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Abstract: This paper is devoted to the study of existence of solutions for two point boundary value problems (P1) for fractional
differential equations of arbitrary orderq ≥ 2, by applying upper and lower solutions method together with Schauder’s fixed point
Theorem. First, we transform the posed problem to an ordinary first order initial value problem, that we modify to prove the existence
of solutions for the problem (P1), moreover we give the explicit expression of the upper and lower solutions of problem (P1). The
obtained results are illustrated by some examples.
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1 Introduction

In this paper we investigate the existence of solutions for the following two point boundary value problem with higher
order fractional derivative (P1)

Dqu(t)+ f
(

t,u(t) ,Dq−2u(t)
)

= 0,0< t < 1,

u(k) (0) = 0,k= 0,1, ...n−3,

D(q−2)u(1) = Dq−1u(0) = 0,

Dq denotes Riemann-Liouville fractional derivative,n−1< q< n, n= [q]+1, q≥ 2, u is the unknown function andf is
a real continuous function on[0,1]×R

2.

A variety of techniques are applied to obtain the existence of solutions for fractional boundary value problems, such
the method of upper and lower solutions, Mawhin theory, fixedpoint theorems. The main idea of the upper and lower
solutions method, is to modify the given problem and prove the existence results for the modified problem, then establish
the existence of solutions for the given problem. The remarkable point in this method is that we don’t prove only the
existence of solution but also we obtain its location between what is called the lower and the upper solutions. This method
was introduced by Picard in 1893 and has been developed laterby Dragoni. Recently, we find a large number of papers
on ordinary differential equations devoted to this theory [1,2,3,4,5,6,7,8], but few of them are on differential equations
with fractional order [9,10,11,12,13,14,15].

The organization of this paper is as follows. In Section 2, weintroduce some definitions on fractional calculus and
lemmas that will be used later, then we define the upper and lower solutions. In Section 3, we solve the corresponding
problem of order(q−1), then we reduce the problem (P1) to an equivalent first order initial value problem that we modify
to conclude the existence of solutions for problem (P1). Furthermore we construct the upper and lower solutions for (P1).
Finally, we give two examples illustrating the obtained results.

2 Preliminaries

We recall the definitions of Riemann-Liouville fractional integral and derivative, we can find their properties in [16,13].
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Definition 1. Let α > 0, then the Riemann-Liouville fractional integral of a function g is defined by

Iα
a+g(t) =

1
Γ (α)

∫ t

a

g(s)
(t − s)1−α ds.

Definition 2. The Riemann-Liouville fractional derivative of order q of gis defined by

Dq
a+g(t) =

1
Γ (n−q)

(

d
dt

)n∫ t

a

g(s)
(t − s)q−n+1ds,

where n= [q]+1.([q] is the integer part of q).

Lemma 1.The homogenous fractional differential equation Dq
a+g(t) = 0 has a solution

g(t) = c1t
q−1+ c2t

q−2+ ...+ cnt
q−n

,

where, ci ∈ R, i = 1, ...,n and n= [q]+1.

Lemma 2.Let p,q≥ 0, f ∈ L1 [a,b] . Then:
1- Ip

0+ Iq
0+ f (t) = I p+q

0+ f (t) = Iq
0+ I p

0+ f (t) andcDq
0+ Iq

0+ f (t) = f (t) , for all t ∈ [a,b] .

2- If p> q> 0, then the formulacDq
0+ I p

0+ f (t) = I p−q
0+ f (t) , holds almost everywhere on t∈ [a,b] , for f ∈ L1 [a,b] and

it is valid at any point t∈ [a,b] if f ∈C[a,b] .

3- If q≥ 0 and p> 0 then Dq
a+ (t −a)p−1 (x) = Γ (p)

Γ (p−q) (x−a)p−q−1
, Dq

a+ (t −a)q− j (x) = 0, j = 1,2, ...,n.

Definition 3. The functionsα, β ∈ ACn [0,1] are called lower and upper solutions of problem (P1) respectively, if

Dqα (t)+ f
(

t,α (t) ,Dq−2α (t)
)

≥ 0, 0< t < 1,

α(k) (0) = 0, k= 0,1, ...n−3,

Dq−1α (0) ≤ 0, D(q−2)α (1)≥ 0,

and

Dqβ (t)+ f
(

t,β (t) ,Dq−2β (t)
)

≤ 0, 0< t < 1,

β (k) (0) = 0, k= 0,1, ...n−3,

Dq−1β (0) ≥ 0, D(q−2)β (1)≤ 0,

where ACn [0,1] =
{

u∈Cn−1 [0,1] ,u(n−1)absolutely continuous function on[0,1]
}

.

3 Main Results

First we solve the corresponding boundary value problem of order(q−1). Let (P2) denotes the following problem

Dq−1u(t) = −v(t) , 0< t < 1,

u(k) (0) = 0, k= 0,1, ...n−3. D(q−2)u(1) = 0.

Lemma 3.The solution of problem (P2) is given by

u(t) =
∫ 1

0
G(t,s)v(s)ds,

where

G(t,s) =
1

Γ (q−1)

{

−(t − s)q−2+ tq−2
,s≤ t

tq−2,s≥ t.
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Proof.Using the properties of the fractional calculus, we get

u(t) =−Iq−1v(t)+
n−1

∑
k=1

ckt
q−1−k

.

Applying the boundary conditions it yields

u(t) =−Iq−1v(t)+
tq−2

Γ (q−1)

∫ 1

0
v(s)ds=

∫ 1

0
G(t,s)v(s)ds.

The proof is completed.

The properties of the Green function are given in the following Lemma.

Lemma 4.The function G is continuous, nonnegative and satisfies G(t,s)≤ 1
Γ (q−1) ,∀s, t ∈ [0,1] .

Proof. The proof is direct,therefore we omit it.

Define the operatorsT andK by

Tv(t) =
∫ 1

0
G(t,s)v(s)ds, Kv(t) =

∫ 1

t
v(s)ds.

From Lemma 3, we getu(t) = Tv(t). The boundary conditionD(q−2)u(1) = 0, impliesKv(t) =
∫ 1
t v(s)ds= D(q−2)u(t) .

From here and taking into account thatDq−1u(0) = 0, we see that problem (P1) is equivalent to the following first order
initial value problem that we denote by (P3)

v′ (t) = f (t,Tv(t) ,Kv(t)) ,

v(0) = 0.

We have the following Lemmas.

Lemma 5. Assume that there exists a constant A≥ 0, such that f(t,x,y)≤A, for 0≤ t ≤ 1, 0≤ x≤ A
Γ (q−1) and0≤ y≤A.

Then problem (P1) has an upper solution.

Proof.Let ϕ (t) = At, thenTϕ (t) = A
∫ 1

0 G(t,s)sds≤ A
Γ (q−1) andKϕ (t)≤ A, then

ϕ ′ (t)− f (t,Tϕ (t) ,Kϕ (t))≥ 0 andϕ (0)≥ 0. This implies thatβ (t) = Tϕ (t) is an upper solution of problem (P1).

Lemma 6.Assume that there exists a constant B≤ 0, such that f(t,x,y)≥B, for 0≤ t ≤ 1, B
2Γ (q−1) ≤ x≤ 0 and B

2 ≤ y≤ 0,
then problem (P1) has a lower solution.

Proof.Let ψ (t) = Bt, so,Tψ (t) = B
∫ 1

0 G(t,s)sds≥ B
2Γ (q−1) andKψ (t)≥ B

2 , then

ψ ′ (t)− f (t,Tψ (t) ,Kψ (t))≤ 0 andψ (0)≤ 0. This implies thatα (t) = Tψ (t) is a lower solution of problem (P1).

Lemma 7.Under the assumptions of Lemmas 5 and 6, the upper and lower solutions of problem (P1) satisfy

α (t)≤ β (t) , Dq−1β (t)≤ Dq−1α (t) , 0≤ t ≤ 1.

Proof. From Lemmas 5 and 6 and their proofs, we know thatβ (t) = Tϕ (t) andα (t) = Tψ (t) are upper and lower
solutions of problem (P1) respectively. Simple computations give

β (t) =
Atq−2

2Γ (q−1)

(

1−
2t2

q(q−1)

)

≥ 0,

α (t) =
Btq−2

2Γ (q−1)

(

1−
2t2

q(q−1)

)

≤ 0,

Dq−1β (t) =−ϕ (t) =−At ≤−Bt = ψ (t) = Dq−1α (t) .

This completes the proof.
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Define the operatorF : C[0,1]→C[0,1] ,

(Fv) (t) = f (t,T (min[ϕ ,(max(v,ψ))]) ,K (min[ϕ ,(max(v,ψ))]))

and consider the modified problem (P4) of the problem (P3)

v′ (t) = (Fv)(t) ,0≤ t ≤ 1,

v(0) = 0.

Next we give the relation between the solutions of problem (P4) and those of problem (P1).

Lemma 8. If v is a solution of problem (P4) then u= Tv is a solution of problem (P1) satisfyingα (t)≤ u(t)≤ β (t) and
Dq−1β (t)≤ Dq−1u(t)≤ Dq−1α (t) , 0≤ t ≤ 1.

Proof.Let v be a solution of problem (P4), thenψ (t)≤ v(t)≤ ϕ (t) , t ∈ [0,1]. In fact, suppose that there existst1 ∈ (0,1]
such thatv(t1) > ϕ (t1), setω (t) = v(t)−ϕ (t) , from the initial condition we haveω (0) = 0. From the continuity of
ω we conclude that there existt2 ∈ [0, t1) and t3 ∈ [t1,1] such thatω (t2) = 0 andω (t) ≥ 0, t ∈ [t2, t3]. Moreover we
haveω ′ (t) = v′ (t)−ϕ ′ (t) = f (t,T (min[ϕ ,(max(v,ψ))]) ,K (min[ϕ ,(max(v,ψ))]))+Dqβ (t) ≤ 0, t ∈ [t2, t3], this with
ω (t2) = 0 implies thatω is decreasing on[t2, t3], and thenv(t)≤ ϕ (t) , t ∈ [t2, t3], this contradict the factv(t1) > ϕ (t1).
Similarly we prove thatψ (t)≤ v(t) , t ∈ [0,1]. From the above discussion, it yieldsv′ (t) = f (t,Tv(t) ,Kv(t)) that implies
that v is solution of (P3) and thereforu = Tv is a solution of (P1). Finally, in view of the positivity of the function
G and the monotony of the operatorT, we obtainTψ (t) ≤ Tv(t) ≤ Tϕ (t) , t ∈ [0,1] that isα (t) ≤ u(t) ≤ β (t) and
Dq−1β (t)≤ Dq−1u(t)≤ Dq−1α (t) , t ∈ [0,1].

Now we give the existence theorem for the problem (P1):

Theorem 1. Assume that there exist two constants A and B such that A≥ 0, B ≤ 0 and A≥ |B| and the following
hypotheses hold

(H1)- f (t,x,y)≤ A, for 0≤ t ≤ 1, 0≤ x≤ A
Γ (q−1) and0≤ y≤ A,

(H2)- f (t,x,y)≥ B, for 0≤ t ≤ 1, B
2Γ (q−1) ≤ x≤ 0 and B

2 ≤ y≤ 0,
then the problem (P1) has at least one solution u such that

α (t) ≤ u(t)≤ β (t) ,

Dq−1β (t) ≤ Dq−1u(t)≤ Dq−1α (t) , 0≤ t ≤ 1.

Proof. Define the operatorR : C[0,1]→C[0,1] ,

Rv(t) =
∫ t

0
(Fv)(s)ds.

Let us remark that any fixed pointv of R thenv is a solution of (P4). PutΩ = {v∈C[0,1] ,‖v‖ ≤ A}. Sinceϕ andψ ∈ Ω
then by condition (H1) it yields

|Rv(t)|=

∣

∣

∣

∣

∫ t

0
(Fv)(s)ds

∣

∣

∣

∣

≤
∫ t

0
| f (s,T (min[ϕ ,(max(v,ψ))])(s) ,K (min[ϕ ,(max(v,ψ)) (s)]))|ds≤ A,

thusR(Ω) is uniformly bounded andR(Ω)⊂ Ω . For 0≤ t1 < t2 ≤ 1, we have

|Rv(t1)−Rv(t2)|

≤

∫ t2

t1
| f (s,T (min[ϕ ,(max(v,ψ))])(s) ,K (min[ϕ ,(max(v,ψ))(s)]))|ds

≤ A(t2− t1) .

So, R(Ω) is equicontinuous. From Arzela-Ascoli Theorem, we conclude thatR is completely continuous. Thanks to
Schauder fixed point theorem we get thatR has a fixed pointu∈ Ω , that is a solution of (P1) satisfying from Lemma 8
α (t)≤ u(t)≤ β (t) andDq−1β (t)≤ Dq−1u(t)≤ Dq−1α (t) , 0≤ t ≤ 1. The proof is completed.
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Example 1.Consider the problem (P1) with

f
(

t,u(t) ,Dq−2u(t)
)

=−t +
Γ (q−1)

4
u(t)+

1
4

Dq−2u(t) ,

then f (t,x,y) = −t +Γ (q−1) x
4 +

y
4. For A = 2 andB = −2, f satisfies the assumptions of Theorem 1. Consequently

problem (P1) has a solutionu such that −tq−2

Γ (q−1)

(

1− 2t2

q(q−1)

)

= α (t)≤ u(t)≤ β (t) = tq−2

Γ (q−1)

(

1− 2t2

q(q−1)

)

.

Example 2.Now if we choose

f
(

t,u(t) ,Dq−2u(t)
)

= t +
Γ (q−1)

4
u(t)+

1
4

Dq−2u(t) ,

then f (t,x,y) = t +Γ (q−1) x
4 + y

4. For A = 2 andB = 0, f satisfies the assumptions of Theorem 1. Consequently
problem (P1) has at least one solutionu, moreover this solution is positive and satisfies 0= α (t) ≤ u(t) ≤ β (t) =

tq−2

Γ (q−1)

(

1− 2t2

q(q−1)

)

.

4 Conclusions

In the present work, the existence of solutions for a fractional boundary value problem of arbitrary order (P1) is
investigated by the help of upper and lower solutions methodwith Schauder’s fixed point Theorem. To solve the higher
order fractional boundary value problem we transform it to an equivalent first order ordinary initial value problem. We
conclude that this method is efficient since we obtain the localization of the solution between the upper and lower
solutions that we gave explicitly their expressions.
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