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Abstract: We aim to establish certain (presumably) new and (potéyliakeful integral results involving the generalized Gaus
hypergeometric function and the Srivastava polynomiaktNee obtain certain new integrals and expansion formujakéapplication
of our theorems. Some interesting special cases of our reairitrare also considered and shown to be connected withirc&rtown
ones.
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1 Introduction and definitions functions defined as follows (seege.g, [6, p. 46086,
) Section 3.]; see also5[p.39, Chapter 4.]):

Recently,Ozerginet al. [6] introduced and studied some

fundamental properties and characteristics of the ® ng,B) (b+n,c—b) 2"

generalized Beta type functidy*' (x,y) in their paper FsP) (ab;c;2) = Zoan Blbc_b nl’ 3)
and defined by (seee.qg, [6, p. 4602, Eq.(4)]; see also, n= ' '
[5, p.32, Chapter 4.)): (I <1),
where mirt0O(a),0(B)) > 0;0(c) > O(b) > 0 and
1 O(p) = 0.

B (xy) = [ et - |

0 (1) Indeed, in their special case when= 0, the function

x 1F1 (a;ﬁ; P )dt, Fé””ﬁ> (a,b;c;z) would reduce immediately to the

t(1-t) extensively-investigated Gauss hypergeometric function

2F1(.). The oF1(.) is special case of the well known
(O(p) > 0;min(C(x),d(y),0(a),0(B)) >0 generalized hypergeometric ser#(.) defined by:

and Bg”B) (xy) =B(xy)),

hereB(x.y) is a well known Euler's Beta function pFa | gy " gF: 2 —ii(al)n”'(%)"i
whereB(X,y) Is a well known Euler’'s Beta function Bi, .-y By 7| n!
defined by: q o (Bu)n--- (Ba)n
1 = qu(ala "'7ap;Bla "'an;Z)v (4)
B(x,Y) ::/ (1 —t)Y"1dt (O(x) > 0,0(y) > 0). (2) where (1), is the Pochhammer symbol defined (for
0

A €C)by:
Along with, generalized Beta function), Ozerginet
al. introduced and studied a family of the following ] 1 (n=0)
potentially useful generalized Gauss hypergeometric,(’\)n “1AA+1)...(A+n-1) (neN)
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_F(A+n)
D)

andZ, denotes the set of Non-positive integers.

(A €C\Zy), (5) 2 Main Results

The following Orr's relation connecting products of

The concept of the Hadamard is very useful in Ourhypergeometrlc series is also needed (se, [8, p. 75]):

investigation. Let us consider the function ®
oFi%FPY) [z ). Its decomposition is illustrative. That is (1—y)" P Y,F (20, 2B;2y,y) = %Akyk,
[4 p. 633]: k=

then

(@.BipA) | Xiy-es Xp _ 1
qu-H |:y17 7Yq+r % b:| lFr |:y17"'7yryzyb:|

(a.B;p.A) X1, "'7Xp ‘o
* pF zb
Pra |:y1+r7"'7yq+r :|

I\)lH

Il
EMg\_/

1
2F1 (a B.y+ 3.y ) 2F1 (v—a,v—ﬁ;wé;y)

(Y)k Akyk

(V+3)
In 1972, Srivastavad introduce the following family of

polynomials: Theorem1let a> 0, b > 0; c+4ab> 0; u,A € C,
O0A)+1/2>0, ~3<a—-B-y< 3 mreNand

(6) (11)

n/m (=) ) coeffitl:ie;]ts aAn, (N, Ihe No) r;’;we arbitrary (real or
— m complex) constants. Then we have
0= 5 A o O
(ne No=NU{0};meN), /Oxf’\flel(G,BiV+1/2;X)

whereN is the set of positive integers, the coefficients xoF (y—a,y—B;y+1/2;X)
Ank(n,k > 0) are arbitrary constants, real or complex.

S"(x) yields a number of known polynomials as its X ST [yX~H] Fp7?)(a, bic;t/X)dx
special cases. These includes, among other, the Jacobi ST w [n/ml v)
polynomials, the Bessel Polynomials, the Lagurre = 5 zo Z) T
Polynomials, the Brafman Polynomials and several others 2a(4ab+ c) (v+1/2), (12)
[10, p. 158-161]. ( m| ul +1/2) o
Any' D (4ab+c)
The foIIowir)g fqrmula§ T, p- 773 Egn. 3.1, 3.2 and 3.3] 5 1,: [a b, A —f—H| +1/2;
will be required in our investigation: .
p-1 A—r—ul+1;
P GAZT—H+ "4ab+ c}

b 2
(ax+ ;) +cC dx

VT r(p+1/2)

r

(8) Theorem2Let a> 0, b>0; c+4ab> 0; u,A € C,
O0A)+1/2>0, -3 <a-B-y< 3 mreNand

B 2a(4ab+c)Pt/2 [(p+1) ’ coefficients aAn,(n, | € Ng) are arbitrary (real or
(a>0;b>0;c+4ab> 0;0(p)+1/2> 0). complex) constants. Then we have
I o
o 1
/0 X—12 (ax+ t—;) el  dx /0 2X LR (a By +1/2iX)
ST F(p+1/2) (9) xoFi(y—a,y=Biy+1/2,X)
~ 2b(4ab+ )P 2 T (pt+1) x S yX H] F7P)(a, by c;t/X)dx
(a>0;b>0;c+4ab>0;0(p)+1/2>0) VT o [n/m (V)r
= 8
. b(4ab+c’\+1/2 Za % (y+1/2), (13)
(.. b b\2 T O K172 e
/0 (a+;> (ax+;> +c dx AnyI D (4ab+c)
o ym o T(p+1/2) (10) x 1F\G [ab)\—r—ul+1/2
 (4ab+c)Ptl2 [(p+1) ' L " t
(a>0:b> 0:c+4ab> 0;01(p)+1/2> 0). AT+ Lgg b+c}
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Theorem3lLet a> 0, b>0; c+4ab> 0; u,A € C,
O0A)+1/2>0, -3 <a-B-y<3 mreNand i/
coefficients aAn),(n,| €Ng) are arbitrary (real or VT ad a (V)r
complex) constants. Then we have N 2a(4ab-+c)} /2 rZO |; (y+1/2),
(Mmip T —r—pI+1/2)
° b I FrA—r—ul+1)
a+—) X ALF (a,B;y+1/2;X) o (0.p) _
/O ( X2 x (4ab+ ) FH %akBp (brkcb)
x2F1(y—a,y—Biy+1/2;X) K= B(b,c—b)
k
X S yXH] Fp()mp) (a,b; c;t/X)dx " A—r—pul+1/2), t 1
. (A—r—pul+1), |4ab+c| K
v SN W
b T & & 17D, 4 e T
(~Nmi y g [ A—r—pl+1/2) " - YTy Y a—rr Ty
T Aty FA—r—pl+1) (4ab+c) 2a(4ab-+c)} /2 ng |; (y+1/2), It '
x1F TP [ b A —r— pl+1/2; (LA W L2) oy gy (16)

t
A—r—pul+1,; .
GAZT =i '4ab+c}

Proof: To prove the Theorem 1, first using the result

FrA—r—pul+1)

(0.0)

<} /\—r—ul+1/2]

t
[a’b'c’m}*fl[ A-r—pl11

Applying the concept of Hadamard given by

given by equation ¥1) and express Srivastava equationf) in the above equationlg), we have the

polynomials S'(x) in series form with the help of

required result 12). Proceeding on same parallel lines,

equation {) and generalized Gauss hyper geometrictheorems second and third given by equatiot3 @nd

function given by equatios], then interchanging the

order of integration and summation we get

/ XL (a,Bry+1/2:X)
0
x2F1(y—a,y—B;y+1/2;X)
x S0 [yXH] F7P) (3, by citX Ydx
(15)

o [n/m

]
— Wr (=)
N rZo é *yr1/2), 1 Anty

= aBy? (b+kc—b)tk / KM Ty
k; B(bc—b) ko

then using the formula given in equatid),(the above
equation {15) reduced to the following form

o [n/m

)
AT

[ee]

(Y)r (—=N)mi
(y+1/2), 1 Aty

By (b+kc—b)t¢
kZO B(b,c—b) k!
VT
2a(4ab+ C)/\—r—ul+k+1/2
FA—-r—ul+k+1/2)
rA—r—pu+k+1)

X

X

(14) can be obtained by using the resus@nd(0)
respectively.

3 Special Cases and Applications

We conclude present investigation by remarking that the
integral formulas used in Theorem 2.1 to 2.3 are unified
in nature. Moreover, the integrals involving the
generalized Gauss hypergeometric function and the
Srivastava polynomial in Theorem 2.1 to 2.3 reduce to
numbers of integrals involving a large spectrum of well
known special functions functions. Thus, we can further
obtain various integral formulas involving a number of
simpler special functions. In addition, the generalized
Gauss hypergeometric functione. FF(,M) (a,b;c;z) and

the Srivastava polynomi&d'(x) occurring in Theorems
2.1 to 2.3 can be suitably specialized to a extremely wide
variety of useful functions which are expressible in terms
of the Hermite polynomials and Lagurre polynomials
function respectively.

For example:

1.By applying our results given ifi),(13) and(4) to
the case of Hermite polynomiald1,12] by setting
S (X) — X"/?H, {ﬁ} in whichm= 2,A,, = (-1)',
we have the following results:

Corollary 1.Leta>0,b > 0;c+4ab> 0; u, A € C,
OA)+1/2>0, -3 <a-pB-y< 3 reNand
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coefficients ais arbitrary (real or complex) constant.
Then we have

/0 X LoF (a, By +1/2:X)

X oF1 (y— a,y— Biy+1/2;X) [yxH]"?

1 (0.,0)
x Hy | ———|Fp "/(a,b;c;t/X)dx
n ZW] p ( / )
v 2w
= paiaabs o T2 2 2 ¥ 7+ 12) 40
2a(4ab+c) S s (Y+1/2),
(—n)2 B \F(A—r—pul+1/2) r+pl
S TR ey 7wy pr G
><1F [ab)\—r—ul+1/2
t
X C,A — r—ul+14ab+c]

Corollary 2.Leta>0,b>0;c+4ab>0; u, A € C,
O0WA)+1/2>0, -3 <a-B-y<3 reNand
coefficients ais arbitrary (real or complex) constant.
Then we have

@ 1
/Oﬁx“*lel(a,B:VH/Z:X)

xoF1(y—a,y—B;y+1/2;X) [yXH] i

1 (0.)
x Hy | ———|Fp "/(a,b;c;t/X)dx
n ZW] p ( / )
Vi 2 W
VT sy W (18)
2b(4ab+ ¢} /2 Zo é (y+1/2),
(M2, I A—r—pl+1/2) rul
X (-y) FA—T—mTD (4ab+c)
><1F [ab)\—r—ul+1/2
t
CA=—r—u+1L 4ab+c]

Corollary 3.Leta>0,b>0;c+4ab>0; u,A € C,
O0A)+1/2>0, -3 <a-B-y<3 reNand
coefficients @ is arbitrary (real or complex)

constants. Then we have

/ (a+ %) XALF (a,B;y+1/2;X)
0 X
x oF1 (y—a,y— B: y+1/2;X) [yx H]"?

x Hp Fa7P) (a,b;c;t/X)dx

2\/ XH
_oyn 2y
 (4ab+ o)t TL2 2, 2.2 7+ 172, (19)
(—n)y FA—r—ul+1/2)
ST FA—r—pl+1)

x (4ab+ c)r+“'
><1F [ab)\—r—ul+1/2

t
A— I+1;
¢ e "dab+ c]

2.By applying our results given irlp),(13) and(4) to
the case of Lagurre polynomiald ], 12] by setting
F(x) - L) % in which

/ 1
m = 2Ay = ”“’)

, we have the
n a’+1
following results:

Corollary 4.Leta>0,b>0;c+4ab>0; u, A € C,
O0A)+1/2>0, -3 <a-B-y<3 reNand
coefficients ais arbitrary (real or complex) constant.
Then we have

/X*Aflel(a,B;vH/Z;X)
0
X 2F1(y—a,y—Biy+1/2:X) L
x Fy7P) (a,b; c;t/X)dx

- NG 2y
a 2a(4ab-+ C))Hl/2 r; |; & (y+1/2),

LEMa (nva’ Y TA-r—pl+1/2)
I n a'+1 T(A—r—pul+1)
% (4ab+c)"H
< 1R b A —r —pl +1/2;

) [yxH]

t
A—r—pul+1;,———
¢ r—H "dabtc

Corollary 5.Leta>0,b > 0; c+4ab>0; u, A € C,
OWA)+1/2>0, -3 <a-B-y<3 reNand
coefficients ais arbitrary (real or complex) constant.
Then we have
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=1
/O—X*Aflel(a,B;VJrl/Z;X)

X oF1 (y—a,y— Biy+1/2:X) L) [yX#]
X Fpa’p (a,b;c;t/X)dx
_ VT < 2 W (=N
~ 2b(4ab+c) Y2 Zo %a’(w 1/2), I (21)

(oY Y TA—r—pl+1/2)
n a'+1 FrA—r—pul+1)
x (4ab+c) M E TP [a b, A — 1 — pl +1/2;

t
A—r—pul+1;
¢ F=H+ "dab+ C}

Corollary 6.Leta>0,b > 0;c+4ab> 0; u, A € C,
OA)+1/2>0, -3 <a—-pB-y< 3 reNand
coefficients ais arbitrary (real or complex) constant.
Then we have

/Ooo (a+ %) XA LR (a, B y+1/2;X)

X oF1(y—a,y—Biy+1/2:X) L) [yx—H]

x FS7P) (a,b; ¢c;t /X )dx
SV S N/ L
(4ab+ o) /2 Zm:o (v+1/2), I (22)
(oY Y TA—r—pl+1/2)
n a'+1 FrA—r—pul+1)
x (4ab+c) M E TP [a b, A — 1 — pl +1/2;

t
A—r—pul+1;
GAZT— 4ab+c}

3.If we puta =y, in the main theorem,the value af

comes out to be equal tg and the resuli(2),(13)
and(4) gives the foIIowmg results

Corollary 7.Leta> 0,b > 0;c+4ab> 0; u, A € C,
O0(A)+1/2>0,-3<a—-B-y<3i mreNand
coefficients Ay, (n,| € Ngo) is arbitrary (real or
complex) constants. Then we have

/Ox“*lel(a,B:VJrl/Z:X)
x S [yXH] Féo’m (a,b;c;t/X)dx

R S A (1101

2a(4ab-+ )} /2 ,Zg & (a+1/2),r!
(=M)mi FA—r—ul+1/2)

T An7|y' FA—r—ul+1)

x (4ab+ o) M E TP [a b, A — 1 — pl 4 1/2;

(23)

t
4ab+ C}

Corollary 8.Leta>0,b > 0;c+4ab> 0; u,A € C,
O0(A)+1/2>0,-3<a—-B-y<3i mreNand
coefficients Ay, (n,| € Ng) is arbitrary (real or
complex) constants. Then we have

CA—r—ul+1;

00 1 a
/O 2 X TR (e By +1/2:X)

x S0 [yX H] FS7P) (a,b;c;t/X)dx

i e M (@) (B) (B)r
b(4ab+c"+1/220% (a+1/2), 1!

RE, vz @
mI —H +
Anl yl —ul+1)
x (4ab+ c)’“" 1pr;"> [abA—r—pul+1/2;
t
C,A—r—ul+1; 4ab+c}

Corollary 9.Let a> 0 b>0;c+ 4ab> 0; u,A €C,
O0(A)+1/2>0,-3<a—-B-y<3i mreNand
coefficients Ay, (n, I €Np) is arbltrary (real or
complex) constants. Then we have

ke

b
+ ;) XA L (a, By +1/2;X)

x S [yXH] Féo’m (a,b;c;t/X)dx
va 2 a)(B)
(4ab+c“1/2 zo Zy (a+1/2)1!
( m| —r—ul+1/2)
al y a1 (25)
><(4ab+c)’+“I Fp(ip [a,b,A —r—pl +1/2;
CA—r—ul+1; 7a ;4_0}

4.1f we putf = a +% anda = —f (f is non negative
integer) in 3), (24) and @5), we have:
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Corollary 10.Leta> 0, b> 0; c+4ab> 0; u, A €
C,0A)+1/2>0, -3 <a—-B-y<3 mreN
and coefficients 4, (n, | € No) is arbitrary (real or
complex) constants. Then we have

/wa—A—l(l—X)fs;“ [yXH]

x F‘“*’) (a,b; C't/X)

) n/m

m' Ay
(26)

2a(4ab+c 2a(4abtc)r 12 £
e —ul+1/2)
FA—r—pul+1)
x 1F[§j”’> [abA—r—pul+1/2;

(4ab+c)H!

t
A— [+ 1;
¢ e "dab+ c]

Corollary 11.Leta> 0, b>0; c+4ab> 0; u, A €
C,O0A)+1/2>0,-3<a—-B-y<imreN
and coefficients 4y, (n,| € No) is arbitrary (real or
complex) constants. Then we have

/()M%X*A*l(l—X)fSP[yX K] F§OP) (a, b it /X dx

) n/m | y|
m
— A,
" (4ab+ c “1/2 !
I_( — _“|+1/2) r+ul (27)
FO 1) aP+o
< 1F TP [ b A —r— pl+1/2;
t
C,A — r—ul+14ab+c]

Corollary 12.Let a> 0, b >0; c+4ab> 0; u,A €
C,0A)+1/2>0, -3 <a-B-y<3 mreN
and coefficients 4y, (n,| € No) is arbitrary (real or
complex) constants. Then we have

/Om <a+ X—b2> XA 1 -X) g [yxH]

x Fg“v’”(a b;c;t/X)dx

) n/m

mIAnIyl

/\+1/2

(4ab+c
ra —r—ul+1/2)
I'()\—r—ul+1)

[ab)\—r—ul+1/2

(28)
(4ab+c)

XlF

t
A—r—ul+1;
GA—T—ui+ "dab+ c]

Furthermore, if we putp = 0, all the results
established in Section 2 gives new formulas involving
oF1(.), which is special case of generalized
hypergeometric function and by changing the parameters
suitably, the results in equations?), (13) and (L4) can be
reduced to the work of Agarwal], Agarwal and chand
[2] and Chand 3], respectively.

4 Conclusion

Finally, it is noted that the results derived in this paper ar
general in character and give some contributions to the
theory of integral equations and Special functions.
Therefore, the results presented in this paper are easily
converted in terms of a similar type of new interesting
integrals with different arguments after some suitable
para-metric replacements. We are also trying to find
certain possible applications of those results presented
here to some other research areas like random walk and
boundary value problems.
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