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1 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Paı̈sos Catalans 26, 43007Tarragona, Spain
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Abstract: As a generalization of the concept of a metric basis, this article introduces the notion ofk-metric basis in graphs. Given a
connected graphG= (V,E), a setS⊆V is said to be ak-metric generator forG if the elements of any pair of different vertices ofG
are distinguished by at leastk elements ofS, i.e., for any two different verticesu,v∈V, there exist at leastk verticesw1,w2, . . . ,wk ∈ S
such thatdG(u,wi) 6= dG(v,wi) for everyi ∈ {1, . . . ,k}. A k-metric generator of minimum cardinality is called ak-metric basis and its
cardinality thek-metric dimension ofG. A connected graphG is k-metric dimensionalif k is the largest integer such that there exists a
k-metric basis forG. We give a necessary and sufficient condition for a graph to bek-metric dimensional and we obtain several results
on ther-metric dimension,r ∈ {1, . . . ,k}.
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1 Introduction

The problem of uniquely determining the location of an
intruder in a network was the principal motivation of
introducing the concept of metric dimension in graphs by
Slater in [19,20], where the metric generators were called
locating sets. The concept of metric dimension of a graph
was also introduced independently by Harary and Melter
in [9], where metric generators were called resolving sets.

Nevertheless, the concept of a metric generator, in its
primary version, has a weakness related with the possible
uniqueness of the vertex identifying a pair of different
vertices of the graph. Consider, for instance, some robots
which are navigating, moving from node to node of a
network. On a graph, however, there is neither the
concept of direction nor that of visibility. We assume that
robots have communication with a set of landmarksS (a
subset of nodes) which provide them the distance to the
landmarks in order to facilitate the navigation. In this
sense, one aim is that each robot is uniquely determined
by the landmarks. Suppose that in a specific moment there
are two robotsx,y whose positions are only distinguished
by one landmarks∈ S. If the communication betweenx
and s is unexpectedly blocked, then the robotx will get
lost in the sense that it can assume that it has the position

of y. So, for a more realistic settings it could be desirable
to consider a set of landmarks where each pair of nodes is
distinguished by at least two landmarks.

A natural solution regarding that weakness is the
location of one landmark in every node of the graph. But,
such a solution, would have a very high cost. Thus, the
choice of a correct set of landmarks is convenient for a
satisfiable performance of the navigation system. That is,
in order to achieve a reasonable efficiency, it would be
convenient to have a set of as few landmarks as possible,
always having the guarantee that every object of the
network will be properly distinguished.

From now on we consider a simple and connected
graph G = (V,E). It is said that a vertexv ∈ V
distinguishes two different verticesx,y ∈ V, if
dG(v,x) 6= dG(v,y), wheredG(a,b) represents the length
of a shortesta−b path. A setS⊆V is ametric generator
for G if any pair of different vertices ofG is distinguished
by some element ofS. Such a name forS raises from the
concept ofgeneratorof metric spaces, that is, a setS of
points in the space with the property that every point of
the space is uniquely determined by its “distances” from
the elements ofS. For our specific case, in a simple and
connected graphG = (V,E), we consider the metric
dG : V × V → N ∪ {0}, where dG(x,y) is defined as
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mentioned above andN is the set of positive integers.
With this metric, (V,dG) is clearly a metric space. A
metric generator of minimum cardinality is called a
metric basis, and its cardinality themetric dimensionof
G, denoted by dim(G).

Other useful terminology to define the concept of a
metric generator in graphs is given at next. Given an
ordered setS= {s1,s2, . . . ,sd} ⊂ V(G), we refer to the
d-vector (ordered d-tuple) r(u|S) = (dG(u,s1),
dG(u,s2), . . . ,dG(u,sd)) as themetric representationof u
with respect toS. In this sense,S is a metric generator for
G if and only if for every pair of different verticesu,v of
G, it follows r(u|S) 6= r(v|S).

In order to avoid the weakness of metric basis
described above, from now on we consider an extension
of the concept of metric generators in the following way.
Given a simple and connected graphG = (V,E), a set
S⊆V is said to be ak-metric generatorfor G if and only
if any pair of different vertices ofG is distinguished by at
leastk elements ofS, i.e., for any pair of different vertices
u,v ∈ V, there exist at leastk verticesw1,w2, . . . ,wk ∈ S
such that

dG(u,wi) 6= dG(v,wi), for everyi ∈ {1, . . . ,k}. (1)

A k-metric generator of the minimum cardinality inG will
be called ak-metric basisand its cardinality thek-metric
dimensionof G, which will be denoted by dimk(G).

As an example we take the cycle graphC4 with vertex
setV = {x1,x2,x3,x4} and edge setE = {xix j : j − i = 1
(mod 2)}. We claim that dim2(C4) = 4. That is, if we
take the pair of verticesx1,x3, then they are distinguished
only by themselves. So,x1,x3 must belong to every
2-metric generator forC4. Analogously,x2,x4 also must
belong to every 2-metric generator forC4. Other example
is the graphG in Figure1, for which dim2(G) = 4. To see
this, note thatv3 does not distinguish any pair of different
vertices of V(G) − {v3} and for each pairvi ,v3,
1≤ i ≤ 5, i 6= 3, there exist two elements ofV(G)−{v3}
that distinguish them. Hence,v3 does not belong to any
2-metric basis forG. To conclude thatV(G)−{v3} must
be a 2-metric basis forG we proceed as in the case ofC4.

v1 v2

v3

v4 v5

Fig. 1: A graphG whereV(G)−{v3} is a 2-metric basis forG.

Note that everyk-metric generatorS satisfies that
|S| ≥ k and, if k > 1, then S is also a(k− 1)-metric
generator. Moreover, 1-metric generators are the standard

metric generators (resolving sets or locating sets as
defined in [9] or [19], respectively). Notice that ifk = 1,
then the problem of checking if a setS is a metric
generator reduces to check condition (1) only for those
verticesu,v∈ V−S, as every vertex inS is distinguished
at least by itself. Also, ifk= 2, then condition (1) must be
checked only for those pairs having at most one vertex in
S, since two vertices ofS are distinguished at least by
themselves. Nevertheless, ifk ≥ 3, then condition (1)
must be checked for every pair of different vertices of the
graph.

The literature about metric dimension in graphs shows
several of its usefulness, for instance, applications to the
navigation of robots in networks are discussed in [13] and
applications to chemistry in [11, 12], among others. This
invariant was studied further in a number of other papers
including [1, 3–5, 7, 8, 10, 16, 17, 21–23]. Several
variations of metric generators including resolving
dominating sets [2], independent resolving sets [6], local
metric sets [16], and strong resolving sets [14,15,18], etc.
have been introduced and studied. It is therefore our goal
to introduce this extension of metric generators in graphs
as a possible future tool for other possibly more general
variations of the applications described above.

We introduce now some other more necessary
terminology for the article and the rest of necessary
concepts will be introduced the first time they are
mentioned in the work. We will use the notationKn, Kr,s,
Cn, Nn and Pn for complete graphs, complete bipartite
graphs, cycle graphs, empty graphs and path graphs,
respectively. If two verticesu,v are adjacent in
G= (V,E), then we writeu∼ v or we say thatuv∈ E(G).
Given x ∈ V(G) we define NG(x) to be the open
neighbourhood of x in G. That is,
NG(x) = {y∈ V(G) : x∼ y}. Theclosed neighbourhood,
denoted byNG[x], equalsNG(x) ∪ {x}. If there is no
ambiguity, we will simply writeN(x) or N[x]. We also
refer to the degree ofv asδ (v) = |N(v)|. The minimum
and maximum degrees ofG are denoted byδ (G) and
∆(G), respectively. For a non-empty setS⊆V(G), and a
vertexv∈V(G), NS(v) denotes the set of neighbors thatv
has inS, i.e., NS(v) = S∩N(v).

2 k-metric dimensional graphs

It is clear that it is not possible to find ak-metric generator
in a connected graphG for every integerk. That is, given
a connected graphG, there exists an integert such thatG
does not contain anyk-metric generator for everyk > t.
According to that fact, a connected graphG is said to be a
k-metric dimensional graph, if k is the largest integer such
that there exists ak-metric basis forG. Notice that, ifG is a
k-metric dimensional graph, then for every positive integer
k′ ≤ k, G has at least ak′-metric basis. Since for every
pair of different verticesx,y of a graphG we have that
they are distinguished at least by themselves, it follows
that the whole vertex setV(G) is a 2-metric generator for
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G and, as a consequence it follows that every graphG is k-
metric dimensional for somek≥ 2. On the other hand, for
any connected graphG of ordern> 2 there exists at least
one vertexv∈ V(G) such thatδ (v) ≥ 2. Sincev does not
distinguish any pair of different neighboursx,y ∈ NG(v),
there is non-metric dimensional graph of ordern> 2.

Remark 1 Let G be a k-metric dimensional graph of order
n. If n≥ 3, then2≤ k ≤ n−1. Moreover, G is n-metric
dimensional if and only if G∼= K2.

Next we give a characterization ofk-metric
dimensional graphs. To do so, we need some additional
terminology. Given two different verticesx,y∈V(G), we
say that the set ofdistinctive verticesof x,y is

DG(x,y) = {z∈V(G) : dG(x,z) 6= dG(y,z)}

and the set ofnon-trivial distinctive verticesof x,y is

D
∗
G(x,y) = DG(x,y)−{x,y}.

Theorem 1.A connected graph G is k-metric dimensional
if and only if k= min

x,y∈V(G),x6=y
|DG(x,y)|.

Proof. (Necessity) IfG is a k-metric dimensional graph,
then for anyk-metric basisB and any pair of different
verticesx,y ∈ V(G), we have|B∩DG(x,y)| ≥ k. Thus,
k ≤ min

x,y∈V(G),x6=y
|DG(x,y)|. Now, we suppose that

k < min
x,y∈V(G),x6=y

|DG(x,y)|. In such a case, for every

x′,y′ ∈ V(G) such that|B∩DG(x′,y′)| = k, there exists a
distinctive vertexzx′y′ of x′,y′ with zx′y′ ∈ DG(x′,y′)−B.
Hence, the set

B∪





⋃

x′,y′∈V(G):|B∩DG(x′,y′)|=k

{zx′y′}





is a (k + 1)-metric generator forG, which is a
contradiction. Therefore,k= min

x,y∈V(G),x6=y
|DG(x,y)|.

(Sufficiency) Let a,b ∈ V(G) such that
min

x,y∈V(G),x6=y
|DG(x,y)|= |DG(a,b)|= k. Since the set

⋃

x,y∈V(G)

DG(x,y)

is a k-metric generator forG and the paira,b is not
distinguished byk′ > k vertices ofG, we conclude thatG
is ak-metric dimensional graph.

2.1 On some families of k-metric dimensional
graphs for some specific values of k

The characterization proved in Theorem1 gives a result on
general graphs. Thus, next we particularize this for some

specific classes of graphs or we bound its possible value
in terms of other parameters of the graph. To this end, we
need the following concepts. Two verticesx,y are called
false twinsif N(x) = N(y) andx,y are calledtrue twinsif
N[x] = N[y]. Two verticesx,y are twins if they are false
twins or true twins. A vertexx is said to be atwin if there
exists a vertexy∈V(G)−{x} such thatx andy are twins
in G. Notice that two verticesx,y are twins if and only if
D∗G(x,y) = /0.

Corollary 1. A connected graph G of order n≥ 2 is 2-
metric dimensional if and only if G has twin vertices.

It is clear thatP2 and P3 are 2-metric dimensional.
Now, a specific characterization for 2-dimensional trees is
obtained from Theorem1 (or from Corollary1). A leaf in
a tree is a vertex of degree one, while asupport vertexis a
vertex adjacent to a leaf.

Corollary 2. A tree T of order n≥ 4 is 2-metric
dimensional if and only if T contains a support vertex
which is adjacent to at least two leaves.

An example of a 2-metric dimensional tree is the star
graph K1,n−1, whose 2-metric dimension is
dim2(K1,n−1) = n−1 (see Corollary8). On the other side,
an example of a treeT which is not 2-metric dimensional
is drawn in Figure2. Notice thatS= {v1,v3,v5,v6,v7} is
a 3-metric basis of T. Moreover, T is 3-metric
dimensional since|DT(v1,v3)|= 3.

v1 v2

v3

v4

v5

v6 v7

Fig. 2: S= {v1,v3,v5,v6,v7} is a 3-metric basis ofT.

A cut vertex in a graph is a vertex whose removal
increases the number of components of the graph and an
extreme vertexis a vertex v such that the subgraph
induced byN[v] is isomorphic to a complete graph. Also,
a block is a maximal biconnected subgraph1 of the graph.
Now, let F be the family of sequences of connected
graphsG1,G2, . . . ,Gt , t ≥ 2, such thatG1 is a complete
graphKn1, n1 ≥ 2, andGi , i ≥ 2, is obtained recursively
from Gi−1 by adding a complete graphKni , ni ≥ 2, and
identifying one vertex ofGi−1 with one vertex ofKni .

From this point we will say that a connected graphG
is ageneralized tree2 if and only if there exists a sequence
{G1,G2, . . . ,Gt} ∈ F such thatGt = G for somet ≥ 2.
Notice that in these generalized trees every vertex is

1 A biconnected graph is a connected graph having no
articulation vertices.

2 In some works these graphs are called block graphs.
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either, a cut vertex or an extreme vertex. Also, every
complete graph used to obtain the generalized tree is a
block of the graph. Note that, if everyKni is isomorphic to
K2, then Gt is a tree, justifying the terminology used.
With these concepts we give the following consequence
of Theorem1, which is a generalization of Corollary2.

Corollary 3. A generalized tree G is2-metric dimensional
if and only if G contains at least two extreme vertices being
adjacent to a common cut vertex.

The Cartesian product graph G�H, of two graphs
G= (V1,E1) andH = (V2,E2), is the graph whose vertex
set isV(G�H) = V1×V2 and any two distinct vertices
(x1,x2),(y1,y2) ∈ V1×V2 are adjacent inG�H if and
only if either:

(a) x1 = y1 andx2 ∼ y2, or
(b) x1∼ y1 andx2 = y2.

Proposition 1. Let G and H be two connected graphs of
order n≥ 2 and n′ ≥ 3, respectively. If G�H is k-metric
dimensional, then k≥ 3.

Proof. Notice that for any vertex(a,b) ∈ V(G�H),
NG�H((a,b)) = (NG(a)×{b})∪ ({a}×NH(b)). Now, for
any two distinct vertices(a,b),(c,d) ∈ V(G�H) at least
a 6= c or b 6= d and sinceH is a connected graph of order
greater than two, we have that at leastNH(b) 6= {d} or
NH(d) 6= {b}. Thus, we obtain that
NG�H((a,b)) 6= NG�H((c,d)). Therefore,G�H does not
contain any twins and, by Remark1 and Corollary1, if
G�H is k-metric dimensional, thenk≥ 3.

Proposition 2. Let Cn be a cycle graph of order n. If n is
odd, then Cn is (n−1)-metric dimensional and if n is even,
then Cn is (n−2)-metric dimensional.

Proof.We consider two cases:

(1) n is odd. For any pair of different verticesu,v∈V(Cn)
there exists only one vertexw∈V(Cn) such thatw does
not distinguishu andv. Therefore, by Theorem1, Cn is
(n−1)-metric dimensional.

(2) n is even. In this case,Cn is 2-antipodal3. For any pair
of verticesu,v∈V(Cn), such thatd(u,v) = 2l , we can
take a vertexx such thatd(u,x) = d(v,x) = l . So,
DG(u,v) = V(Cn)−{x,y}, wherey is antipodal tox.
On the other hand, if d(u,v) is odd, then
DG(u,v) =V(Cn). Therefore, by Theorem1, the graph
Cn is (n−2)-metric dimensional.

Now, according to Remark1 we have that every graph
of ordern, different fromK2, is k-metric dimensional for
somek≤ n−1. Next we characterize those graphs being
(n−1)-metric dimensional.

3 The diameter of G = (V,E) is defined as D(G) =
maxu,v∈V(G){dG(u,v)}. We say thatu andv are antipodal vertices
or mutually antipodal ifdG(u,v) = D(G). We recall thatG =
(V,E) is 2-antipodal if for each vertexx∈V there exists exactly
one vertexy∈V such thatdG(x,y) = D(G).

Theorem 2. A graph G of order n≥ 3 is (n− 1)-metric
dimensional if and only if G is a path or G is an odd cycle.

Proof. Since n ≥ 3, by Remark 1, G is k-metric
dimensional for somek ∈ {2, . . . ,n− 1}. Now, for any
pair of different verticesu,v∈ V(Pn) there exists at most
one vertexw ∈ V(Pn) such thatw does not distinguishu
and v. Then Pn is (n − 1)-metric dimensional. By
Proposition2, we have that ifG is an odd cycle, thenG is
(n−1)-metric dimensional.

On the contrary, letG be a(n−1)-metric dimensional
graph. Hence, for every pair of different vertices
x,y∈V(G) there exists at most one vertex which does not
distinguishx,y. Suppose∆(G) > 2 and letv∈V(G) such
that {u1,u2,u3} ⊂ N(v). Figure 3 shows all the
possibilities for the links between these four vertices.
Figures 3 (a), 3 (b) and 3 (d) show thatv,u1 do not
distinguishu2,u3. Figure 3 (c) shows thatu1,u2 do not
distinguishv,u3. Thus, from the cases above we deduce
that there is a pair of different vertices which is not
distinguished by at least two other different vertices. Thus
G is not a(n− 1)-metric dimensional graph, which is a
contradiction. As a consequence,∆(G) ≤ 2 and we have
that G is either a path or a cycle graph. Finally, by
Proposition2, we have that ifG is a cycle, thenG has odd
order.

2.2 Bounding the value k for which a graph is
k-metric dimensional

In order to continue presenting our results, we need to
introduce some definitions. A vertex of degree at least
three in a graphG will be called amajor vertexof G. Any
end-vertex (a vertex of degree one)u of G is said to be a
terminal vertex of a major vertex v of G if
dG(u,v) < dG(u,w) for every other major vertexw of G.
The terminal degreeter(v) of a major vertexv is the
number of terminal vertices ofv. A major vertexv of G is
an exterior major vertexof G if it has positive terminal
degree. LetM (G) be the set of exterior major vertices of
G having terminal degree greater than one.

Given w ∈M (G) and a terminal vertexu j of w, we
denote byP(u j ,w) the shortest path that starts atu j and
ends atw. Let l(u j ,w) be the length ofP(u j ,w). Now,
givenw∈M (G) and two terminal verticesu j ,ur of w we
denote byP(u j ,w,ur) the shortest path fromu j to ur
containingw, and byς(u j ,ur) the length ofP(u j ,w,ur).
Notice that, by definition of exterior major vertex,
P(u j ,w,ur) is obtained by concatenating the paths
P(u j ,w) and P(ur ,w), where w is the only vertex of
degree greater than two lying on these paths.

Finally, given w ∈ M (G) and the set of terminal
verticesU = {u1,u2, . . . ,uk} of w, for j 6= r we define
ς(w) = min

u j ,ur∈U
{ς(u j ,ur)} andl(w) = min

u j∈U
{l(u j ,w)}.
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u1 v

u2

u3

(a)

u1 v

u2

u3

(b)

u1 v u2

u3

(c)

u1

v

u2

u3

(d)

Fig. 3: Possible cases for a vertexv with three adjacent vertices
u1,u2,u3.

v1

v8

v12

v2 v3 v4 v5 v6 v7

v9 v10 v11 v18

v13 v14 v15 v16 v17

Fig. 4: A graphG whereς(G) = 3.

From the local parameters above we define the
following global parameter

ς(G) = min
w∈M (G)

{ς(w)}.

An example which helps to understand the notation
above is given in Figure4. In such a case we have
M (G) = {v3,v5,v15} and, for instance,{v1,v8,v12} are
terminal vertices ofv3. So, v3 has terminal degree three
(ter(v3) = 3) and it follows that

l(v3) = min{l(v12,v3), l(v8,v3), l(v1,v3)}

= min{1,2,2}= 1,

and

ς(v3) = min{ς(v12,v1),ς(v12,v8),ς(v8,v1)}

= min{3,3,4}= 3.

Similarly, it is possible to observe that ter(v5) = 2,
l(v5) = 1, ς(v5) = 3, ter(v15) = 2, l(v15) = 2 and
ς(v15) = 4. Therefore,ς(G) = 3.

According to this notation we present the following
result.

Theorem 3. Let G be a connected graph such that
M (G) 6= /0. If G is k-metric dimensional, then k≤ ς(G).

Proof. We claim that there exists at least one pair of
different verticesx,y∈V(G) such that|DG(x,y)| = ς(G).
To see this, letw ∈M (G) and letu1,u2 be two terminal
vertices ofw such thatς(G) = ς(w) = ς(u1,u2). Let u′1
andu′2 be the vertices adjacent tow in the shortest paths
P(u1,w) and P(u2,w), respectively. Notice that it could
happen u′1 = u1 or u′2 = u2. Since every vertex
v 6∈ V (P(u1,w,u2)) − {w} satisfies that
dG(u′1,v) = dG(u′2,v), and the only distinctive vertices of
u′1,u

′
2 are those ones belonging toP(u′1,u1) andP(u′2,u2),

we have that|DG(u′1,u
′
2)|= ς(G). Therefore, by Theorem

1, if G is k-metric dimensional, thenk≤ ς(G).

The upper bound of Theorem3 is tight. For instance,
it is achieved for every tree different from a path as it is
proved further in Section4, where thek-metric dimension
of trees is studied.

A cliquein a graphG is a set of verticesSsuch that the
subgraph induced byS, denoted by〈S〉, is isomorphic to a
complete graph. The maximum cardinality of a clique in a
graphG is theclique numberand it is denoted byω(G).
We will say thatS is anω(G)-clique if |S|= ω(G).

Theorem 4. Let G be a graph of order n different from
a complete graph. If G is k-metric dimensional, then k≤
n−ω(G)+1.

Proof. Let Sbe anω(G)-clique. SinceG is not complete,
there exists a vertexv /∈ S such thatNS(v) ( S. Let u∈ S
with v 6∼ u. If NS(v) = S−{u}, thend(u,x) = d(v,x) = 1
for everyx ∈ S−{u}. Thus,|DG(u,v)| ≤ n−ω(G) + 1.
On the other hand, ifNS(v) 6= S−{u}, then there exists
u′ ∈ S−{u} such thatu′ 6∼ v. Thus,d(u,v) = d(u′,v) = 2
and for everyx ∈ S−{u,u′}, d(u,x) = d(u′,x) = 1. So,
|DG(u,u′)| ≤ n−ω(G) + 1. Therefore, Theorem1 leads
to k≤ n−ω(G)+1.
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Examples where the previous bound is achieved are
those connected graphsG of ordern and clique number
ω(G)= n−1. In such a case,n−ω(G)+1= 2. Notice that
in this case there exists at least two twin vertices. Hence,
by Corollary1 these graphs are 2-metric dimensional.

Thegirth of a graphG is the length of a shortest cycle
in G.

Theorem 5.Let G be a graph of minimum degreeδ (G)≥
2, maximum degree∆(G) ≥ 3 and girthg(G)≥ 4. If G is
k-metric dimensional, then

k≤ n−1− (∆(G)−2)

⌊

g(G)
2

⌋

−2

∑
i=0

(δ (G)−1)i.

Proof. Let v ∈ V be a vertex of maximum degree inG.
Since ∆(G) ≥ 3 andg(G) ≥ 4, there are at least three
different vertices adjacent tov andN(v) is an independent

set4. Givenu1,u2 ∈ N(v) and i ∈ {0, . . . ,
⌊

g(G)
2

⌋

− 2} we

define the following sets.

A0 = N(v)−{u1,u2}.

A1 =
⋃

x∈A0

N(x)−{v}.

A2 =
⋃

x∈A1

N(x)−A0.

. . .

A⌊

g(G)
2

⌋

−2
=

⋃

x∈A⌊

g(G)
2

⌋

−3

N(x)−A⌊

g(G)
2

⌋

−4
.

Now, let A = {v}∪







⌊

g(G)
2

⌋

−2
⋃

i=0

Ai






. Sinceδ (G) ≥ 2, we

have that|A| ≥ 1+(∆(G)−2)

⌊

g(G)
2

⌋

−2

∑
i=0

(δ (G)−1)i . Also,

notice that for every vertexx∈A, d(u1,x)= d(u2,x). Thus,
u1,u2 can be only distinguished by themselves and at most
n−|A|−2 other vertices. Therefore,|DG(u1,u2)| ≤ n−|A|
and the result follows by Theorem1.

The bound of Theorem5 is sharp. For instance, it is
attained for the graph in Figure5. Since in this case
n = 8, δ (G) = 2, ∆(G) = 3 andg(G) = 5, we have that

k≤ n−1− (∆(G)−2)∑

⌊

g(G)
2

⌋

−2

i=0 (δ (G)−1)i = 6. Table1
shows every pair of different vertices of this graph and
their corresponding non-trivial distinctive vertices. Notice
that by Theorem1 the graph is 6-metric dimensional.

4 An independent set or stable set is a set of vertices in a graph,
no two of which are adjacent.

v1 v2 v3

v4

v5v6v7

v8

Fig. 5: A graph that satisfies the equality in the upper bound of
Theorem5.

Table 1: Pairs of vertices of the graph in Figure5 and their non-
trivial distinctive vertices.

x,y D∗G(x,y)
v1,v3 {v4,v5,v7,v8}
v1,v5 {v2,v4,v6,v8}
v1,v6 {v4,v5,v7,v8}
v1,v7 {v2,v3,v5,v6}
v1,v8 {v2,v3,v4,v7}
v2,v5 {v1,v3,v4,v8}
v2,v6 {v1,v3,v5,v7}
v2,v7 {v1,v3,v4,v8}
v3,v4 {v1,v2,v5,v8}
v3,v5 {v1,v2,v6,v7}
v3,v6 {v4,v5,v7,v8}
v3,v7 {v2,v4,v6,v8}
v4,v5 {v3,v6,v7,v8}
v4,v8 {v1,v3,v5,v7}
v5,v7 {v1,v3,v4,v8}
v7,v8 {v1,v4,v5,v6}

x,y D∗G(x,y)
v1,v2 {v3,v4,v5,v6,v8}
v1,v4 {v2,v3,v5,v7,v8}
v2,v3 {v1,v4,v6,v7,v8}
v2,v4 {v1,v5,v6,v7,v8}
v2,v8 {v3,v4,v5,v6,v7}
v3,v8 {v1,v2,v4,v5,v7}
v4,v6 {v1,v2,v3,v7,v8}
v4,v7 {v1,v3,v5,v6,v8}
v5,v6 {v1,v2,v4,v7,v8}
v5,v8 {v1,v3,v4,v6,v7}
v6,v7 {v2,v3,v4,v5,v8}
v6,v8 {v1,v2,v3,v4,v5}

3 The k-metric dimension of graphs

In this section we present some results that allow to
compute thek-metric dimension of several families of
graphs. We also give some tight bounds on thek-metric
dimension of a graph.

Theorem 6(Monotony of thek-metric dimension). Let
G be a k-metric dimensional graph and let k1,k2 be two
integers. If1≤ k1 < k2≤ k, thendimk1(G)< dimk2(G).

Proof.Let B be ak-metric basis ofG. Let x∈ B. Since all
pairs of different vertices inV(G) are distinguished by at
least k vertices of B, we have thatB − {x} is a
(k− 1)-metric generator forG and, as a consequence,
dimk−1(G) ≤ |B−{x}| < |B| = dimk(G). Proceeding
analogously, we obtain that dimk−1(G) > dimk−2(G) and,
by a finite repetition of the process we obtain the result.

Corollary 4. Let G be a k-metric dimensional graph of
order n.

(i) For every r∈ {1, . . . ,k}, dimr(G)≥ dim(G)+(r−1).
(ii) For every r∈ {1, . . . ,k−1}, dimr(G)< n.
(iii) If G 6∼=Pn, then for any r∈{1, . . . ,k}, dimr(G)≥ r+1.
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Proposition 3.Let G be a connected graph of order n≥ 2.
Thendim2(G) = 2 if and only if G∼= Pn.

Proof. It was shown in [5] that dim(G) = 1 if and only if
G∼= Pn.

(Necessity) If dim2(G) = 2, then by Corollary4 (i) we
have that dim(G) = 1, i.e.,

2= dim2(G)≥ dim(G)+1≥ 2.

Hence,G must be isomorphic to a path graph.
(Sufficiency) By Corollary 4 (i) we have

dim2(Pn) ≥ dim(Pn) + 1 = 2 and, since the leaves ofPn
distinguish every pair of different vertices ofPn, we
conclude that dim2(Pn) = 2.

Let Dk(G) be the set obtained as the union of the sets
of distinctive verticesDG(x,y) whenever|DG(x,y)| = k,
i.e.,

Dk(G) =
⋃

|DG(x,y)|=k

DG(x,y).

Remark 2 If G is a k-metric dimensional graph, then
dimk(G)≥ |Dk(G)|.

Proof. Since every pair of different verticesx,y is
distinguished only by the elements ofDG(x,y), if
|DG(x,y)| = k, then for anyk-metric basisB we have
DG(x,y) ⊆ B and, as a consequence,Dk(G) ⊆ B.
Therefore, the result follows.

The bound given in Remark2 is tight. For instance, in
Proposition6 we will show that there exists a family of
trees attaining this bound for everyk. Other examples can
be derived from the following result.

Proposition 4. Let G be a k-metric dimensional graph of
order n. Thendimk(G) = n if and only if V(G) = Dk(G).

Proof. Suppose thatV(G) = Dk(G). Now, since everyk-
metric dimensional graphG satisfies that dimk(G)≤ n, by
Remark2 we obtain that dimk(G) = n.

On the contrary, let dimk(G) = n. Note that for every
a,b ∈ V(G), we have|DG(a,b)| ≥ k. If there exists at
least one vertexx ∈ V(G) such thatx /∈ Dk(G), then for
everya,b∈V(G), we have|DG(a,b)−{x}| ≥ k and, as a
consequence,V(G)−{x} is a k-metric generator forG,
which is a contradiction. Therefore,V(G) = Dk(G).

Corollary 5. Let G be a connected graph of order n≥ 2.
Thendim2(G) = n if and only if every vertex is a twin.

We will show other examples of graphs that satisfy
Proposition4 for k≥ 3. To this end, we recall that thejoin
graph G+H of the graphsG= (V1,E1) andH = (V2,E2)
is the graph with vertex setV(G+H) =V1∪V2 and edge
setE(G+H) = E1∪E2∪{uv : u ∈ V1,v∈ V2}. We give
now some examples of graphs satisfying the assumptions
of Proposition4. Let W1,n = Cn +K1 be thewheel graph
andF1,n = Pn+K1 be thefan graph. The vertex ofK1 is

called the central vertex of the wheel or the fan,
respectively. Since V(F1,4) = D3(F1,4) and
V(W1,5) = D4(W1,5), by Proposition4 we have that
dim3(F1,4) = 5 and dim4(W1,5) = 6, respectively.

Given two non-trivial graphsG and H, it holds that
any pair of twin verticesx,y ∈ V(G) or x,y ∈ V(H) are
also twin vertices inG+H. As a direct consequence of
Corollary5, the next result holds.

Remark 3 Let G and H be two nontrivial graphs of order
n1 and n2, respectively. If all the vertices of G and H are
twin vertices, then G+H is 2-metric dimensional and

dim2(G+H) = n1+n2.

Note that in Remark3, the graphsG andH could be
non connected. Moreover,G and H could be nontrivial
empty graphs. For instance,Nr + Ns, where Nr , Ns,
r,s> 1, are empty graphs, is the complete bipartite graph
Kr,s which satisfies that dim2(Kr,s) = r + s.

3.1 Bounding the k-metric dimension of graphs

We begin this subsection with a necessary definition of the
twin equivalence relationR onV(G) as follows:

xRy←→ NG[x] = NG[y] or NG(x) = NG(y).

We have three possibilities for each twin equivalence
classU :

(a) U is singleton, or
(b) NG(x) = NG(y), for anyx,y∈U (and case (a) does not

apply), or
(c) NG[x] = NG[y], for anyx,y∈U (and case (a) does not

apply).

We will refer to the type (c) classes as thetrue twin
equivalence classes i.e., Uis a true twin equivalence class
if and only ifU is not singleton andNG[x] = NG[y], for any
x,y∈U .

Let us see three different examples where every vertex
is a twin. An example of a graph where every equivalence
class is a true twin equivalence class isKr + (Ks∪ Kt),
r,s, t ≥ 2. In this case, there are three equivalence classes
composed byr,s andt true twin vertices, respectively. As
an example where no class is composed by true twin
vertices we take the complete bipartite graphKr,s, r,s≥ 2.
Finally, the graphKr +Ns, r,s≥ 2, has two equivalence
classes and one of them is composed byr true twin
vertices. On the other hand,K1+(Kr ∪Ns), r,s≥ 2, is an
example where one class is singleton, one class is
composed by true twin vertices and the other one is
composed by false twin vertices.

In general, we can state the following result.

Remark 4 Let G be a connected graph and let
U1,U2, . . . ,Ut be the non-singleton twin equivalence
classes of G. Then

dim2(G)≥
t

∑
i=1

|Ui |.
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Proof. Since for two different verticesx,y ∈ V(G) we
have thatD2(x,y) = {x,y} if and only if there exists an
equivalence classUi such thatx,y∈Ui , we deduce

D2(G) =
t
⋃

i=1

Ui .

Therefore, by Remark2 we conclude the proof.

Notice that the result above leads to Corollary5, so
this bound is tight. Now we consider the connected graph
G of order r + s obtained from a null graphNr of order
r ≥ 2 and a pathPs of orders≥ 1 by connecting every
vertex ofNr to a given leaf ofPs. In this case, there are
s singleton classes and one class, sayU1, of cardinalityr.
By the previous result we have dim2(G) ≥ |U1| = r and,
sinceU1 is a 2-metric generator forG, we conclude that
dim2(G) = r.

We recall that thestrong product graph G⊠H of two
graphsG = (V1,E1) and H = (V2,E2) is the graph with
vertex setV (G⊠H)=V1×V2, where two distinct vertices
(x1,x2),(y1,y2)∈V1×V2 are adjacent inG⊠H if and only
if one of the following holds.

– x1 = y1 andx2∼ y2, or
– x1∼ y1 andx2 = y2, or
– x1∼ y1 andx2∼ y2.

Theorem 7. Let G and H be two nontrivial connected
graphs of order n and n′, respectively. Let U1,U2, . . . ,Ut
be the true twin equivalence classes of G. Then

dim2(G⊠H)≥ n′
t

∑
i=1

|Ui |.

Moreover, if every vertex of G is a true twin, then

dim2(G⊠H) = nn′.

Proof.For any two verticesa,c∈Ui andb∈V(H),

NG⊠H [(a,b)] = NG[a]×NH[b]

= NG[c]×NH [b]

= NG⊠H [(c,b)].

Thus,(a,b) and(c,b) are true twin vertices. Hence,

D2(G⊠H)⊇
t
⋃

i=1

Ui×V(H).

Therefore, by Remark 2 we conclude

dim2(G⊠H)≥ n′
t

∑
i=1

|Ui |.

Finally, if every vertex ofG is a true twin, then
t
⋃

i=1

Ui =

V(G) and, as a consequence, we obtain dim2(G⊠H) =
nn′.

We now present a lower bound for thek-metric
dimension of ak′-metric dimensional graphG with
k′ ≥ k. To this end, we require the use of the following
function for any exterior major vertexw ∈ V(G) having
terminal degree greater than one,i.e., w∈M (G). Notice
that this function uses the concepts already defined in
Section2.2. Given an integerr ≤ k′,

Ir(w) =







(ter(w)−1)(r− l(w))+ l(w), if l(w)≤ ⌊ r
2⌋,

(ter(w)−1)⌈ r
2⌉+ ⌊

r
2⌋, otherwise.

In Figure4 we give an example of a graphG, which
helps to clarify the notation above. Since every graph is
at least 2-metric dimensional, we can consider the integer
r = 2 and we have the following.

– Since l(v3) = 1 ≤
⌊

r
2

⌋

, it follows that
Ir(v3) = (ter(v3)−1)(r− l(v3)) + l(v3) =
(3−1)(2−1)+1= 3.

– Since l(v5) = 1 ≤
⌊

r
2

⌋

, it follows that
Ir(v5) = (ter(v5)−1)(r− l(v5)) + l(v5) =
(2−1)(2−1)+1= 2.

– Since l(v15) = 2 >
⌊

r
2

⌋

, it follows that Ir(v15) =

(ter(v15)−1)
⌈

r
2

⌉

+
⌊

r
2

⌋

= (2−1)
⌈2

2

⌉

+
⌊2

2

⌋

= 2.

Therefore, according to the result below, dim2(G) ≥ 3+
2+2= 7.

Theorem 8.If G is a k-metric dimensional graph such that
|M (G)| ≥ 1, then for every r∈ {1, . . . ,k},

dimr(G)≥ ∑
w∈M (G)

Ir(w).

Proof.Let Sbe anr-metric basis ofG. Let w∈M (G) and
let ui ,us be two different terminal vertices ofw. Let u′i ,u

′
s

be the vertices adjacent tow in the pathsP(ui,w) and
P(us,w), respectively. Notice that DG(u′i ,u

′
s) =

V (P(ui ,w,us))− {w} and, as a consequence, it follows
that |S∩ (V (P(ui ,w,us))−{w})| ≥ r. Now, if ter(w) = 2,
then we have

|S∩ (V (P(ui ,w,us))−{w})| ≥ r = Ir(w).

Now, we assume ter(w) > 2. LetW be the set of terminal
vertices ofw, and letu′j be the vertex adjacent tow in the
path P(u j ,w) for every u j ∈ W. Let
U(w) =

⋃

u j∈W

V (P(u j ,w)) − {w} and let

x = min
u j∈W
{
∣

∣S∩V (P(u j ,w))
∣

∣}. Since S is an r-metric

generator of minimum cardinality (it is anr-metric basis
of G), it is satisfied that 0≤ x≤ min{l(w),⌊ r

2⌋}. Let uα
be a terminal vertex such that
|S∩ (V (P(uα ,w))−{w})| = x. Since for every terminal
vertexuβ ∈W−{uα} we have that|S∩DG(u′β ,u

′
α)| ≥ r,
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it follows that
∣

∣S∩
(

V
(

P(uβ ,w)
)

−{w}
)∣

∣≥ r− x. Thus,

|S∩U(w)|= |S∩ (V (P(uα ,w))−{w})|+

+
ter(w)

∑
β=1,β 6=α

∣

∣S∩
(

V
(

P(uβ ,w)
)

−{w}
)∣

∣

≥ (ter(w)−1)(r− x)+ x.

Now, if x = 0, then|S∩U(w)| ≥ (ter(w)−1)r > Ir(w).
On the contrary, if x > 0, then the function
f (x) = (ter(w)−1)(r − x)+ x is decreasing with respect
to x. So, the minimum value off is achieved in the
highest possible value ofx. Thus, |S∩U(w)| ≥ Ir(w).
Since

⋂

w∈M (G)

U(w) = /0, it follows that

dimr(G)≥ ∑
w∈M (G)

|S∩U(w)| ≥ ∑
w∈M (G)

Ir(w).

Now, in order to give some consequences of the bound
above we will use some notation defined in Section2.2 to
introduce the following parameter.

µ(G) = ∑
v∈M (G)

ter(v).

Notice that, fork = 1, Theorem8 leads to the bound on
the metric dimension of a graph, established by Chartrand
et al. in [5]. In such a case,I1(w) = ter(w)−1 for all w∈
M (G) and thus,

dim(G)≥ ∑
w∈M (G)

(ter(w)−1) = µ(G)−|M (G)|.

Next we give the particular cases of Theorem8 for r = 2
andr = 3.

Corollary 6. If G is a connected graph, then

dim2(G)≥ µ(G).

Proof.If M (G) = /0, thenµ(G) = 0 and the result is direct.
Suppose thatM (G) 6= /0. SinceI2(w) = ter(w) for all w∈
M (G), we deduce that

dim2(G)≥ ∑
w∈M (G)

ter(w) = µ(G).

Corollary 7. If G is k-metric dimensional for some k≥ 3,
then

dim3(G)≥ 2µ(G)−|M (G)|.

Proof. If M (G) = /0, then the result is direct. Suppose that
M (G) 6= /0. SinceI3(w) = 2ter(w)−1 for all w∈M (G),
we obtain that

dim3(G)≥ ∑
w∈M (G)

(2ter(w)−1) = 2µ(G)−|M (G)|.

In the next section we give some results on trees which
show that the bounds proved in Theorem8 and Corollaries
6 and7 are tight. Specifically those results are Theorem10
and Corollaries8 and9, respectively.

4 The particular case of trees

To study thek-metric dimension of a tree it is of course
necessary to know first the valuek for which a given tree
is k-metric dimensional. That is what we do next. In this
sense, from now on we need the terminology and notation
already described in Section2.2 and also the following
one. Given an exterior major vertexv in a treeT and the
set of its terminal verticesv1, . . . ,vα , the subgraph

induced by the set
α
⋃

i=1

V(P(v,vi)) is called abranchof T

atv (av-branch for short).

Theorem 9. If T is a k-metric dimensional tree different
from a path, then k= ς(T).

Proof. SinceT is not a path,M (T) 6= /0. Let w ∈M (T)
and let u1,u2 be two terminal vertices ofw such that
ς(T) = ς(w) = ς(u1,u2). Notice that, for instance, the
two neighbours ofw belonging to the pathsP(w,u1) and
P(w,u2), sayu′1 andu′2 satisfy|DT(u′1,u

′
2)|= ς(T).

It only remains to prove that for everyx,y ∈ V(T) it
holds that |DT(x,y)| ≥ ς(T). Let w ∈ M (T) and let
Tw = (Vw,Ew) be thew-branch. Also we consider the set
of vertices V ′ = V(T) −

⋃

w∈M (T)Vw. Note that
|Vw| ≥ ς(T) + 1 for everyw ∈M (T). With this fact in
mind, we consider three cases.

Case 1:x ∈ Vw andy ∈ Vw′ for somew,w′ ∈M (T),
w 6= w′. In this casex,y are distinguished byw or by w′.
Now, if w distinguishes the pairx,y, then at most one
element ofVw does not distinguishx,y (see Figure6). So,
x andy are distinguished by at least|Vw|−1 vertices ofT
or by at least|Vw′ |−1 vertices ofT.

w′

y

w

z x

Fig. 6: In this example,w distinguishes the pairx,y, andz is the
only vertex inVw that does not distinguishx,y.

Case 2: x ∈ V ′ or y ∈ V ′. Thus,V ′ 6= /0 and, as a
consequence,|M (T)| ≥ 2. Hence, we have one of the
following situations.

– There exist two verticesw,w′ ∈M (T), w 6= w′, such
that the shortest path fromx to w and the shortest path
from y to w′ have empty intersection, or

– for every vertexw′′ ∈M (T), it follows that eithery
belongs to the shortest path fromx to w′′ or x belongs
to the shortest path fromy to w′′.
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In the first case,x,y are distinguished by vertices inVw or
by vertices in Vw′ and in the second one,x,y are
distinguished by vertices inVw′′ .

Case 3: x,y ∈ Vw for some w ∈ M (T). If
x,y∈ V(P(ul ,w)) for somel ∈ {1, . . . , ter(w)}, then there
exists at most one vertex ofV(P(ul ,w)) which does not
distinguish x,y. Since ter(w) ≥ 2, the vertexw has a
terminal vertexuq with q 6= l . So,x,y are distinguished by
at least |V(P(ul ,w,uq))| − 1 vertices, and since
|V(P(ul ,w,uq))| ≥ ς(T) + 1, we are done. If
x ∈ V(P(ul ,w) and y ∈ V(P(uq,w) for some
l ,q ∈ {1, . . . , ter(w)}, l 6= q, then there exists at most one
vertex ofV(P(ul ,w,uq)) which does not distinguishx,y.
Since|V(P(ul ,w,uq))| ≥ ς(T)+1, the result follows.

Therefore,ς(T) = min
x,y∈V(T)

|DT(x,y)| and by Theorem

1 the result follows.

Since any path is a particular case of a tree and its
behavior with respect to thek-metric dimension is
different, here we analyze them in first instance. In
Proposition3 we noticed that the 2-metric dimension of a
path Pn(n > 2) is two. Here we give a formula for the
k-metric dimension of any path graph fork≥ 3.

Proposition 5.Let k≥ 3 be an integer. For any path graph
Pn of order n≥ k+1,

dimk(Pn) = k+1.

Proof. Let v1 and vn be the leaves ofPn and letS be a
k-metric basis ofPn. Since|S| ≥ k≥ 3, there exists at least
one vertexw ∈ S∩ (V(Pn) − {v1,vn}). For any vertex
w ∈ V(Pn) − {v1,vn} there exist at least two vertices
u,v ∈ V(Pn) such thatw does not distinguishu and v.
Hence,|S|= dimk(Pn)≥ k+1.

Now, notice that for any pair of different verticesu,v∈
V(Pn) there exists at most one vertexw∈V(Pn)−{v1,vn}
such thatw does not distinguishu andv. Thus, we have
that for everyS⊆ V(Pn) such that|S| = k+1 and every
pair of different verticesx,y∈ V(Pn), there exists at least
k vertices ofS such that they distinguishx,y. SoS is ak-
metric generator forPn. Therefore, dimk(Pn)≤ |S|= k+1
and, consequently, the result follows.

Once studied the path graphs, we are now able to give
a formula for ther-metric dimension of anyk-metric
dimensional tree different from a path which, among
other usefulness, shows that Theorem8 is tight.

Theorem 10.If T is a tree which is not a path, then for
any r∈ {1, . . . ,ς(T)},

dimr(T) = ∑
w∈M (T)

Ir(w).

Proof.SinceT is not a path,T contains at least one vertex
belonging to M (T). Let w ∈ M (T) and let
Tw = (Vw,Ew) be thew-branch. Also we consider the set
V ′ = V(T) −

⋃

w∈M (T)Vw. For every w ∈ M (T), we

suppose u1 is a terminal vertex of w such that
l(u1,w) = l(w). Let U(w) = {u1,u2, . . . ,us} be the set of
terminal vertices ofw. Now, for everyu j ∈U(w), let the

pathP(u j ,w) = u ju1
j u

2
j . . .u

l(u j ,w)−1
j w and we consider the

setS(u j ,w)⊂V (P(u j ,w))−{w} given by:

S(u1,w) =















{

u1,u1
1, . . . ,u

l(w)−1
1

}

, if l(w)≤ ⌊ r
2⌋

{

u1,u1
1, . . . ,u

⌊ r
2⌋−1

1

}

, if l(w)> ⌊ r
2⌋.

and for j 6= 1,

S(u j ,w) =















{

u j ,u1
j , . . . ,u

r−l(w)−1
j

}

, if l(w) ≤ ⌊ r
2⌋,

{

u j ,u1
j , . . . ,u

⌈ r
2⌉−1

j

}

, if l(w) > ⌊ r
2⌋.

According to this we have,

∣

∣S(u j ,w)
∣

∣ =



























l(w), if l(w)≤ ⌊ r
2⌋ andu j = u1,

r− l(w), if l(w)≤ ⌊ r
2⌋ andu j 6= u1,

⌊ r
2⌋, if l(w)> ⌊ r

2⌋ andu j = u1,

⌈ r
2⌉, if l(w)> ⌊ r

2⌋ andu j 6= u1.

Let S(w) =
⋃

u j∈U(w)

S(u j ,w) and S=
⋃

w∈M (T)

S(w). Since

for everyw ∈M (T) it follows that
⋂

u j∈U(w)

S(u j ,w) = /0

and
⋂

w∈M (T)

S(w) = /0, we obtain that|S|= ∑
w∈M (T)

Ir(w).

Also notice that for everyw ∈ M (T), such that
ter(w) = 2 we have|S(w)| = r and, if ter(w) > 2, then we
have |S(w)| ≥ r + 1. We claim thatS is an r-metric
generator forT. Let u,v be two distinct vertices ofT. We
consider the following cases.

Case 1:u,v ∈ Vw for somew ∈M (T). We have the
following subcases.

Subcase 1.1: u,v ∈ V(P(u j ,w)) for some
j ∈ {1, . . . , ter(w)}. Hence, there exists at most one vertex
of S(w)∩V(P(u j ,w)) which does not distinguishu,v. If
ter(w) = 2, then there exists at least one more exterior
major vertexw′ ∈ M (T) − {w}. So, the elements of
S(w′) distinguishu,v. Since|S(w′)| ≥ r, we deduce that at
leastr elements ofSdistinguishu,v. On the other hand, if
ter(w) > 2, then since|S(w)| ≥ r + 1, we obtain that at
leastr elements ofS(w) distinguishu,v.

Subcase 1.2:u∈V(P(u j ,w)) andv∈V(P(ul ,w)) for
some j, l ∈ {1, . . . , ter(w)}, j 6= l . According to the
construction of the setS(w), there exists at most one
vertex of (S(w) ∩ (V(P(u j ,w,ul ))) which does not
distinguishu,v.

Now, if ter(w) = 2, then there exists
w′ ∈ M (T) − {w}. If d(u,w) = d(v,w), then the r

c© 2015 NSP
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elements ofS(w) distinguishu,v and, ifd(u,w) 6= d(v,w),
then the elements ofS(w′) distinguishu,v.

On the other hand, if ter(w) > 2, then since|S(w)| ≥
r+1, we deduce that at leastr elements ofS(w) distinguish
u,v.

Case 2:u∈ Vw,v∈ Vw′ , for somew,w′ ∈M (T) with
w 6= w′. In this case, either the vertices inS(w) or the
vertices inS(w′) distinguishu,v. Since |S(w)| ≥ r and
|S(w′)| ≥ r we have thatu,v are distinguished by at leastr
elements ofS.

Case 3:u ∈ V ′ or v ∈ V ′. Without loss of generality
we assumeu∈ V ′. SinceV ′ 6= /0, we have that there exist
at least two different vertices inM (T). Hence, we have
either one of the following situations.

– There exist two verticesw,w′ ∈M (T), w 6= w′, such
that the shortest path fromu to w and the shortest path
from v to w′ have empty intersection, or

– for every vertexw′′ ∈M (T), it follows that eitherv
belongs to every shortest path fromu to w′′ or u
belongs to every shortest path fromv to w′′.

Notice that in both situations, since|S(w)| ≥ r, for every
w∈M (T)), we have thatu,v are distinguished by at least
r elements ofS. In the first case,u andv are distinguished
by the elements ofS(w) or by the elements ofS(w′) and, in
the second one,u andv are distinguished by the elements
of S(w′′).

Therefore,S is an r-metric generator forT and, by
Theorem8, the proof is complete.

In the caser = 1, the formula of Theorem10 leads to

dim(T) = µ(T)−|M (T)|,

which is a result obtained in [5]. Other interesting
particular cases are the following ones forr = 2 and
r = 3, respectively. That is, by Theorem10 we have the
next results.

Corollary 8. If T is a tree different from a path, then

dim2(T) = µ(T).

Corollary 9. If T is a tree different from a path with
ς(T)≥ 3, then

dim3(T) = 2µ(T)−|M (T)|.

As mentioned before, the two corollaries above show
that the bounds given in Corollaries6 and7 are achieved.
We finish our exposition with a formula for thek-metric
dimension of ak-metric dimensional tree with some
specific structure, also showing that the inequality
dimk(T)≥ |Dk(T)|, given in Remark2, can be reached.

Proposition 6.Let T be a tree different from a path and let
k≥ 2 be an integer. Ifter(w) = 2 andς(w) = k for every
w∈M (T), thendimk(T) = |Dk(T)|.

Proof. Since every vertexw ∈ M (T) satisfies that
ter(w) = 2 andς(w) = k, we have thatς(T) = k. Thus, by
Theorem 9, T is k-metric dimensional tree. Since
Ik(w) = k for everyw ∈M (T), by Theorem10 we have
that dimk(T) = k|M (T)|. Let ur ,us be the terminal
vertices ofw. As we have shown in the proof of Theorem
9, for every pair x,y ∈ V(T) such that
x /∈V (P(ur ,w,us))−{w} or y /∈V (P(ur ,w,us))−{w}, it
follows thatx,y are distinguished by at leastk+1 vertices
of T and so |D∗T(x,y)| > k − 2. Hence, if
|D∗T(x,y)| = k− 2, thenx,y ∈ V (P(ur ,w,us))− {w} for
some w ∈ M (T). If d(x,w) 6= d(y,w), then x,y are
distinguished by more thank vertices (those vertices not
in V (P(ur ,w,us)) − {w}). Thus, if |D∗T(x,y)| = k− 2,
then d(x,w) = d(y,w) and, as a consequence,
D∗T(x,y) = V (P(ur ,w,us)) − {x,y,w}. Considering that
|V (P(ur ,w,us))−{w}| = k and at the same time that

⋂

w∈M (T)

V (P(ur ,w,us)) = /0, we deduce

|Dk(T)|= k|M (T)|. Therefore, dimk(T) = |Dk(T)|.

w

u1

u2u3

w′

u′1

u′2 u′3

v

Fig. 7: A 3-metric dimensional treeT for which dim3(T) =
|D3(T)|= 6.

Figure7 shows an example of a 3-metric dimensional
tree. In this caseM (T) = {w,w′}, ter(w) = ter(w′) = 2
and ς(w) = ς(w′) = 3. Then Proposition6 leads to
dim3(T) = |D3(T)|= |{u1,u2,u3,u′1,u

′
2,u
′
3}|= 6.
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