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Abstract: As a generalization of the concept of a metric basis, thislarintroduces the notion d¢metric basis in graphs. Given a
connected grapls = (V,E), a setSCV is said to be &-metric generator fo6 if the elements of any pair of different vertices @f
are distinguished by at leastlements of i.e., for any two different vertices,v € V, there exist at leastverticeswy,wp, ..., W € S
such thatdg (u,w;) # dg (v, w;) for everyi € {1,...,k}. A k-metric generator of minimum cardinality is called-anetric basis and its
cardinality thek-metric dimension 06. A connected grapls is k-metric dimensionaf k is the largest integer such that there exists a
k-metric basis folG. We give a necessary and sufficient condition for a graph totbetric dimensional and we obtain several results
on ther-metric dimensiont € {1,...,k}.

Keywords: k-metric generatork-metric dimensionk-metric dimensional graph; metric dimension; resolving leeating set; metric
basis

1 Introduction of y. So, for a more realistic settings it could be desirable
to consider a set of landmarks where each pair of nodes is

The problem of uniquely determining the location of an distinguished by at least two landmarks.
intruder in a network was the principal motivation of A natural solution regarding that weakness is the
introducing the concept of metric dimension in graphs bylocation of one landmark in every node of the graph. But,
Slater in [L9, 20], where the metric generators were called such a solution, would have a very high cost. Thus, the
locating sets. The concept of metric dimension of a graptchoice of a correct set of landmarks is convenient for a
was also introduced independently by Harary and Meltersatisfiable performance of the navigation system. That is,
in [9], where metric generators were called resolving setsin order to achieve a reasonable efficiency, it would be
Nevertheless, the concept of a metric generator, in itconvenient to have a set of as few landmarks as possible,
primary version, has a weakness related with the possibl@/ways having the guarantee that every object of the
uniqueness of the vertex identifying a pair of different network will be properly distinguished.
vertices of the graph. Consider, for instance, some robots From now on we consider a simple and connected
which are navigating, moving from node to node of agraph G = (V,E). It is said that a vertexv € V
network. On a graph, however, there is neither thedistinguishes two different verticesxy € V, |f
concept of direction nor that of visibility. We assume that dg(v,X) # dg(v,y), wheredg(a,b) represents the length
robots have communication with a set of landma®s  of a shortesa— b path. A setSC V is ametric generator
subset of nodes) which provide them the distance to thdor G if any pair of different vertices o6 is distinguished
landmarks in order to facilitate the navigation. In this by some element o Such a name fo® raises from the
sense, one aim is that each robot is uniquely determinedoncept ofgeneratorof metric spaces, that is, a sgtof
by the landmarks. Suppose that in a specific moment therpoints in the space with the property that every point of
are two robots, y whose positions are only distinguished the space is uniquely determined by its “distances” from
by one landmarls € S. If the communication between  the elements o8. For our specific case, in a simple and
ands is unexpectedly blocked, then the robotwill get connected graptG = (V,E), we consider the metric
lost in the sense that it can assume that it has the positiods : V x V — N U {0}, where dg(x,y) is defined as
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mentioned above antl is the set of positive integers. metric generators (resolving sets or locating sets as
With this metric, (V,dg) is clearly a metric space. A defined in P] or [19], respectively). Notice that k = 1,
metric generator of minimum cardinality is called a then the problem of checking if a s& is a metric
metric basis and its cardinality thenetric dimensiorof generator reduces to check conditidr) only for those
G, denoted by dirfG). verticesu,v €V — S, as every vertex iis is distinguished
Other useful terminology to define the concept of aat least by itself. Also, ik = 2, then condition1) must be
metric generator in graphs is given at next. Given anchecked only for those pairs having at most one vertex in
ordered seS= {s1,%,...,5} C V(G), we refer to the S, since two vertices o are distinguished at least by
d-vector (ordered d-tuple) r(ulS) = (dg(u,s1), themselves. Nevertheless, kf> 3, then condition 1)
dc(u,sp),...,ds(u,sq)) as themetric representatioof u must be checked for every pair of different vertices of the
with respect tdS. In this senseSis a metric generator for  graph.

G if and only if for every pair of different vertices, v of The literature about metric dimension in graphs shows
G, it follows r (u|S) # r(v|S). several of its usefulness, for instance, applications ¢o th
In order to avoid the weakness of metric basis navigation of robots in networks are discussedlif] pnd

described above, from now on we consider an extensiompplications to chemistry inlfl, 12], among others. This
of the concept of metric generators in the following way. invariant was studied further in a number of other papers
Given a simple and connected gragh= (V,E), a set including [1, 3-5, 7, 8, 10, 16, 17, 21-23]. Several
SCV is said to be &-metric generatofor G if and only  variations of metric generators including resolving
if any pair of different vertices o6 is distinguished by at dominating setsZ], independent resolving set6]] local
leastk elements 0of, i.e., for any pair of different vertices metric sets16], and strong resolving set$4, 15,18], etc.
u,v €V, there exist at leadt verticeswy,wo,...,wx € S have been introduced and studied. It is therefore our goal
such that to introduce this extension of metric generators in graphs

as a possible future tool for other possibly more general

do(u,wi) # dg(v,w), foreveryie {1,...,k}. (1) variations of the applications described above.
We introduce now some other more necessary

A k-metric generator of the minimum cardinality@will  terminology for the article and the rest of necessary
be Ca.”ed d(-metrIC bas|$nd Its Card|nal|ty th(k-metl'lc Concepts will be introduced the first t|me they are
dimensiorof G, which will be denoted by dig{G). mentioned in the work. We will use the notatié®, K; s,

As an example we take the cycle graphwith vertex ¢ N, and P, for complete graphs, complete bipartite
setV = {x1,%2,X3,X4} and edge sef = {xxj : j —i=1  graphs, cycle graphs, empty graphs and path graphs,

(mod 2)}. We claim that dim(C4) = 4. That is, if we  respectively. If two verticesu,v are adjacent in
take the pair of vertices,, x3, then they are distinguished G — (v,E), then we writeu ~ v or we say thative E(G).
only by themselves. Sox;,x3 must belong to every Gjven x € V(G) we define Ng(X) to be the open
2-metric generator fo€4. Analogously,xo,x4 also must  npejghbourhood of x in G. That s,
belong to every 2-metric generator 10). Other example NG (x) = {y € V(G) : x ~ y}. Theclosed neighbourhoqd
is the graptG in Figurel, for which dimy(G) =4. Tosee  denoted byNg[x], equalsNg(x) U {x}. If there is no
this, note that/z does not distinguish any pair of different ampiguity, we will simply writeN(x) or N[x]. We also
vertices of V(G) — {vs} and for each pairvi,vs, refer to the degree of as3d(v) = |N(v)|. The minimum
1<i<5,i#3, there exist two elements ¥f(G) — {va}  and maximum degrees & are denoted by3(G) and
that distinguish them. Henceg does not belong to any A (G), respectively. For a non-empty s8tC V(G), and a
2-metric basis folG. To conclude tha¥/ (G) — {vs} must  vertexv € V(G), Ng(v) denotes the set of neighbors that

be a 2-metric basis fag we proceed as in the case@y. has inS, i.e., Ns(v) = SON(v).
@ @ 2 k-metric dimensional graphs
\ Itis clear that it is not possible to findkametric generator
.@ in a connected grapB for every integek. That is, given
a connected grap®B, there exists an integérsuch thaiG

According to that fact, a connected graphis said to be a
k-metric dimensional grapfif k is the largest integer such
Fig. 1: A graphG whereV (G) — {v3} is a 2-metric basis foB. that there exists kmetric basis fofs. Notice that, ifGis a
k-metric dimensional graph, then for every positive integer
k' <k, G has at least &'-metric basis. Since for every
Note that everyk-metric generatorS satisfies that pair of different vertice,y of a graphG we have that
|S| > k and, ifk > 1, thenS is also a(k— 1)-metric  they are distinguished at least by themselves, it follows
generator. Moreover, 1-metric generators are the standarthat the whole vertex s&t(G) is a 2-metric generator for

@‘@' does not contain anlg-metric generator for everl > t.
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G and, as a consequence it follows that every gi@jik- specific classes of graphs or we bound its possible value
metric dimensional for somle> 2. On the other hand, for in terms of other parameters of the graph. To this end, we
any connected grap® of ordern > 2 there exists at least need the following concepts. Two verticey are called
one vertex € V(G) such thatd(v) > 2. Sincev does not  false twinsif N(x) = N(y) andx,y are calledrue twinsif
distinguish any pair of different neighbouxsy € Ng(v), N[x] = N[y]. Two verticesx,y aretwins if they are false
there is na-metric dimensional graph of ordar> 2. twins or true twins. A vertex is said to be dawin if there

. , exists a vertey € V(G) — {x} such that andy are twins
Remark 1 Let G be a k-metric dimensional graph of order i, g Notice that two vertices,y are twins if and only if
n. If n> 3, then2 <k < n-1. Moreover, G is n-metric (x,y) = 0.
dimensional if and only if G2 K. G\

Corollary 1. A connected graph G of ordern 2 is 2-

Next we give a characterization ok-metric metric dimensional if and only if G has twin vertices
dimensional graphs. To do so, we need some additional y :

terminology. Given two different verticesy € V(G), we

o . ; It is clear thatP, and P; are 2-metric dimensional.
say that the set dfistinctive vertice®f x,y is

Now, a specific characterization for 2-dimensional trees is

_ . obtained from Theorerh (or from Corollaryl). A leaf in
(xy) ={z€V(C): ds(x,2) # do(,2)} atree is a vertex of degree one, whilsupport vertexs a

and the set ofion-trivial distinctive verticesf x,y is vertex adjacent to a leaf.
DEXY) = Da(x,Y) — {X.y}. Corollary2. A tree T of order n> 4 is 2-metric

dimensional if and only if T contains a support vertex
Theorem 1.A connected graph G is k-metric dimensional Which is adjacent to at least two leaves.
ifandonlyifk= min  |Zc(X,Y)| o . )

XYyeV(G) £y An example of a 2-metric dimensional tree is the star
graph Kin-1, whose 2-metric dimension is
dimy(Kyn—1) = n—1 (see Corollary). On the other side,
an example of a tre€ which is not 2-metric dimensional

Proof. (Necessity) IfG is a k-metric dimensional graph,
then for anyk-metric basisB and any pair of different

verticesx,y € V(G), we have[BN Z6(x.y)| > k- Thus, s grawn in Figure2. Notice thatS= {v1, Vs, Vs, Ve, v7} is
k < min , |Zc(%,y)|. Now, we suppose that gurs v, Vs, V5, Ve, V7

XYEV (G) Xy a 3-metric basis of T. Moreover, T is 3-metric
k< min |Zs(xy). In such a case, for every dimensionalsinceZr(vi,vs)| =3.

XYyeV(G)x#y
X,y € V(G) such thatBN Zs(X,Y)| = k, there exists a
distinctive vertexz,y of X,y with z., € Zg(X,y) —B.

Hence, the set @ @
BU U {Zx/y’} 0 @ 0

XY eV(G):[BNZa(X.y)|=k
Fig. 2: S= {v1,v3,Vs,Vg,V7} is a 3-metric basis of .
is a (k+ 1)-metric generator forG, which is a

contradiction. Therefor&k= min  |Zs(X,y)|.
. Xyev (G)xzy A cut vertexin a graph is a vertex whose removal
(Sufficiency) Let ab € V(G) such that jncreases the number of components of the graph and an
Xyem';r)‘x#y|96(xa)’)| = |Zc(a,b)| = k. Since the set extreme vertexis a vertexv such that the subgraph
’ ’ induced byN[v] is isomorphic to a complete graph. Also,
U T (x,Y) ablockis a maximal bicqnnected subgraydf the graph.
Xy (G) ’ Now, let § be the family of sequences of connected

graphsG;, Gy,..., G, t > 2, such thaiG; is a complete
is a k-metric generator foiG and the paira,b is not ~ 9"@PhKn;, 1 > 2, andG;, i > 2, is obtained recursively

distinguished by’ > k vertices ofG, we conclude thag  [Tom Gi—1 by adding a complete grapky, ni > 2, and
is ak-metric dimensional graph. identifying one vertex oG;_1 with one vertex oKy, .

From this point we will say that a connected graph
is ageneralized tregif and only if there exists a sequence
{G1,Gy,...,Gt} € § such thatG; = G for somet > 2.

2.1 On some families of k-metric dimensional Notice that in these generalized trees every vertex is

graphs for some specific values of k

1 A biconnected graph is a connected graph having no
The characterization proved in Theorémives aresulton  articulation vertices.
general graphs. Thus, next we particularize this for some 2 In some works these graphs are called block graphs.
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either, a cut vertex or an extreme vertex. Also, everyTheorem 2. A graph G of order n> 3 is (n — 1)-metric

complete graph used to obtain the generalized tree is
block of the graph. Note that, if eveK, is isomorphic to
Ky, then G; is a tree, justifying the terminology used.

dimensional if and only if G is a path or G is an odd cycle.

Proof. Since n > 3, by Remarkl, G is k-metric

With these concepts we give the following consequenceiimensional for somé € {2,...,n— 1}. Now, for any

of Theoreml, which is a generalization of Corollag/

Corollary 3. A generalized tree G i-metric dimensional

if and only if G contains at least two extreme vertices being

adjacent to a common cut vertex.

The Cartesian product graph GH, of two graphs
G = (V1,E1) andH = (W, Ey), is the graph whose vertex
set isV(GOH) = V1 x V, and any two distinct vertices
(X1,X%2), (Y1,¥2) € V1 x V, are adjacent inGOH if and
only if either:

(a) x1 =y1 andxz ~ yp, or
(b) X1 ~y1 andxz = ya.

Proposition 1. Let G and H be two connected graphs of
order n> 2 and i > 3, respectively. If GIH is k-metric
dimensional, then k 3.

Proof. Notice that for any vertex(a,b) € V(GOH),
Neon ((a,b)) = (Ng(a) x {b}) U ({a} x N4 (b)). Now, for
any two distinct verticega,b), (c,d) € V(GOH) at least
a## corb#dand sinceH is a connected graph of order
greater than two, we have that at led&§t(b) # {d} or
Nu(d) # {b}. Thus, we obtain that
NeoH ((a,b)) # Neow ((c,d)). Therefore, GOH does not
contain any twins and, by Remafkand Corollaryl, if
GOH is k-metric dimensional, thek> 3.

Proposition 2. Let G, be a cycle graph of order n. If nis
odd, then G is (n— 1)-metric dimensional and if n is even,
then G, is (n — 2)-metric dimensional.

Proof. We consider two cases:

(1) nis odd. For any pair of different verticesv € V (Cy)
there exists only one vertexe V(C,) such thatv does
not distinguistu andv. Therefore, by Theorerh C, is
(n—1)-metric dimensional.

(2) nis even. In this cas&, is 2-antipodal. For any pair
of verticesu,v € V(C,), such that(u,v) = 2|, we can

take a vertexx such thatd(u,x) = d(v,x) = |. So,
Pc(u,v) = V(Cn) — {x,y}, wherey is antipodal tox.
On the other hand, ifd(u,v) is odd, then

Z6(u,v) =V (Cy). Therefore, by Theorerh, the graph
Cn is (n— 2)-metric dimensional.

Now, according to Remarkwe have that every graph
of ordern, different fromKoy, is k-metric dimensional for

pair of different verticesi, v € V(R,) there exists at most
one vertexw € V(P,) such thatw does not distinguisiu
and v. Then P, is (n — 1)-metric dimensional. By
Proposition2, we have that iiG is an odd cycle, the@ is
(n— 1)-metric dimensional.

On the contrary, leG be a(n— 1)-metric dimensional
graph. Hence, for every pair of different vertices
X,y € V(G) there exists at most one vertex which does not
distinguishx,y. Suppose(G) > 2 and letv € V(G) such
that {u;,up,us} C N(v). Figure 3 shows all the
possibilities for the links between these four vertices.
Figures3 (a), 3 (b) and 3 (d) show thatv,u; do not
distinguishu,, us. Figure 3 (c) shows that;,u, do not
distinguishv,us. Thus, from the cases above we deduce
that there is a pair of different vertices which is not
distinguished by at least two other different vertices.§hu
G is not a(n— 1)-metric dimensional graph, which is a
contradiction. As a consequend(G) < 2 and we have
that G is either a path or a cycle graph. Finally, by
Proposition2, we have that ifs is a cycle, therG has odd
order.

2.2 Bounding the value k for which a graph is
k-metric dimensional

In order to continue presenting our results, we need to
introduce some definitions. A vertex of degree at least
three in a grapl@ will be called amajor vertexof G. Any
end-vertex (a vertex of degree onedf G is said to be a
terminal vertex of a major vertex v of G if
de(u,Vv) < dg(u,w) for every other major vertew of G.
The terminal degreeter(v) of a major vertexv is the
number of terminal vertices of A major vertexv of G is

an exterior major vertexof G if it has positive terminal
degree. Let# (G) be the set of exterior major vertices of
G having terminal degree greater than one.

Givenw € .#(G) and a terminal vertex; of w, we
denote byP(uj,w) the shortest path that startswgtand
ends atw. Let I(uj,w) be the length ofP(uj,w). Now,
givenw € . (G) and two terminal vertices;, ur of wwe
denote byP(uj,w,ur) the shortest path fronu; to ur
containingw, and by¢(u;,ur) the length ofP(uj,w,ur).

somek < n— 1. Next we characterize those graphs beingNotice that, by definition of exterior major vertex,

(n—1)-metric dimensional.

3 The diameter of G = (V,E) is defined asD(G) =
max, vev (c){da(u,V)}. We say thatiandv are antipodal vertices
or mutually antipodal ifdg(u,v) = D(G). We recall thatG =
(V,E) is 2-antipodal if for each vertexe V there exists exactly
one vertexy € V such thatlg(x,y) = D(G).

P(uj,w,u;) is obtained by concatenating the paths
P(uj,w) and P(ur,w), wherew is the only vertex of
degree greater than two lying on these paths.

Finally, givenw € .#(G) and the set of terminal
verticesU = {ug,up,...,ux} of w, for j #r we define
¢(w) = ujfgrlgu{c(uj,ur)} andl(w) = LTE'[}{'(UjaW)}-
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Fig. 3: Possible cases for a vertexvith three adjacent vertices
Up, U2, Us.

Fig. 4: A graphG where¢(G) = 3.

An example which helps to understand the notation
above is given in Figurel. In such a case we have
A (G) = {vs,vs5,v15} and, for instance{vy,vg,vi2} are
terminal vertices ofv3. So,v3 has terminal degree three
(ter(vz) = 3) and it follows that

|(V3) = min{l (V12,V3), | (Vg,Vg), | (Vl,Vg)}
=min{1,2,2} =1,

and

G(v3) = min{¢(va2,V1), G(V12,V8),G(Vs, V1) }
=min{3,3,4} =3.

Similarly, it is possible to observe that tes) = 2,
I(vs) = 1, ¢(vs) = 3, tenvis) = 2, I(vi5) = 2 and
¢(v15) = 4. Thereforeg(G) = 3.

According to this notation we present the following
result.

Theorem 3. Let G be a connected graph such that
A (G) # 0. If G is k-metric dimensional, thenk ¢(G).

Proof. We claim that there exists at least one pair of
different verticest,y € V(G) such thai Z¢(x,y)| = ¢(G).
To see this, letv € .#(G) and letus,u; be two terminal
vertices ofw such that¢(G) = ¢(w) = ¢(u,up). Let uj
andu, be the vertices adjacent W in the shortest paths
P(ui,w) and P(uz,w), respectively. Notice that it could
happen u; = u; or u, = u,. Since every vertex
v ¢ V(Pu,wu)) — {w} satisfies that
dg(u},v) = dg(uj,v), and the only distinctive vertices of
uy, U, are those ones belonginggu;, u1) andP(uj, up),
we have thatZg (U}, u,)| = ¢(G). Therefore, by Theorem
1, if Gis k-metric dimensional, thek < ¢(G).

The upper bound of Theorehis tight. For instance,
it is achieved for every tree different from a path as it is
proved further in Sectiod, where thek-metric dimension
of trees is studied.

A cliquein a graphG is a set of verticeS such that the
subgraph induced bg, denoted byS), is isomorphic to a
complete graph. The maximum cardinality of a clique in a
graphG is thecligue numbemnd it is denoted by(G).

We will say thatSis anw(G)-clique if |§] = w(G).

Theorem 4. Let G be a graph of order n different from
a complete graph. If G is k-metric dimensional, thed k
n—w(G)+1.

Proof. Let Sbe anw(G)-clique. SinceG is not complete,
there exists a vertex¢ Ssuch thatNs(v) C S Letue S
with v £ u. If Ng(v) = S— {u}, thend(u,x) = d(v,x) =1
for everyx € S— {u}. Thus,|Zs(u,v)| < n— w(G) + 1.

From the local parameters above we define theOn the other hand, iNs(v) # S— {u}, then there exists

following global parameter

min

G =
C() we.Z (G

){C(W)}-

U € S—{u} such that/ # v. Thus,d(u,v) =d(U,v) =2
and for everyx € S—{u,u’}, d(u,x) = d(u,x) = 1. So,
|Z6(u,U)| < n— w(G) + 1. Therefore, Theorerh leads
tok<n—w(G)+1.
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Examples where the previous bound is achieved are

those connected grapl@ of ordern and clique number 0 @ @
w(G)=n—1.Insuchacase— w(G)+1=2. Notice that
in this case there exists at least two twin vertices. Hence, @ @
by Corollaryl these graphs are 2-metric dimensional.

Thegirth of a graphG is the length of a shortest cycle e @ e

in G.

o Fig. 5: A graph that satisfies the equality in the upper bound of
Theorem 5.Let G be a graph of minimum degré¢G) > Theorens.
2, maximum degreA(G) > 3 and girthg(G) > 4. If G is
k-metric dimensional, then

Table 1: Pairs of vertices of the graph in Figuseand their non-

82 |2 trivial distinctive vertices.
k<n—1—(A(G)-2) Zj (6(G)-1)". Xy Z6(%Y) Xy P5(%Y)

is v1,V3 | {V4,Vs,V7,Vg} v1,V2 | {V3,Vs,Vs5, Ve, V)
V1, Vs | {V2,Vs,V6,V8} Vi,V4 | {V2,V3,V5,V7,Vg}
Proof. Let v € V be a vertex of maximum degree @. Vi,V | {Va4,Vs5,V7,Vg} Vo,V3 | {V1,Va,Ve,V7,Vg}
Since A(G) > 3 andg(G) > 4, there are at least three | vi,vz | {V2,V3,V5,V6} V2,Vg | {V1,Vs, Ve V7, Va}
different vertices adjacent toandN(v) is an independent Vi,Vg | {V2,Vg,Va,V7} V2, Vg | {V3,Va,V5,V6, V7}
set'. Givenur,u € N(v) andi € {0, .. { g® J 2} we V2,Vs | {V1,V3,Va, Vg} V3,Vg | {V1,V2,V4,Vs5,V7}
. . Vo,Ve | {Vv1,Vs,Vs,V7} Vg,Ve | {Vv1,V2,V3,V7,Vg}
define the following sets. V2,V7 | {V1,Vs,Va,Vg) Va,V7 | {V1,V3,Vs, Ve, Vg
V3,Vq | {Vv1,V2,V5,Vg} Vs,Ve | {V1,V2,V4,V7,Vg}
Ao =N(V) —{uy, Uz} V3,V5 | {v1,V2,V6,V7} V5,V | {v1,V3,Vs,Ve;V7}
A= [J N(X) —{v}. V3,Ve | {Va,Vs,V7,V8} Ve, V7 | {V2,V3,V4,Vs5,Vg}
xeh V3,V7 | {V2,V4,Ve,V8} Ve,Vg | {V1,V2,V3,V4,V5}

V4, Vs | {V3,Ve,V7,Vs}

Az = N(x) - Ao. Va,Vg | {V1,Va,V5,V7}

xeAL Vs, V7 | {V1,V3,V4,Vg}

v7,vg | {Vv1,Va,Vs,Ve}

g2, O N A
2 XEA\‘MJis 2
: 3 The k-metric dimension of graphs

<T In this section we present some results that allow to
Now, letA = {v}U U . Sinced(G) > 2, we  compute thek-metric dimension of several families of
i—0 graphs. We also give some tight bounds on kiraetric
dimension of a graph.

have thatA| > 1+ (A(G) — 2) % (3(G)—1)'. Also,  Theorem 6(Monotony of thek-metric dimension). Let
) i= G be a k-metric dimensional graph and let k, be two
notice that for every vertexe A, d(uy, x) = d(Uz,X). Thus,  integers. Ifl < k; < k, < k, thendimy, (G) < dimy, (G).
ul, up can be only distinguished by themselves and at most ' ?
—|A| -2 other vertices. ThereforgZg(ui, Uz)| <n—[A]  Proof.Let B be ak-metric basis of5. Letx € B. Since all
and the result follows by Theorein pairs of different vertices iV (G) are distinguished by at
least k vertices of B, we have thatB — {x} is a
The bound of Theorerb is sharp. For instance, itis (k — 1)-metric generator foiG and, as a consequence,
attained for the graph in Figurb. Since in this case dimy_1(G) < |[B—{x}| < |B| = dimk(G). Proceeding
n=38, 5(G) =2, A(G) =3 andg(G) = 5, we have that analogously, we obtain that dimy (G) > dimy_»(G) and,
L@J - _ by a finite repetition of the process we obtain the result.
k<n-1-(A(G)-2)3i, (6(G)—1)' =6. Tablel

shows every pair of different vertices of this graph andCorollary 4. Let G be a k-metric dimensional graph of
their corresponding non-trivial distinctive vertices.tite order n.

that by Theoreni the graph is 6-metric dimensional. ) . .
(i) Foreveryre {1,...,k},dim;(G) > dim(G) + (r — 1).

4 Anindependent set or stable setis a set of vertices in a graph (i) Foreveryre {1,....k—1},dim(G) <n.
no two of which are adjacent. (iii) 1f G 2 Py, then for any re{1,...,k},dim(G) >r+1
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Proposition 3.Let G be a connected graph of ordepr2.
Thendimy(G) = 2 if and only if G R,.

Proof. It was shown in ] that dim(G) = 1 if and only if
G = Pn.

(Necessity) If dim(G) = 2, then by Corollaryt (i) we
have that dingG) =1, i.e,

2 = dimy(G) > dim(G) +1> 2.

Hence G must be isomorphic to a path graph.

(Sufficiency) By Corollary 4 (i) we have
dimy(P,) > dim(Py) +1 = 2 and, since the leaves &%
distinguish every pair of different vertices ¢+, we
conclude that dig(P,) = 2.

called the central vertex of the wheel or the fan,
respectively.  Since V(Fi4) = 23(Fi4) and
V(Wi5) = Z4(Wy5), by Proposition4 we have that
dims(Fp4) =5 and dim (Wi 5) = 6, respectively.

Given two non-trivial graph$ andH, it holds that
any pair of twin vertice,y € V(G) or x,y € V(H) are
also twin vertices inG+ H. As a direct consequence of
Corollary5, the next result holds.

Remark 3 Let G and H be two nontrivial graphs of order

n; and rp, respectively. If all the vertices of G and H are

twin vertices, then G-H is 2-metric dimensional and
dimp(G+H)=n1+ny.

Note that in Remarlg, the graphss andH could be
non connected. MoreoveG andH could be nontrivial

Let 2¢(G) be the set obtained as the union of the setsempty graphs. For instancey; + Ns, where N;, Ns,

of distinctive verticesZg(X,y) whenever| Zg(x,y)| = kK,

i.e.,
U  Zsxy).
|Z6(xy)|=k

(G) =

Remark 2 If G is a k-metric dimensional graph, then

dim(G) > [Z(G)|.

Proof. Since every pair of different verticeg,y is
distinguished only by the elements d¥g(x,y), if
|Zc(x,¥)| = k, then for anyk-metric basisB we have
Zc(x,y) € B and, as a consequenc&i(G) C B.
Therefore, the result follows.

The bound given in Remaikis tight. For instance, in

Proposition6 we will show that there exists a family of
trees attaining this bound for evekyOther examples can

be derived from the following result.

Proposition 4. Let G be a k-metric dimensional graph of

order n. Therdim,(G) = n if and only if V(G) = Z(G).

Proof. Suppose thaV¥ (G) = %(G). Now, since everk-
metric dimensional grap® satisfies that dig{G) < n, by
Remark2 we obtain that din(G) = n.

On the contrary, let dig{G) = n. Note that for every
a,b € V(G), we have|Zg(a,b)| > k. If there exists at
least one vertex € V(G) such thatx ¢ Z(G), then for
everya,b € V(G), we have Zs(a,b) — {x}| > kand, as a
consequence/(G) — {x} is a k-metric generator foG,
which is a contradiction. Thereforé(G) = %(G).

Corollary 5. Let G be a connected graph of ordern2.
Thendim,(G) = n if and only if every vertex is a twin.

We will show other examples of graphs that satisfy

Propositiond for k > 3. To this end, we recall that thein
graph G+ H of the graph$s = (V4,E;) andH = (V,, Ey)
is the graph with vertex s&t(G+H) =V, UV, and edge
setE(G+H) =EjUEU{uv: ueVyveVa}. We give

now some examples of graphs satisfying the assumptions

of Proposition4. Let W, , = C, + K1 be thewheel graph
andFy, = Py + Ky be thefan graph The vertex ofK; is

r,s> 1, are empty graphs, is the complete bipartite graph
K: s which satisfies that digiK;s) =r +s.

3.1 Bounding the k-metric dimension of graphs

We begin this subsection with a necessary definition of the
twin equivalence relatio®Z onV(G) as follows:

XZY +— Ng[X] = Ng[y] or Ng(x) = Ng(y).

We have three possibilities for each twin equivalence
classU:

(a) U is singleton, or

(b) Ng(X) =Ng(y), for anyx,y € U (and case (a) does not
apply), or

() Ng[x] = Ngly], for anyx,y € U (and case (a) does not
apply).

We will refer to the type (c) classes as thrae twin
equivalence classes i.e.,ig a true twin equivalence class
if and only ifU is not singleton andlig[x] = Ng[y], for any
x,yeU.

Let us see three different examples where every vertex
is a twin. An example of a graph where every equivalence
class is a true twin equivalence classKis+ (Ks U Kt),

r,s,t > 2. In this case, there are three equivalence classes
composed by, s andt true twin vertices, respectively. As

an example where no class is composed by true twin
vertices we take the complete bipartite grdfl, r,s> 2.
Finally, the graphK; + Ns, r,s > 2, has two equivalence
classes and one of them is composed rbyrue twin
vertices. On the other hanl; + (K UNs), r,s> 2, is an
example where one class is singleton, one class is
composed by true twin vertices and the other one is
composed by false twin vertices.

In general, we can state the following result.

Remark4 Let G be a connected graph and let
Uy,Up,...,U; be the non-singleton twin equivalence
classes of G. Then

dimy(G) > Zw.

(© 2015 NSP
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Proof. Since for two different verticex,y € V(G) we
have that?,(x,y) = {x,y} if and only if there exists an
equivalence cladd; such thak,y € U;, we deduce

t
7(G) = | JUi.
i=1

Therefore, by RemarR we conclude the proof.

Notice that the result above leads to Coroll&yso

this bound is tight. Now we consider the connected graph|r (W) =

G of orderr + s obtained from a null grapN, of order

r > 2 and a pathP; of orders > 1 by connecting every
vertex ofN; to a given leaf of. In this case, there are
s singleton classes and one class, Wayof cardinalityr.
By the previous result we have di®) > |U1| =r and,
sinceU; is a 2-metric generator fdB, we conclude that
dimz(G) =r.

We recall that thestrong product graph ®H of two
graphsG = (Vi,E;) andH = (V,,Ey) is the graph with
vertex seV (GXH) =V x V,, where two distinct vertices
(X1,X%2), (Y1,¥2) € V1 x Vs, are adjacent iGX H if and only
if one of the following holds.

— X1 =Yy andxz ~ y», or
— X1 ~Yyp andxz =y, or
— Xg ~ Y1 andxz ~ ys.

We now present a lower bound for themetric
dimension of ak'-metric dimensional graphs with
k' > k. To this end, we require the use of the following
function for any exterior major vertew € V(G) having
terminal degree greater than ome,, w € .#(G). Notice
that this function uses the concepts already defined in
Section2.2 Given an integer < K,

otherwise.

{ (ter(w) — 1) (r — L(w)) + I (w), if I(w) < | 5],
(tertw) = 1) [51+ | 5],

In Figure4 we give an example of a graph, which
helps to clarify the notation above. Since every graph is
at least 2-metric dimensional, we can consider the integer
r = 2 and we have the following.

- Since I(v3) = 1 < |5], it follows that
Ir(vs) = (terlva)—1)(r—1I(v3)) + I(vz) =
(3-1)(2—1)+1=3.
- Since I(vs) = 1 < |5], it follows that
Ir(vs) = (ter(vs) —1)(r—1I(vs)) + Il(v5) =
(2-1)(2-1)+1=2.

— Sincel(vis) = 2 > | 5], it follows that I;(vis) =
(tertvis) = 1) [5] + 3] = 2= D) [3]+[5] =2
Therefore, according to the result below, dii@) > 3+

Theorem 7. Let G and H be two nontrivial connected 242=7.

graphs of order n and’nrespectively. Let UU,,...,U;
be the true twin equivalence classes of G. Then

t
dimp(GRH) > 1’ Y |Ui|.
2

Moreover, if every vertex of G is a true twin, then
dimp(GXH) =nn.
Proof. For any two vertices, ¢ € U andb € V(H),

Nowr [(a,b)] = Ng[a] x Ny [b]
= Ng|c] x N [b]
= NgxH [(C, b)]

Thus,(a,b) and(c,b) are true twin vertices. Hence,
t
.@2((3& H) D) UUi XV(H).
i=1

Therefore, Remark 2 we conclude

by
t

dimy(GRH) >n' S |Uj).
2 |

Finally, if every vertex ofG is a true twin, therU U=
i=1
V(G) and, as a consequence, we obtain 4BXH) =
nn'.

Theorem 8.1f G is a k-metric dimensional graph such that
|.# (G)| > 1, then for every i {1,...,k},

dim; (G) > I ().
we.Z (G)

Proof.Let Sbe anr-metric basis of5. Letw € .# (G) and
let uj, us be two different terminal vertices @¥. Let U, ug

be the vertices adjacent w in the pathsP(u;,w) and
P(us,w), respectively. Notice that Zg(uj,u;) =

V (P(ui,w,us)) — {w} and, as a consequence, it follows
that|SN (V (P(ui,w,us)) — {w})| > r. Now, if ter(w) = 2,
then we have

SNV (P(ui, W, us)) = {wW})[ = T = Ir (W)

Now, we assume téw) > 2. LetW be the set of terminal
vertices ofw, and Ietu’j be the vertex adjacent t@ in the

path  P(uj,w) for every uj € W. Let
Uw) = [JV(Pu,w) — {w} and let
ujeW

X = mi\?v{\SmV(P(uj,w))\}. Since S is an r-metric
uje

generator of minimum cardinality (it is anmetric basis
of G), it is satisfied that 6< x < min{l(w), | 5]}. Let uq
be a terminal vertex such that
ISN (V (P(ug,w)) —{w})| = x. Since for every terminal
vertexug € W — {ug } we have thafSn @G(ub, uy)l >,
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it follows that| S (V (P(ug,w)) — {w})| >r—x. Thus, 4 The particular case of trees

ISNU (w)| = |Sﬂ( (P(Ua, W) — {w})[+ To study thek-metric dimension of a tree it is of course
ter(w necessary to know first the valldor which a given tree
+ z 1SN (V (P(ug,w)) — {w})] is k-metric dimensional. That is what we do next. In this
B=Lp#a sense, from now on we need the terminology and notation
> (ter(w) — 1) (r —X) +x. already described in Sectidh2 and also the following

one. Given an exterior major vertexn a treeT and the
Now, if x= 0, then|SNU (w)| > (ter(w) —1)r > I;(w).  set of its terminal verticesss,...,vq, the subgraph
On the contrary, if x > 0, then the function a
f(x) = (ter(w) — 1) (r — x) +x is decreasing with respect induced by the SetJV(P(V7 vi)) is called abranchof T
to x. So, the minimum value off is achieved in the i=1
highest possible value of. Thus, |SNU(W)| > I,(w).  atVv(av-branchfor short).

Since (] U(w) =0, itfollows that
we.Z(G)

Theorem 9.1If T is a k-metric dimensional tree different
from a path, then k= ¢(T).

[ > > ) . :
dim (G) = We;(G) ISnUWw)| 2 We;(e)lr(w) Proof. SinceT is not a path,# (T) # 0. Letw € .Z(T)
- - and letug,u, be two terminal vertices ofv such that
Now, in order to give some consequences of the bound;(T) = ¢(w) = ¢(uz,up). Notice that, for instance, the
above we will use some notation defined in Secfadito two neighbours ofv belonging to the pathB(w,u;) and

introduce the following parameter. P(w,up), sayu; andu, satisfy| Zr (uy,u,)| = ¢(T).
It only remains to prove that for everyy € V(T) it
H(G) = Z ter(v). holds that|Zr(x,y)| > ¢(T). Let w € . (T) and let
ve.Z(G) Tw = (Vw, Ew) be thew-branch. Also we consider the set

Notice that, fork = 1, Theorens leads to the bound on Of vertices V' = V(T) — Uye. ). Note that
the metric dimension of a graph, established by ChartrandVw| > ¢(T) + 1 for everyw € .Z(T). With this fact in
etal.in [5]. In such a casdy(w) =ter(w) — 1 forallwe  mind, we consider three cases.

#(G) and thus, Case 1l:x € Vi, andy € V,, for somew,w € .Z(T),
) w # W. In this casex,y are distinguished by or by w'.

dim(G) > 3 (terfw)—1)=pu(G)—[.#Z(G)|. Now, if w distinguishes the paix,y, then at most one
we.Z(G) element oM, does not distinguisk, y (see Figures). So,

x andy are distinguished by at leasy| — 1 vertices ofT

Next we give the particular cases of Theor8ror r = 2 ,
or by at leastV,,| — 1 vertices ofT .

andr =3
Corollary 6. If G is a connected graph, then
dimy(G) > p(G).

Proof.If . (G) =0, thenu(G) = 0 and the result is direct.
Suppose thatZ (G) # 0. Sincely(w) = ter(w) for all w €
A (G), we deduce that

dimy(G) > z( )ter(w) = u(G).
weZ (G

Corollary 7. If G is k-metric dimensional for someX3,  Fig. 6: In this examplew distinguishes the pai,y, andzis the
then only vertex inV4y that does not distinguishy.
dims(G) > 2u(G) — |.#(G)|.

Proof.If .#Z(G) = 0, then the result is direct. Suppose that
A (G) # 0. Sincelz(w) = 2teqw) — 1 for allw € .Z(G),
we obtain that

dimg(G)> T (2terw)— 1) = 2u(G) — . #(G)|

we.Z (G)

Case 2:xe€ V' oryeV'. Thus,V' # 0 and, as a
consequence,# (T)| > 2. Hence, we have one of the
following situations.

— There exist two vertice&,W € .#(T), w# W, such
that the shortest path frorto w and the shortest path
In the next section we give some results on trees which ~ fromy tow have empty intersection, or

show that the bounds proved in Theor8ieind Corollaries — for every vertexw” € . (T), it follows that eithery
6 and7 are tight. Specifically those results are Theofdin belongs to the shortest path fronto w” or x belongs
and Corollarie8 and9, respectively. to the shortest path fromto w”.
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In the first casex, y are distinguished by vertices ), or
by vertices inV,, and in the second onexy are
distinguished by vertices i, .

Case 3: x,y € VW for some w € .Z(T). If
Xy € V(P(u;,w)) for somel € {1,...,ter(w)}, then there
exists at most one vertex & (P(u;,w)) which does not
distinguish x,y. Since tefw) > 2, the vertexw has a
terminal vertexug with g # 1. So,x,y are distinguished by
at least |V(P(u,wuq))| — 1 vertices, and since
V(P(u,wuq)) > ¢(T) + 1, we are done. If
x € V(P(u,w) and y € V(P(ug,w) for some
l,qge {1,...,ter(w)}, | # g, then there exists at most one
vertex of V (P(uj,w,uq)) which does not distinguisk, y.
Since|V (P(uj,w,uq))| > ¢(T) + 1, the result follows.

Thereforeg(T) = ) m\jrgT) |Z7 (%,y)| and by Theorem

e

1 the result follows.

Since any path is a particular case of a tree and its

behavior with respect to the&-metric dimension is

different, here we analyze them in first instance. In
Proposition3 we noticed that the 2-metric dimension of a

path Py(n > 2) is two. Here we give a formula for the
k-metric dimension of any path graph foe 3.

Proposition 5.Let k> 3 be an integer. For any path graph
P, of order n> k-+ 1,

dimg(Pn) = k+ 1.

Proof. Let v; and v, be the leaves oR, and letS be a
k-metric basis of,. Since|§ > k > 3, there exists at least
one vertexw € SN (V(Ry) — {v1,vn}). For any vertex
w € V(Py) — {v1,vn} there exist at least two vertices
u,v € V(P,) such thatw does not distinguishu and v.
Hence||S = dimy(P,) > k+ 1.

Now, notice that for any pair of different verticass €
V(P,) there exists at most one vertexc V (Ry) — {v1,Vn}
such thatw does not distinguisli andv. Thus, we have
that for everySC V(R,) such thatl§ = k+ 1 and every
pair of different verticex,y € V(R,), there exists at least
k vertices ofS such that they distinguisky. SoSis ak-
metric generator foR,. Therefore, dim(P) < |S|=k+1
and, consequently, the result follows.

Once studied the path graphs, we are now able to giv%f

a formula for ther-metric dimension of anyk-metric

other usefulness, shows that Theor&im tight.

Theorem 10.If T is a tree which is not a path, then for

anyre{1,...,¢(T)},
dim(T) = Ir(w).

we.Z(T)

Proof. SinceT is not a pathT contains at least one vertex
belonging to .#Z(T). Let w € .#Z(T) and let
Tw = (Mw, Ew) be thew-branch. Also we consider the set
V' = V(T) = Uwe.sr(t) V. For everyw € .Z(T), we

suppose u; is a terminal vertex ofw such that
[(ug,w) = 1(w). LetU (w) = {ug,uy,...,us} be the set of
terminal vertices ofv. Now, for everyu; € U (w), let the
pathP(uj,w) = ujutu? AR

-1 .
jus...u; w and we consider the

setS(uj,w) C V (P(uj,w)) — {w} given by:

{ul,ui,...,u'fw*l}, if 1(w) < 5]

S(Ul,W) = ;
{ul,u%,...,ugﬂ—l}, if [(w) > [ 5].
and forj #1,
{7 i) < (5],
S(UJ,W) =

According to this we have,

l(w), ifI(w) < [5] anduj =uy,
r—I(w), if I(w) < [5] anduj # ug,
[SUW= 91 i iw) > 5] anduj = us,
(51, if 1(w) > | 5] anduj # uy.
LetSw)= |J S(ujw)andS= [J Sw). Since
ujeU (w) we.Z(T)
for everyw € .#(T) it follows that (] S(uj,w) =0
ujeU(w)
and () S(w)=0,we obtain thalS = I (W).
we.#(T) we.Z(T)

Also notice that for everyw € .#(T), such that
ter(w) = 2 we havgS(w)| =r and, if tefw) > 2, then we
have |S(w)| > r + 1. We claim thatS is an r-metric
generator foiT . Let u,v be two distinct vertices of . We
consider the following cases.

Case 1:u,v € V,, for somew € .#(T). We have the
following subcases.

Subcase 1.1: u,v € V(P(uj,w)) for some
€ {1,...,ter(w)}. Hence, there exists at most one vertex
S(w) NV (P(uj,w)) which does not distinguish,v. If

ajor vertexw € .#(T) — {w}. So, the elements of
S(w') distinguishu, v. Since|S(w')| > r, we deduce that at
leastr elements o distinguishu,v. On the other hand, if
ter(w) > 2, then sincgS(w)| > r 4+ 1, we obtain that at
leastr elements of§(w) distinguishu, v.

Subcase 1.2u € V(P(uj,w)) andv e V(P(u,w)) for
some j,I € {1,...,ter(w)}, j # |. According to the
construction of the se§(w), there exists at most one
vertex of Gw) N (V(P(uj,w,u))) which does not
distinguishu, v.

Now, if ter(w) 2, then there exists
W e #(T)— {w}. If d(u,w) = d(v,w), then ther
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elements o5(w) distinguishu,v and, ifd(u,w) # d(v,w),
then the elements &w) distinguishu, v.

On the other hand, if téw) > 2, then sincéS(w)| >
r+1, we deduce that at leastlements of(w) distinguish
u, V.

Case 2:U € Vy,V €V, for somew,w € .7 (T) with
w # W. In this case, either the vertices 8{w) or the
vertices inS(w') distinguishu,v. Since|Sw)| > r and
|S(w)| > r we have that,v are distinguished by at learst
elements of.

Case 3:u €V’ orve V' Without loss of generality
we assumel € V'. SinceV’ £ 0, we have that there exist
at least two different vertices inZ (T ). Hence, we have
either one of the following situations.

— There exist two vertice&,W € . (T), w # W, such
that the shortest path fromto w and the shortest path
from vtow have empty intersection, or

— for every vertexw” € . (T), it follows that eitherv
belongs to every shortest path fromto w’ or u
belongs to every shortest path fraro w”.

Notice that in both situations, sin¢&w)| > r, for every
we . (T)), we have thau, v are distinguished by at least
r elements ofs. In the first casey andv are distinguished
by the elements d§(w) or by the elements &w') and, in
the second onay andv are distinguished by the elements
of SwW”).

Therefore,S is an r-metric generator fol and, by
TheorenB, the proof is complete.

In the case = 1, the formula of TheorerhO leads to
dim(T) = p(T) = [.#(T)],

which is a result obtained in5. Other interesting
particular cases are the following ones fore= 2 and
r = 3, respectively. That is, by Theoreh® we have the
next results.

Corollary 8. If T is a tree different from a path, then
dimp(T) = u(T).

Corollary 9. If T is a tree different from a path with
¢(T) >3, then

dim(T) = 2u(T) — [.#(T)|.

As mentioned before, the two corollaries above show
that the bounds given in Corollari€sand7 are achieved.
We finish our exposition with a formula for tHemetric
dimension of ak-metric dimensional tree with some
specific structure, also showing that the inequality
dim(T) > |%k(T)|, given in Remark, can be reached.

Proposition 6.Let T be a tree different from a path and let
k > 2 be an integer. Iter(w) = 2 and ¢(w) = k for every
we Z(T), thendimg(T) = |Z(T)].

Proof. Since every vertexw € .#(T) satisfies that
ter(w) = 2 and¢(w) =k, we have that(T) = k. Thus, by
Theorem 9, T is k-metric dimensional tree. Since
Ix(w) =k for everyw € .#(T), by TheoremlO we have
that dim(T) = k|.#(T)|. Let ur,us be the terminal
vertices ofw. As we have shown in the proof of Theorem
9, for every par xy € V(T) such that
X &V (P(ur,W,Us)) — {W} or y ¢ V (P(Ur,w,Us)) — {w}, it
follows thatx,y are distinguished by at ledst- 1 vertices
of T and so |Z7(xy)| > k— 2. Hence, if
|27 (x,y)| = k—2, thenx,y € V (P(ur,w,us)) — {w} for
somew € .Z(T). If d(x,w) # d(y,w), then x,y are
distinguished by more thak vertices (those vertices not
in V (P(u,w,us)) — {w}). Thus, if |Z;5(x,y)| = k—2,
then d(x,w) = d(y,w) and, as a consequence,
25 (x,y) =V (P(ur,w,us)) — {x,y,w}. Considering that
[V (P(ur,w,us)) —{w}| = k and at the same time that
NV (P(ur,w us)) 0, we deduce
we.Z(T)
|2(T)| = K|.#(T)|. Therefore, dir(T) = |Z(T)|.

Fig. 7: A 3-metric dimensional tred for which dimg(T) =
|73(T)| = 6.

Figure7 shows an example of a 3-metric dimensional
tree. In this caseZ (T) = {w,w'}, terlw) = ter(w') = 2
and ¢(w) = ¢(w) = 3. Then Proposition6 leads to
dimg(T) = [Z3(T)| = [{u1, Uz, U3, U}, Up, U5 }| = 6.
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