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Abstract: This paper presents new operational matrices of fractiowedral and derivatives for shifted Legendre polynomi@lsese
operational matrices are employed to design a new specatilat for solving three-dimensional heat conduction mwblThe main
advantage of the proposed method is to reduce this comgtigaioblem with its initial and boundary conditions into &teyn of
easily solvable algebraic equations. The efficiency of tiop@sed method is shown with some test problems. The reseltisplayed
graphically.
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1 Introduction

Diffusion equation is one of the most important partial eliintial equation frequently used to model many engingerin
and biomedical phenomena. Some examples are the cyclinp@hthe cylinder surface of internal combustion engines,
heating and cooling of building structures, heating lakebswwater reservoirs by radiation, the heating of solid stg$dn
material processing, the cyclic heating of laminated slaehg pickling, heating and cooling of vials contained Dbk
polimerase-chain-reaction activation, the heating aftedmics and many more see for examdg[3,4,5, 6].

In literature various techniques are used to obtain thetexaat approximate solution of fractional order diffusion
equation. Very recently Kulish and La@¢€] studied the fractional diffusion equation and providelgti@solution using
laplace transform method. Akbarzade and Langat] proposed the homotopy method to approximate the solution o
integer order three dimensional transient state heat atiwthu Ning and JiangZ2] proposed the method of variable
seperation for analytically solving time-fractional heanhduction equation in spherical coordinate system. Moeg e
Wu and Lee 25,26] applied the variational iteration technique to fractibd#fusion equation and provided good
approximation to the solution.

In this paper we consider the fractional order partial eignafPDES) of the form

a°U LAY LA, dPsU

Xt oto :)\X IxBL +)\y 0y32 + Zdzﬁs +|(Xayataz)
7}
U(QX,Y’Z) :f(X,y,Z), U(taoayaz):gl(t7y7z) &U(t707y72)292(t7y72)7 (1)
VX0 =hitxd) 3 U1X02)=haltx2),

U(t7X7y70):|1(t7X7y) U(t’x7y7C):|2(t7X7y)7

wherey is the volumetric heat capacity/ (m*K)), Ax, Ay, A, are thermal conductivitie®V/m.K) in x,y andz directions
respectively, < a <1, 1< B1,B2,83<2,t € [0, 7], x€ [0,a], y € [0,b] andz € [0,c]. I (x,Y,t,2) is the internal source
term.
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It is some time impossible to obtain the exact analytic sotubf transient diffusion problems because of the
mathematical intricacies involved in solving the diffetiehequations governing the phenomenon. This paper istddvo
to the study of a numerical scheme for the approximate swiuf the above problem. Operational matrix technique is
one of the extensively used method and is applied by manyoeuto approximate the solution of different kind of
problems like integral, differential and partial diffetert equations 27,28,29,30]. The motivation of the high
applicability of the method is its simplicity and ease of bqgtion. Different orthogonal polynomials are used in the
construction of operational matrices like Sine-Cosif8,29], Legendre polynomials27,30], Jacobi B5,39], Muntz
polynomials B4] (see for instancedl,32,33,34,35).

To the best of our knowledge these matrices are used to appatx FPDES only up to two variables . 186
we derived and developed operational matrix of differgitafor a column function vector of two variables. These
operational matrices have the ability to approximate smiudf partial differential equations (PDES) with threeiaales.
Also we approximate solution of coupled system of FDEs anBE$using operational matrices see for examplg.[
The matrices derived irBf] have the ability to obtain the fractional order partialidative of a function of three variables
. The matrices developed in this paper have two advantagestmypreviously derived matrices. Firstly they can caltal
the fractional order derivative of function of four variabland secondly they can calculate the derivatives on artg fini
domain.

We organize the paper as: in section 2 we provide some bagjmegies of fractional calculus and orthogonal
polynomials, in section 3 we provide some results on Legeaghproximation of a function of four variables and its
absolute error of approximation, in section 4 we derive soperational matrices of integration and differentiation,
section 5 the operational matrices are used to convert iresponding equation to a system of algebraic equations, in
section 6 we study the structure and performance of the tpeahmatrices with some test functions, and the proposed
algorithm is applied to several test problems and finallyeiction 7 a conclusion about the method is made.

2 Preliminaries

For convenience, this section summarizes some definitioth®asic results from fractional calculus.

Definition 2.1.
[37,36] Given an interval0, 7] C R, the Riemann-Liouville fractional order integral of orderc R, of a function
¢ € (L1[0,1],R) is defined by

800 = o5 | (-9 1p(9)ds

Definition 2.2. For a given functionp(t) € C"[0,a], the fractional order derivative of orderin Caputo sense is defined
as

or 1 / (1) -
D ¢(t)_l'(n—a).o (x—t)0+1fndt’ ge[n—1,n),neN,
provided that the right side is pointwise defined(6neo), wheren = [o] + 1.

Hence, it follows that
r(1+k) tS—O’ IUtS: I—(1+k) tS+O'.

04S
D= r(l1+s—o0) r(l1+s+o) @
Also itis clear that th®?C is zero for a constar@.
2.1 Shifted Legendre Polynomials
The analytical expression for the shifted Legendre polyiatsion|[0, 7] are given by
[ ; k
Ty ik (k)i .
These polynomials are orthogonal and orthogonality coomis
T ot T ﬁ_a ifi=]j
/0 R (t)Pj (t)dt = 0, if i . (4)
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The orthogonality relation relation allows us to write any) € C[0, 7] as a series expansion of Shifted Legendre
Polynomials. In practice we are interested in the finiteesettherefore we may write

(2a+1)

~ icapg (t), whereCa — /O “UOPI (). 5)

In vector notation, we write
ut) = C,\T,ILHV. (t). (6)

whereM = m+1,Cy andWy(t) are the coefficient vector and column vector, each of oktler
We extend the notation to three-dimensional space and défiee-dimensional Legendre polynomials on the space
[0,a] x [0,b] x [0, c] of orderM as a product of three Legendre polynomials.

PP (x,y,2) = PAX)PP(Y)PP(x), n=M?q+Mr+s+1,qr,s=0,12,...m @)

These polynomial are orthogonal. The orthogonality coodlibf P,ﬁa’b":) (x,y,2) is defined as

ifg=qd,r=r',s=s¢,;
otherwise

c rb ra abc
[ [ raoorepe@pg Reiy P aioscyetz— { g e

Any u(x,y,z) € C([0,a] x [0,b] x [0,c]) can be written as a truncated series of three dimensionéteShiegendre

polynomialsP{®*% (x.y,2).

u(x.y,2) iiicqrspa X)PP(Y)PS(2). (8)

Wherecqs can be obtained by the relation
20+ 1)(2r+1)(2s+1) ¢ rb ra
e = P DEEL 717 P,y PR 0P PE )y ©

By using the notatiog, = cgs Wheren = M?q+ Mr + s+ 1, and we can write§) as follows

M3
uxy.2) = ¥ aP*(xy.2) = Cl WP (x y.2). (10)
n=1

WhereC,s is coefficient column vector of ordé® andw (@b (x y, z) is M3 x 1 is column vector of Shifted Legendre
polynomials defined as

T

W@ (x v 2) = [ PEDO(x y 2) PO (xy.7) - PED%) (x y, ) (11)

2.2 Function Approximation

We generalize four-dimensional Legendre polynomials ersfiece0, 7] x [0,a] x [0, b] x [0, c] of orderM by the product
function of Legendre polynomials as

Pr(;.]\?bc> (t7X7 y7 Z) = PrT (t)PSa(X)PL?(y)P\?(Z)7 r7 s7 u7V: 07 17 2"m' (12)

The orthogonality relation foP&> (t,x,y, ) is found to be

tabc

(T.abc)p(T.abc) T e P =rs=siu=u V=Y
/ / / / Rsiv Py didxdydz) — {0 otherwise
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2.2.1 Function approximation with Four-dimensional Ledrerpolynomials

Any u(t,x,y,2) € C([0, 1] x [0,a] x [0,b] x [0,c]) can easily be approximated Wit (t,x,y, 2) in the form

m m m

u(t,xy,2) r%g;uzo 20 (rsw) P (P2 ORI (Y)PS (2), (13)

wherec ;) can be obtained by the relation

2r+1)(2s+1)(2u+1)(2v+1)
Clrsu) = ( X T;.E)C / / / / u(t,x,y, 2) P& (¢, x, y, z)dtdxdydz (14)

For simplicity we change the notation as

C(rn) = C(rSUV)v
wheren = M2s+ Mu+ v+ 1. Using this simplified notation we can write equatias)(as
M M3
u(t,x,¥,2) ;zcrn )P (xy,2). (15)
Or in matrix form we can write them as
u(t,x,y,2) = YO 1) Ky, e P39 (x,y, 2). (16)

WhereKy,, 3 is coefficient matrix and?(7)(t) is a function vector related tband (@59 (x y, z) is function vector
related to the variabley andz

3 Error Bounds for Shifted Legendre Polynomials

In this section, we derive analytic relation for the abseletror of function of four variable. Considgfy (t,Xx,y,z) be
the space span byl terms four dimensional Shifted Legendre polynomials. Tieera smooth function(t,x,y,z) € A,
whereA = C([0, 7] x [0,a] x [0,b] x [0, c]), assume thdd ;) (t, X, Y, 2) is its best Legendre approximation[iiyw) (t, X, Y, 2).

Then, for any functlorh'- wm) (t,X,Y,2) of degree< M in variablet, X, yandzit follows that

[[u(t,x.y,2) = U (t, %, 2)[[2 < [Ju(t, XY, 2) — Fou) (£, X, Y, 2) 2. 17)
The inequality 17) also holds iﬂf(M’M,M,M)(t,x,y, z) is interpolating polynomial of the function at point (ti,X;, . t)
whereti =g, Xj = j&, Yk = k% andz = | §&. Then from the same arguments 86] we can write

M+1 M
u(t,x,y,z) — (MMMM ) (XY, X) = mu(f,x,yl)jl(t—ti)

aMJrl M aMJrl M
+mU(LU,YaZ)JEL(X—Xj)+mu(tvxawaz)k (Y —Yk)
0M+l M (18)
+mu(tax7%ﬂ)k|1(2—zk)
gM+4 M M M
T LML LG LA(M 4 1)1 - oW W ﬂ)t_tl I_L (X=X ery Yk)kEL(Z—
such tha€,&’ € [0,1], 0,0’ € [0,a], w,w € [0,b] andu, ' € [0,c]. Therefore
Y M Yx M
<-— —t _x oy
| (th, ) MMMM (th, )|— (M+1)')||:L|(t t|)|+(M+1)|JI:L|(X XJ)|
Y}'/ M YZ M
— — 19
o LWl g T2 (19)
Y M M M M

—mﬂ)l(t—tiﬂJ]:Ll(x—xj)lllle(Y—yk)Ik[Ll(Z—ZI)|~
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Where
M+1 gM+1
Y = maX xy.zeal WU(LX, Y.2)|, Y= max(t,x,y,z)eA|Wu(taxa y,2)|,
M+1 GM+1
Yy = rnaX(I,X,y7Z)EA|Wu(t7X7 Y,2)], Y= max(t,x,yz)eﬂmu(taxa Y,2)|,
and

oM Au(t,x.y.2)
Yo = MaX(t xyz)cal GV LML YN+ 1M1 -

To derive a bound for the terms lig@, |(t —ti)], (Mo |(X—X;)I, [TkLo |(Y— Yi)|, and [Tk, [(z— z)|. We make the
change of variables as

T a b c
t_eMaX_¢May_¢Mvz_VM' (20)

We obtain

et = (Mo I = (2 e
B § N e vl

v (b) s v () s 2 “
=yl = (M ] 10— K, (z=2)] = (T )M Iv K.
I w ]l l vl
Suppose thaby, p2, p3 andp, are integers such that
P1<O0<P1+lLp<@<p2t+lp3<@<p3st+l,pa<v<pst+l
Then we can write
M p1—1 M
10—i|=1[(8—p)(8—pr—1)| [T [(E—0) 1(6—1)],
1 [pre=uil,
M o-1 M
lo—il=[(@—p2)(@—p2—D[[] (@) [(@—1)l;
)l e i1, §
M p3—1 M (22)
o —K=[(¢—p3)(@—ps—1) [] [(¢—K) (@ =K,
M pa—1 M

|_LIV—|<I =|(v=pa)(v—ps—1) ||:L I(V—k)lk:|;|_2|(v—k)|-

The terms{(6 — p1)(6 — p1—1)|, [(8 — p1)(6 — p1 — 1)|, (¢ — p3)(¢ — p3— 1)[ and|(v — p4)(v — pa— 1)| gives there
maximum value at point8 + % Q-+ % ¢+ % andv + % respectively. Therefore we can write

|(6—p1)(0—p1—1)[ <

[(¢ —p3)(¢—p3—1)| <

IA
I NN N

, (@~ p2)(@—p2—1)]

(23)

IN

, [(V—pa)(V—pa—1)]
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By the application ofZ0) we can write

p1—1 p1—1 p2—1 po—1
|'L| 6-i) < |‘Lm+1—l (P +1)1, |‘L| —J|<|_LP2+1—J (P2 + 1)1,
- p3—1 ps—1 pa—1
(@ —K|< [](ps+1-Kk <(ps+1)!, (v=1)I< pa+1—j)<(pa+1),
kEL LL 1 s
(24)
[(6—1) < |‘| [(i—p1)| < (M—pa)!, |‘| o—Jj)| < |'| (i=p2) < (M=po)!,
i=p1—2 i=p1—2 J=P2—2 j=p2—2
M M M
(¢-K[< ] I(k=p3)l<(M=ps)!, [1 (v="I |'| (I=p3)l < (I —pa).
k=p3—2 k=p3—2 I=p3—2 =p3—

Using 24) and @3) in (22), we get the following relation.

M

|_L|9—l|< (M+1 I_L|<P—1|< (M+1) [1l¢—K<7 (M+1 FLIV—kI< (M+1)~ (25)
k=0

Now using the bound6) in (21) we get

|_L|t—t. 1= (5 M+11 (M+1)! I'L|x x)| = ( )M+11(M+1)
(26)
1 1
|'L|y ¥i)l = ( )M+l (M+1)! I_L|Z 7| = ( )M“ (M+1)L.
Using 26) in (27) we get the bound for the absolute error as
A Y 1 Y, a b
Ut x.y.2) — oy (0] < H (oMot B Bomen B Dy
(27)
Y( c )M+l_ i(L)MJrl(E)MJrl(R)MJrl(E)MJrl
4*M 256" M M M M '
Now using (7), we can easily get the upper bound of the absolute errorgroxpmation
Tym+t % 8 M1
[u(t,x,¥,2) —=Upmmm) (6%, 2)[[2 < V/( rabc{ 4(M) 28)
28
W( b )M+l+ Y( c )M+1_ ﬁ(L)MJrl(i)MJrl(E)MJrl(E)MJrl}
4*M 4*M 256" M M M M '

4 Operational matrices of Integration and Differentiations

The operational matrices of derivatives and integratiom the frequently used in literature. 1134 we derive the
operational matrices of fractional order integration ardwatives for the two dimensional function vector of Leden
polynomial defined off0, 1] x [0, 1]. Here we define the notion on the three dimensional sfiaeéx [0,b] x [0, c|.

Theorem 4.0.1Consider the function vecté#(@P (xy,7) as defined in11), then the operational matrix for fractional
derivative of orde of W(@b) (x y 7) w.r.tx is generalized as

b,
DYWERI (x y.2) = WA w0 x y, 2). (29)
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Wherexwl\(/gf;a’sc) is defined as

[ Qi1 Q2 o Quy o Qs |
Qo1 Qo2 0 Qo o Qe

xp/(0.abc) .
WMSXMS - -Qn,l Qn,2 Qn’n, QH,M3 ’ (30)

QMS 1 QM32 QMS n/ QMB,M3_
wheren’ = M2h+Mi+ j+1,n=M2g+Mr+s+1,h,i,j,q,r,s=0,1,2,....mand

3dsp(2n+) & 3 M CERGRED

h
I%k ci (K (k—o+1)@)(h=1({1)2(k+1-0+1)’

-Qn,n’ = Cﬂirjs (31)

With CiiP = 0ifq < 0.

Proof:Consider the general elemd?,ﬁta’b’c) (x,y,z) as defined by7), then by application of fractional derivative of order

o of B{**%(x,y,2) w.r.tx is given by relation
q 1)a+k
b, q+kK
D (R x.2) = PPYPED) 5 (it Die
By definition 2.1 we may write
2 (1)K (g+k)!

P (y)PC( ) o an: (0’~|,..,M. (32)

o/p(abc) _
Dy (P (vavz))—k_%ﬂ (q—K)!(K)(k—o+1)(a)

ApproximatingP?(y)PS(2)x¥~9 by M terms of Legendre polynomials in three variables, we get

PP(Y)PE(2X 7 ~

||M3

izoch.,Ph (XRP()PE(2), (33)

whereGy;j = ZHDELDEITD e (b raphy)pe(z)yk-opa(y )PP (y)P(2)dxdydz, After simplification we may write

0 (2h+1) h 1)h+l(h+|)
Chij = l% 2kt 1 -0t 1) (34)
where .
Jifr=i
{ if i £u.
Hence it follows that
opa b C ~ J ( )q+k(q+k m AL b C
Dy Pq(X)Pr (y)Ps(z) Nk: 51 (q—k)'(k) (k O'—I—l ak h i EOChIJPh P P ( )
_ m m m q (_ )q+k(q+k)_ a b .
~ 202 2 2 (@RI (k0 + D)) IR ORI, 39)
~3 3 Y GIRWR P,
h=0i=0 j=
Where
cos _ Qipdsp@n+D) & 2 (~1* @+ k)t(h+1)! (36)
hij a “okTo) (q—K!' (K (k—o+1) (@) (h—D)1{IN2(k+1—0o+1)
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Using the notationsy = M?h+Mi + j+1,n=M?q+Mr +s+1andQ,y =G forh,i, j,q,r,s=0,1,2,3,..m, we get
the desired proafl

Theorem 4.0.2Consider the function vectdP(@P (xy, 7) as defined in11), then the operational matrix of fractional
integral of ordeio of Y@ (x y 7) w.r.tx is generalized as

b,
|)?w(a,b,c) (Xy,2) = xvl\(/lcg:MSC)qJ ah,c) (X.Y,2). (37)

Wherexvh(/lgf;\;’f) is defined as

[ Qi1 Q2 - Quy o Qs |
Qa1 Qoo -+ Qo -+ Qo3

x/(0.abc) . . . . : :
Vw3 = _Qn’l Qn’z o Quy o Qo | (38)
QM31 QM32 QMS n e QMB,M3_
wheren’ = M2h+Mi+ j+1,n=M2q+Mr+s+1,h,i,j,q,r,s=0,1,2,....mand
o - qrs_‘s(r"s (2h+1) 2 d (—D)H g+ k) (h+1)! (39)
= hij IZ Z W (k+0+1) @) (h—D)(IN2k+1+0+1)

Proof:Consider the general elemeﬁ&a’b’c) (x,y,2) as defined by7), then the fractional order integral of order of
R#29 (x,y,2) w.rtxis given by relation
4 (—1)%K(g+k)!
19(R®P9) (x y. 2)) = Py 5 CUTHAH R g
x( ( )Y, )) (Y) s( )kZO (q—k)!(k!)z(ak) X

Using the definition 2.1 we may write

o a (-1TKg+K)!

g (p(abc)(x y,2)) = %(q—k)!(k) (k+0+1)(ak)P (y)PE(2)XTO. (40)

ApproximatingP®(y)PS(z)x<+ by M terms of Legendre polynomials in three variables, we get

m m m

PP(y)PS(2)X0 ~ 2 OEOZOCm PR OPP(Y)Pf(2), (41)

where Gy = ZHUEIUEID fe b fapb(y)pe(z)xk+o pa(x)PP(y)PS(z)dxdydz, Using the orthogonality condition we
may write

Oriydsj(2h+1) & (=) (h41)!

Chij = a 2 NPkt 0+ (42)
where i _
Jfr =i
5<f7i>:{o, iti £ u.
Hence it follows that
opa C ~ d ( )Q+k(q+k AL a C
DERIOORPYIPEE) > 3 TRt o+ T 2y 2 2y O WD)
~ m m m ¢ ( )q+k(q+k)_ a b c
™ oo oy @RI -+ 1) 1 IR OOPTE) “
~ ZO o PR )R (y)PE(2)
h=0i=0]=
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Where
Ori)0s,j)(2h+1) (=)t (g k) (h+1)!

% I (k+ 0+ 1) @) (h— N2kt 1+ 0o+ 1)
Using the notationsy’ = M2h+Mi+ j+1,n= M2q+ Mr+s+1 andQ,y = qirjs for h,i,j,q,r,s=0,1,2,3,..m,
completes the prodf]

Theorem 4.0.3:Let (@b (x,¥,2) be the function vector as defined ihlj, then the fractional derivative of order of
w(@bo)(x y 7) w.rtyis given by

Chij = (44)

DyWEbo) (x,y,2) = WWZ AT W@ (x y, ). (45)

WhereyVV % ab ) is the operational matrix of differentiation of order and is defined as

W = [@nn], (46)

wheren’ = M2h+Mi+ j+1,n=M2g+Mr+s+1,h,i,j,q,r,s=0,1,2,....mand

O s _ Ohg)disj) (2 +1) 2|+1 r (=) A (F K1+ 1)
nn = “hij

i %; r—k KO (k— O'+1)(bk)(|—|)( )(k_H O-+1)7 “n

With Cii7 = 01if r < o
Proof: The proof of this Lemma is similar as theorem (4.0.1).

Theorem 4.0.4Consider the function vectdp(@b:©) (x,y,2) as defined in11), then the operational matrix of orderof
w(@bo)(x y 7) w.rtzis generalized as

ab,
DYWabo) (xy,2) = TN WD) (x y 7). (48)
WhereZ\N,\(/gf’,af) is defined as
ZWI\(/IC;:la'f) = [-Qn,n/] ) (49)

wheren’ = M?h+Mi+ j+1,n=M?q+Mr+s+1,h,i,j,q,r,s=0,1,2,...mand

Q= cors = dnadin(@+1) LS (DS s+ k)1 + 1!
nn = V= 7 7

' c = (s—KI(K)(k—o+1)(c)(j—){IN2(Kk+1—-0+1) (50)

With Ci* =0 fors < o.
Proof: By similar arguments as in Theorem (4.0.1) we may easily @this Theorenf

Theorem 4.0.5Consider the function vectd?@P°)(x y,z) as defined in 11), then operational matrix of order of
w(@bo)(x y 7) w.rtyis generalized as

b,
I WER (x y 2) = W EAII W@ (x y 7). (51)

Whereyv,\(/gf;a’sc) is defined as
yV,\(,g:,\t;? = [-Qn,n’] ) (52)

wheren’ = M?h+Mi+ j+1,n=M?q+Mr+s+1,h,i,j,q,r,s=0,1,2,....mand

as Ohadsj(@+1) 2|+1 (=) ()1 (41

On =Gy = %20 r— K (KT (k+ 0 + 1) (09 (i — )I(2(K+1+0o+1)’

(53)

Proof:Using the arguments as in Theorem (4.0.2) we may prove theréhe
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Theorem 4.0.6Consider the function vectdP(@P (xy,7) as defined in11), then the operational matrix of fractional
integral of ordeio of Y(2b9)(x y, ) w.r.t zis given by

I7WER0) (x,y,2) = W AT WEDO) (x y 7). (54)
WhereZVV,f/g’j;\sl”sC> is defined as
ZW,\%’:;&:S) = [-Qn,n’} ) (55)

wheren’ = M2h+Mi+ j+1,n=M2q+Mr+s+1,h,i,j,q,r,s=0,1,2,....mand

Qqy =it = @1 (~DEH (s 1K)+
nn — A

i s |)!
! 2 2 =N KT (ko + D@ D12 (56)

(k+1+0+1)

Proof: The proof of this Theorem is similar as Theorem (4.Q.R).
Theorem 4.0.7:[36] The operational matrix of integration & (t) ,as defined in€) is generalized as

19(W(H)T) ~ PIYL(t), (57)
whereP? is defined by

Egzo@o,o,k z(kl)=0@0717k 2%:090,j7k 22=o@0m,1
Y0010k Yk=0@r1k * Yike0Orjk  YikeoOrimj

pa _ o o : o : o 7 58
ZL:OOI-,O-,k Zlkzool,l,k ZL:OOI-,J,k zL:oel,m,k (58)
Zﬂqzo@m,o,k ZL“:o em-,l-,k Zﬂqzo@m,j,k Zﬂqzoem,m,k

where
j (=) G RN+ )
go i—KKIC(k+a+21)(j—DH{IH2(k+1+a+1)

(59)

5 Application of the new matrices to Fractional order Partial differential equations

The operational matrices derived in the previous sectiay phportant role in approximating the solution of fractibn
order partial differential equations. Consider a typicatfional order heat equation on cubic structure. For saitplof
notation we use simplified notation for the operational inat. We us®?, Py andP? to represent operational matrices
of integration of ordeio in x,y andz direction respectively. Similarly we u@Q,DU andD? to represent operational
matrices for derivative of order.

The governing is

9°U LAY LAY kU

X = Mg +hv g + g XY,
UOxy2) =f(xy2,  U(t,0y.2=alty2), %U(tﬁovy’Z)ZQZ(tayaz)a o)
U(t,x,0,2) = hy(t, X, 2), ;—yU(t,x,O,z):hz(t,x,z),
U(t,xy,0) = la(t,xy), U(t,xy,c) = la(t,x,y),

wherey; is the volumetric heat capacity/ (m*K)), Ax, Ay, A; are thermal conductivitie®V/m.K) in x, y andz directions
respectively, 6ca <1,1< 3 <2,t€[0,1],x€ [0,a], y € [0,b] andz € [0,c|. By making the following substitution in
(60)

U=u —Elz(t,x,y)—@h(t,x,y), (61)
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we may write

a°U L) LAY L)

Xt oo = deBl + yayﬁz +/\Z dzﬁs +I(tvxayaz)a
- A A N 0 -
U(Oaxayaz) = f(X,y,Z), U(taoayaz) = gl(tayaz) a_XU (t,O,y,Z) = gZ(tayaz)a (62)
U (t,x,0,2) = hy(t,x,2) %U(t,x,o,z) = hy(t,x,2),

0(t7x7y70):0 U(t7x’y7c):07

Wheref,hy, ., g1, G, I can be obtained using relatiod].
We seek the solution of the above problem in terms of shifiegelndre polynomials such that the following holds.

PP

——
WU — (t)TKMXMaq’(a’b’C) (X,¥,2) = Ky 3 - 63)

—~~
(Note that A = YO (t)TAY@P (x v 7) and is used through out only for the simplicity of notatioAgplying
fractional integral of ordeB; w.r.t x on ©3) we get

0P B o
aszU =Ky 3PP+ G . (64)
~N 9B 4 - - o . .
where G = ENS (61(t,y,2) + xG2(t,y,2)) . Similarly application of fractional integral of ordg w.r.t y on 63) we get
ob . =~
50 =R <65>
TR L n . . .
where H = o (hl(t,x, z) +yho(t, X, z)) . Now applying fractional order integral of ordgs w.r.t y on 64) we get
—_——
~ A
U = Ky, mzPErPE2 + GPE2 + H; (66)
AN - o . ;
Where Hi = hy(t,X,2) + yhy(t,x,2). Using 66) we may write

o BioB2B + GPEDR 1 DB
%U :KMxM3PX1Py2DZ +GPy2DZ +H1Dz . (67)

Using 67), (65 and ©4) in (62), we get

= — T T T
X o = KuxmzPP2+ H >+Az (KMxM3P51P52D§3+GP52D§3+H1D§3>

) (68)
B, "
+Ay KMXM3PX + G + I
Where | =I(t,X,Y,2).0On further simplification and using modified notation we get
0 ~ S a5 2~
= = KMXM3B<ﬁ1’ﬁ2’ﬁ3) + 7. (69)

——
A A A et S Wt S PN Tt =N
WhereB(Pu-Pafe) — 2epfl 4 22pQipeple + 2P and Z = 2 H GP52D§3+H1D§3>+X—{< G )ﬂ‘lt I

By the application of fractional integral of orderw.r.t variablet we get

R 7 S AN
U= PUTKMXM3B(51152753) +P°Tz 4+ Fi . (70)
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S

50 50 N 50

100 100 & x 100

150 150 & x 150

200 200 & x 200

250 250 & % 250

300 300 & 300
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
(a) "W SLLD (b) W STED () “Wigtnis’

Fig. 1 The image display of operational matrices with sébgotr = 0.9 andM = 7.

A~ .
Where F; = f(x,y,2).
Now comparing 70) and ©66) we get the following relation.

—~ A —_—
PO Ky s BPP2PS) - POTZ LR Ky s PEPR2 + GPE2 + TH, = 0. (71)

Equation 71) is generalized Sylvester type matrix equation and can biyesolvable for the unknown matriky,, 3.

Using the value oK in (66) we get approximate solutiod (t,x,¥,2). Using the value ot in (61) will lead us to the
desire solution of the problem.

6 Numerical Aspects of operational matrices

The operational matrices derived in the previous sectienhaghly sparse in structure. And that is the reason that the
resulting algebraic system of equations is easily solvadfie visualization purpose we show the image display ofehes

matrices with the help of matlab command "imshow”. Fig show the matrice’é\Nl\(/I%zf\;l’?"C> ,Y\N,ﬁiﬁg’c) andZ\N,\(/I%z’&?":)
at scale leveM = 7, while Fig(2) shows these matrices far= 1.9. One can easily observe the sparse structure of these
matrices.

The operational matrices as shown above are very sparseevdothey can approximate the fractional order partial
derivatives very efficiently. To show the efficiency of theeogtional matrices we calculate fractional order partial
derivatives of some test functions whose analytic form o€ tfractional derivatives are known.We select
f1 = (xyzt)® — xX43Z2t5 + (xyz)3, f, = sin(x)cos(y) + sin(z) + cos(t) and f3 = (xyzt)*sin(x)sin(y) + cos(z)cos(t). In
order to measure the accuracy we calculate the quéagiityr every test functions at different scale level. WhEseis
defined by the relation

1 T ra rb pc o (a)
B /O /O /0 /0 DY £ (x,y, 2,t) — F{%hrox dzdlydxdt,

where féggmx is the fractional derivative of functiof of ordera calculated with the help of operational matrix. The
results are displayed in Table(1). One can easily see thatdburacy increase with the increase of scale level.
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Y
50 50 \\ \& 50
100 100 x\\ N 100
150 150 &\\ Q 150
200 200 &\\ N 200
250 250 :\\\\\\ § 250
300 300 :\\k 300
Y
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
(@) Wi () Wi © Wi
Fig. 2 The image display of operational matrices with ségctr = 1.9 andM = 7.
Table 1: The approximated norm of calculating fractional derivesiv
a=07 a=15
M =5 M=6 M=7 M=5 M =6 M=7
DY | 0.0026 | 545x10% | 3.41x10° | 0.021 0.0093 14x104
Ef, D)‘,’ 0.0091 | 1L.1x10°3 0.9x10°% 0.009 0.00012 15x10°
DY | 0.0072 | 7.3x10°% 6.9x107° 0.062 0.0013 46x107%
DY | 0.0142 | 0.0092 16x10°2 0.00123 | 1.7411x 10 % | 9.2045x 10 °
Ef, D)‘,’ 0.07628| 0.00163 49x103 3.9x103 | 7.613x10°% 2.8x107°
DY | 0.0071 | 249x10°3 | 7.773x 10 % | 0.0719 0.00182 2.65x10°3
DY | 0.0038 | 1.4x103 | 6.565x10% | 0.0931 0.00192 2.39x10°%
Ef, D)‘,’ 0.0094 | 9.7x10°3 1.947x10°% | 0.0751 7.91x10°3 499x 104
DY | 0.05932| 0.00734 2.89x 1074 0.0104 553x10°3 4.052x10°4
6.1 Illustrative Examples
To show the applicability of the method, we solve some tesblems.
Example 1As a First example consider the following integer order lveatduction equation.
v _ 9%U A 92U A 02u+|
Xor =M TGz Tz Th
7}
U(O.xy.2) = (1-y)e*?, Ut.0yz=(1-ye*® —U(t0y2)=1-ye*?,
(72)

U(t,x,0,z) = Xtz 20 [%U (t,x,0,2) = _gxrzr),

U(t,xy,1) = (1—y)e*H#+2 %U (t,x,Y,1) = (1—y)e*z+2),

Alsoletxi =Ax=Ay=A,=1,t€[0,1],x< [0,1],y € [0,1] andz € [0, 1]. It can be easily verified that the exact solution
of the problem is
u (t7X7 Y, Z) = (1 - y)e(XJrZJth).
We approximate the solution of this problem with proposedho@, and as expected we found that the approximate
solution matches very well with the exact solution. We digthe exact and approximate solution of the problem at some
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EzxactUatz =0.2

:::Approximate Uatz =02

FEzxactUatz=0.4

:::Apprm'mate Uatz=0.4

B ExactUatz =06

:::Approm'mte Uatz=0.6

B EaactUatz =0.8
g:gApprom’mate Uatz=10.8
)

e -

oo P N W A OO O N ® ©

Fig. 3 Comparison of exact(surface) and approximate swiytots) of example 1 at different valueof = 13,t = 0.3.

FEzactUatz =02
pproximateU at z = 0.2
14 EzactUatz =04
pproximateU at z = 0.4
EzxactUatz = 0.6
pproximateU at z = 0.6
B EractUatz=038

pproximateU at z = 0.8

Fig. 4 Comparison of exact(surface) and approximate smiytlots) of example 1 at different valueof = 13,t = 0.6.

fixed value ot,iet = 0.3,0.6,0.9 and at each value bthe solution is displayed at fix value nfthe results are displayed in
Fig(3),Fig(4) andFig(5). Note that here we fik = 10. We observe that the method yields a very high accurateatst
of the solution.And the error of approximation (absolut®grdecreases significantly by the increase of the scatd My
We approximate the absolute errohat= 7, 8,9 and we observe that as the scale level increases the ecreedes:ig(6)
andFig(7) shows amount of absolute error at pdixty,z) = (0.2,0.2,0.2) and point(x,y,z) = (0.8,0.8,0.8) respectively.
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14

- ExactUatz =0.2
pprozimate U at z = 0.2

B FractUatz =04
pprozimateU at z = 0.4

-Exact Uatz=10.6
pprozimate U at z = 0.6
EzactUatz =10.8
pproximateU at z = 0.8

=

Fig. 5 Comparison of exact(surface) and approximate swiytlots) of example 1 at different valueo# = 13,t = 0.9.

—— Absolute errorinUat M = 8

Absolute errorinUat M =7

0,012

0.01F

0,008

0.006

0,004

0.002

e L T I ]

L L L
0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
t

Fig. 6 The absolute error of example 1 at different valu®ldflere we fix(x,y,z) = (0.2,0.2,0.2),0 =1

Example 2Consider the time fractional heat conduction problem

U(0x .2 = P22, Ut0y2 =12 2U0y2=0,

%'y o N 9%U N 92U o
o7 ox2  gy2 922

ax (73)

U(t,x,0,2) =37 iU(t,x,o,z):o,

ay

U(t,xY,0) = (txy)?, U(t,xy,1) =34 (xy+txy) 2+t

Take the source term

_ 3010861287776397% (4000:3x*y*Z* + 330022 + 2530032y + 3289y 2)

l(taxayvz)_

44437017523264684032
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0.08

—— AbsoluteerrorinUat M =7
Absolute errorinUat M = 8
Absolute errorinU at M = 9

0.07

0.06 —

0.05—

0.04 -

0.03—

0.02 -

0.01-

Fig. 7 Absolution difference of exact and approximate solubf example 1 at different value d.Here we fix
(x,y,2z) = (0.8,0.8,0.8),0 =1

wact solution at z = 0.25
Approximate solution at z = 0.25
vact solution at z = 0.5

Bl Approzimate solution at z = 0.5

:::E'xact solution at z = 0.75

Bl Approzimate solution at z = 0.75

:::Ewact solutionat z = 1.0

I Approzimate solutionat z = 1.0

Fig. 8 Comparison of exact(dots) and approximate solusonfgce) of example 2 at different valuezfl = 13,t = 0.3.

Then the unique analytic solution of the problem is
U (t,x,y,2) = 32 — y*Z* + (txy + xy2)* + tHEY* 2

We compare the exact with the approximate solution obtaimi#dthe proposed method at different valuet afnd
z The results are displayed Fig(8),Fig(9) andFig(10). One can easily see thatldt= 12 the approximate solution
matches very well with the exact solution. The absoluterésrapproximated at different points of xt-plane and yzrgla
One can see that the absolute error is much more less thah, s@eFig(11) andFig(12).
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0

Fig. 10 Comparison of exact(dots) and approximate solysarface) of example 2 at different valuezfl = 13,t = 0.9.

1

| Approzimate solution at z = 0.8

>§4 zact solution at z = 0.0
- Approximate solution at z = 0.0

>24 zact solution at z = 0.25

Approximate solution at z = 0.25

e IEzact solutionat z = 0.5

B Approximae solution at z = 0.5

W IEzact solutionat z = 0.75

Approximate solution at z = 0.75
—

T XEzact solutionat z = 1.0

Approximate solution at z = 1.0

0 1

zact solution atz = 0.0
Approzimate solution at z = 0.0
wact solution atz = 0.2
Approzimate solution at z = 0.2
wact solution atz = 0.4
I Approzimate solution at z = 0.4

:::E'zact solution atz = 0.6

Bl Approzimate solution at z = 0.6

:::E':mct solution atz = 0.8

Example 3As a third example, we consider the space and time fractideat conduction equation as given.

00'7U al.BU al.BU al.BU
9t07 — 9xI8 " GyLB T 58 +1,
0
U0xy2) =xyZ-yz Ut0y2=t"7-yz —U(t.0y,2=0 74)

2y

2 —y+ (xy+txy)? +t33y3,

1.08919(t, X, y, 2) {x%y"/> + x* /5y°}.

U(t,x,0,2) = t?Z 3y (t,%,0,2) = —z
U(t,xy.0) = ()%, U(t,xy,1) =
where
| (t,x,y,2) =0.033G%5{75(xyz) %t + 55(xy)?t + 557 + 66(xy)?z}
— 1.08917/5{5z(xyt )2 + 2t% + 2(xy)?} —
Where

o(t,xy,2) = 5xyt°2 + 2t

+4tz+ 27
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x107"°

-Absolute errorinUatz =04,t=04, M =6
5 -Absolute errorinUatz=08,t=08 M =6

y

Fig. 11 The absolute error of example 2vt= 13 on two different points of thet — plane.

x107"

-Absolute errorinUatz=04,y=04, M =6
-Absolule errorinUatz=08,y=08 M =6

0.8

0.6

0.4

0.2

t

Fig. 12 The absolute error of example 2Vt= 12 on two different points of thgz— plane.

This problem has exact analytic solution as
U =t?Z + (txy + xy2)? — yz+ 332

One can easily check it by direct substitution. We approxéntlae solution of this problem at different scale level. We
compare exact and approximate solution of this problem E®)and Fig (14) and observe the high accuracy of the
approximate solution. We approximate the absolute errodifférent scale level. We observe the convergence of
approximate solution to the exact solution with the inceeafsthe scale level. We approximate the absolute error ef thi
example at three fix value ofwhile zis fix to be 05, see Fig (15).

7 conclusion

The algorithm presented in this paper is complicated butiges a very high accurate estimate of the approximate
solution.The method is spectral method and its accuracgridpon the smoothness of solution. We observe that the
method can easily solve fractional order partial diffel@rgquations in four variables. It is also expected thantie¢hod
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B EcactUatz=0.3
pproximate U at z = 0.3

B ExactUatz = 0.6
pproximate U at z = 0.6

B EactUatz =09
pprozimteU at z = 0.9

X

Fig. 13 The comparison of exact solution (surfaces) withrexmate solution of example 3 8 = 20,t = 0.3.

EzactUatz =0.3
pprozimateU at z = 0.3
B EzactUatz=0.6
pprozimate U at z = 0.6
B EzactUatz =0.9

:::Approzimate Uatz=0.9

0.8 . 0.8
0.6 0.6
0.4 0.4
0.2 0.2

y X

Fig. 14 The comparison of exact solution (surfaces) withrexmate solution of example 3 8 = 20,t = 0.7.

may provide a more accurate estimate by using some othelidanoif orthogonal polynomials like Brenstein and
Laguerre.
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