is devoted to the study of existence of solutionsvio point boundary value problems (P1) for fractional
differential equations of arbitrary order> 2, by applying upper and lower solutions method together withabider’s fixed point
Theorem. First, we transform the posed problem to an ordifirat order initial value problem, that we modify to provestexistence
of solutions for the problem (P1), moreover we give the expéxpression of the upper and lower solutions of probler).(FPhe
obtained results are illustrated by some examples.
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1 Introduction

In this paper we investigate the existence of solutionsHerfollowing two point boundary value problem with higher
order fractional derivative (P1)
DYu(t) + f (t,u(t),D92u(t)) = 0,0<t <1,
u®(0) =0,k=0,1,...n—3,
D 2u(1) = DI tu(0) =0,
DY denotes Riemann-Liouville fractional derivative; 1 < q < n,n= [g]+ 1, > 2, uis the unknown function anél is
a real continuous function d0, 1] x R2.

A variety of techniques are applied to obtain the existeri@hutions for fractional boundary value problems, such
the method of upper and lower solutions, Mawhin theory, figetht theorems. The main idea of the upper and lower
solutions method, is to modify the given problem and proeegkistence results for the modified problem, then establish
the existence of solutions for the given problem. The remialk point in this method is that we don’t prove only the
existence of solution but also we obtain its location betwebat is called the lower and the upper solutions. This ntktho
was introduced by Picard in 1893 and has been developedkat@ragoni. Recently, we find a large number of papers
on ordinary differential equations devoted to this thedr2[3,4,5,6,7,8], but few of them are on differential equations
with fractional order9,10,11,12,13,14,15].

The organization of this paper is as follows. In Section 2,imteoduce some definitions on fractional calculus and
lemmas that will be used later, then we define the upper andrlsalutions. In Section 3, we solve the corresponding
problem of ordefq— 1), then we reduce the problem (P1) to an equivalent first ordglimalue problem that we modify
to conclude the existence of solutions for problem (P1)tifermore we construct the upper and lower solutions for.(P1)
Finally, we give two examples illustrating the obtainedules

2 Preliminaries

We recall the definitions of Riemann-Liouville fractionatégral and derivative, we can find their propertiesli 13].
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Definition 1. Leta > 0, then the Riemann-Liouville fractional integral of a furtstig is defined by

a gy L [ 9
=0 = gy / T 9rals

Definition 2. The Riemann-Liouville fractional derivative of order q osglefined by

_ 1 A\ 9
R~ g (&) L g

where n= [g] + 1.([q] is the integer part of

Lemma 1.The homogenous fractional differential equatiogL@(t) = 0 has a solution

g(t) =t oot 9 2 ctd ",
where, ¢e R,i=1,...nand n=[g] + 1.

Lemma2.Let pg>0, f € Ly[a,b]. Then:

1- 15105 (1) = 1579 (1) = 15,18, f (1) and°Dg, 15, f (t) = f (1), forallt € [a,b].
2-1f p>q> 0, then the formul&Dy, 1 ). f (t) =15, f (t), holds almost everywhere oret[a, b], for f € L1 [a, b] and
it is valid at any pointtc [a,b] if f € C[a,b].
3-1fg>0and p>0then O, (t—a)P *(x) = L (x—a)P 41, D% (t-a)9 ) (x)=0,j=1,2

gLy anny

n.

Definition 3. The functionsxr, 8 € AC"[0, 1] are called lower and upper solutions of problem (P1) respety, if

Dl (t) + f (t,a (t),D%a(t)) >0, O<t<1,
a®(0)=0, k=0, 1 .n—3,
D9 1a(0) <0, DE2qa(1)>0,

IN

and

DIB(t)+ f (t,B (1), qZB(t)) 0, 0<t<1,
®(0) =0, k 01 .n—
(

3,
Dqlpo) 0, B(1) <0,

where AC[0,1] = {u € C™1[0,1],u™ Yabsolutely continuous function da, 1]} .

3 Main Results

First we solve the corresponding boundary value problemadidq— 1). Let (P2) denotes the following problem

DY lu(t) = —v(t), O<t<1,
u® () =0, k=0,1,..n—3. D@ 2u(1)=0.

Lemma 3. The solution of problem (P2) is given by

u t):/olG(t,s)v(s)ds

;{—(t—s)“ﬂ“,sﬂ

where

t4-2 s> t.
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Proof. Using the properties of the fractional calculus, we get

n-1
u(t) = -1t + Y otttk
=1

—2 1 1
rz:—l)/o v(s)ds:/o G(t,s)v(s)ds

The properties of the Green function are given in the follmpiemma.

Applying the boundary conditions it yields

u(t) = —19v(t) +

The proof is completed.

Lemma 4. The function G is continuous, nonnegative and satisfigs3p< Fon VSt e [0,1].

Proof. The proof is direct,therefore we omit it.

Define the operators andK by

/Gts 9ds Kv(t) = /tlv(s)ds

From Lemma 3, we get(t) = Tv(t). The boundary conditioB(4-2u(1) = 0, impliesKv (t) = f*v(s)ds= D@ 2u(t).
From here and taking into account tfizft—1u(0) = 0, we see that problem (P1) is equivalent to the following firsteo
initial value problem that we denote by (P3)

Vi(t) = f(t,Tv(t),Kv(t)),
v(0) = 0.
We have the following Lemmas.

Lemma 5. Assume that there exists a constant 8, such that f(t,x,y) <A, for0<t<1,0<x< ( andO <y<A
Then problem (P1) has an upper solution.

Proof.Let ¢ (t) = At, thenT¢ (t) = Afo1 (t,s)sds< andK¢ (t) <A, then

( 1)
¢’ (t)—f(t,To(t),Ke¢ (t)) >0andg (0) > 0. This implies thai3 (t) = T¢ (t) is an upper solution of problem (P1).

Lemma 6.Assume that there exists a constart B, such that ft,x,y) >B,for0<t <1, 2,_( 7 SX< Oand3 B<y<o,
then problem (P1) has a lower solution.

Proof.Let y (t) = Bt, s, Ty (t) = B Jg G(t,5) sds> 52— andKy(t) > §, then

(
P t) -, TYl),Ky(t)) <0andy(0) <0. Thisimplies thair (t) = Ty (t) is a lower solution of problem (P1).
Lemma 7.Under the assumptions of Lemmas 5 and 6, the upper and lowegicsts of problem (P1) satisfy
a(t)<B(t), DI 1B (t) <DYta(t), 0<t <1,

Proof. From Lemmas 5 and 6 and their proofs, we know tBat) = T¢ (t) anda (t) = Ty (t) are upper and lower
solutions of problem (P1) respectively. Simple computegigive

At9-2 2t
PO~ g3 (*aa-m) 2°

Btd—2 2t2
e ey (1_q(<1—1)> =0

DI"1B(t) = —¢ (1) = —At < —Bt = (t) = D4 ta (1).

This completes the proof.
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Define the operatdf : C[0,1] — C[0,1],

(Fv)(t) = (&, T (min[g, (max(v, g))]) ,K (min[¢, (max(v, ))]))
and consider the modified problem (P4) of the problem (P3)

V()= (Fv)(),0<t<1,
v(0) =0.

Next we give the relation between the solutions of probled) @d those of problem (P1).

Lemma 8.If v is a solution of problem (P4) then=d Tv is a solution of problem (P1) satisfyirg(t) < u(t) < B (t) and
DI-1B(t) <D lu(t) < D% la(t),0<t < 1.

Proof.Let v be a solution of problem (P4), them(t) < v(t) < ¢ (t),t € [0,1]. In fact, suppose that there exists= (0, 1]
such thatv(ty) > ¢ (t1), setw(t) = v(t) — ¢ (t), from the initial condition we haveo(0) = 0. From the continuity of
w we conclude that there exist € [0,t1) andts € [t1,1] such thatw(tz) = 0 andw(t) > O, t € [tp,t3]. Moreover we
havew' (t) =V (t) — ¢’ (t) = f (t, T (min[¢, (max(v, Y))]),K (min[¢, (max(v,y))])) + DIB (t) <0, t € [t,t3], this with
w(tz) = 0 implies thatw is decreasing ofty,t3], and therv(t) < ¢ (t),t € [t2,t3], this contradict the fact(t1) > ¢ (t1).
Similarly we prove thaty (t) <v(t),t € [0,1]. From the above discussion, it yieldst) = f (t, Tv(t),Kv(t)) thatimplies
thatv is solution of (P3) and therefar= Tv is a solution of (P1). Finally, in view of the positivity of é¢hfunction
G and the monotony of the operatdr we obtainT (t) < Tv(t) < T¢ (t),t € [0,1] thatisa (t) < u(t) < B(t) and
DY1B(t) < DY tu(t) < DY la(t),t €[0,1].

Now we give the existence theorem for the problem (P1):

Theorem 1. Assume that there exist two constants A and B such thatOAB < 0 and A> |B| and the following
hypotheses hold

(H1)- f(t,xy) <A for0<t<1,0<x< ﬁandOgygA,

(H2)- f(t,xy) >B,for0<t <1, ;B <x<0and§ <y<0,

then the problem (P1) has at least one solution u such that

a(t) <u(t) <B(),
DI 1B (t) < DY tu(t) <D ta(t), 0<t< 1.

Proof. Define the operatdR: C[0,1] — CI0,1],

RV(t) = /0t (FV)(s)ds

Let us remark that any fixed poimif R thenv is a solution of (P4). PuR = {ve C[0,1], ||v|| < A}. Since¢ andy € Q
then by condition (H1) it yields

Rv()] = | [ (F) (9105

t
S/O [ (s T (min[¢, (max(v, ¥))]) (s),K (min[¢, (max(v, ¢)) (s)]))[ds < A,
thusR(Q) is uniformly bounded an®(Q) € Q. For 0<t; <ty <1, we have

|Rv(t1) — Rv(ty)]
t

< [711(s T (min[g. (max(v.))]) (5).K (min[g, (max(v. ¢)) ()]))]ds

t
< A(tz — tl) .

So, R(Q) is equicontinuous. From Arzela-Ascoli Theorem, we coneltithtR is completely continuous. Thanks to
Schauder fixed point theorem we get tRatas a fixed pointi € Q, that is a solution of (P1) satisfying from Lemma 8
a(t) <u(t) <B(t) andD41B(t) < D9 lu(t) < D9 1a(t), 0 <t < 1. The proof is completed.
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Example 1Consider the problem (P1) with
r (q_ 1) 1 q-2
4 u(t)+ 4D u(t),
thenf (t,xy) = —t+I (q—1) 5+ %. ForA=2 andB = -2, f satisfies the assumptions of Theorem 1. Consequently

. _ta-2 22\ _ _ a2 __x?
problem (P1) has a solutiansuch that=E5 (1 - 7257 ) =a () < u(t) < B (1) = Ay (1- 525).

f(t,u(t),DY2u(t)) = —t+

Example 2Now if we choose

r (q_l) 1 q—-2
1 u(t)+4D u(t),
then f (t,xy) =t+I(q—1)7 + %. ForA=2 andB =0, f satisfies the assumptions of Theorem 1. Consequently

problem (P1) has at least one solutionmoreover this solution is positive and satisfies-@ (t) < u(t) < B(t) =
92 22
rien (1-ads)-

f(t,u(t),DY2u(t)) =t+

4 Conclusions

In the present work, the existence of solutions for a fraaicboundary value problem of arbitrary order (P1) is
investigated by the help of upper and lower solutions methitid Schauder’s fixed point Theorem. To solve the higher
order fractional boundary value problem we transform ittioeguivalent first order ordinary initial value problem. We
conclude that this method is efficient since we obtain thallpation of the solution between the upper and lower
solutions that we gave explicitly their expressions.
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