
Appl. Math. Inf. Sci.8, No. 1L, 141-147 (2014) 141

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/081L18

On-the-fly Learning-based Search for QoS-aware Web
Service Composition

Hyunyoung Kil1 and Wonhong Nam2,∗

1 Institute for Ubiquitous Information Technology and Applications, KonkukUniversity, Seoul 143-701, Korea
2 Department of Internet & Multimedia Engineering, Konkuk University, Seoul 143-701, Korea

Received: 24 Apr. 2013, Revised: 19 Aug. 2013, Accepted: 20 Aug. 2013
Published online: 1 Apr. 2014

Abstract: TheWeb Service Composition (WSC)is a prominent technique to help software developers to easily build applications on
top of theService Oriented Architecture. Given a set of web services and a user request, the aim of the WSC problem is to construct
an optimal composite web service to satisfy the request. In this paper, in particular, we study theQuality of Services (QoS)-aware WSC
problemto optimize the quality criteria of the composite service, e.g., throughput, availability, response time, capacity and accuracy.
However, since the QoS-aware WSC problem corresponds to a global optimization problem, it is a hard problem to solve the problem
for large scale instances. To resolve this challenge, we propose a novel solution usingon-the-fly learning-based search. Our technique
employs theLearning Depth-First Search (LDFS)as an underlying search algorithm, which performs iterated depth-firstsearches
enhanced with learning. Moreover, the on-the-fly searching techniquepartially constructs a search graph only when the part of the
graph is required. We empirically show, with a number of examples, that the proposed on-the-fly technique is able to find the optimal
composite services much earlier than our previous work, the off-line LDFS method.

Keywords: Web Service Composition, Quality of Services (QoS), On-the-fly Construction, Learning

1 Introduction

Web servicesare methods for supporting interoperable
machine-to-machine interaction over the Internet.
Recently, abundant study has been performed to improve
the flexible and dynamic functionalities of theservice
oriented architectures (SOA), and this effort promotes to
define the web service standards. However, various
research challenges still remain [1]; for instance, web
service discovery/recommendation, service selection and
composition, and validation and testing of composed web
services. In general, given a set of web services and a user
requirement, theweb service composition (WSC) problem
is to find the shortest sequence of web services which
meets the user requirement. Recently, one asks service
providers to satisfy functional requirements as well as
nonfunctional requirements, i.e.,Quality of Services
(QoS) constraints. In this case, users indeed want the
composite web service with the optimal QoS valuerather
than the shortest sequence of web services as a solution.
This problem is called theQoS-aware WSC problem.
However, it is computationally hard to identify such a

composite web service since it is a global optimization
problem. Therefore, as the number of given web services
gets increased like real web services on the Web, the
problem becomes intractable.

In this paper, we propose a novel solution for the
QoS-aware WSC problem, which establishes an optimal
composition with respect to given QoS criteria. That is,
given a set of web service descriptions including the QoS
information of each service and a requirement web
service, we construct a sequence of web services such
that users are able to call legally the next web service in
each step, the execution of the sequence satisfies the
desired requirement, and an aggregated QoS value of the
sequence is optimal. Our technique first recasts the
composition problem into agraph search problemon a
weighted state-transition systemwhere the optimal
sequence to a goal state is exactly correspondent with the
optimal composite web service with respect to the QoS
value. To identify the optimal sequence of the graph
search problem, we apply an efficient algorithm using
Learning Depth First Search (LDFS)[2,3]. However, we
have observed a drawback of the LDFS implementation,

∗ Corresponding author e-mail:wnam@konkuk.ac.kr

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/081L18

142 H. Kil, W. Nam: On-the-fly Learning-based Search for QoS-aware...

in which the method constructs a whole search graph at
the beginning even though some part of the graph will not
be visited. In addition, for large scale problem instances,
the ratio of not-visited space can be large and the whole
graph construction needs a significant amount of time. In
this paper, therefore, we propose an on-the-fly searching
technique to partially build a search graph only when it is
needed. The on-the-fly LDFS algorithm for the
QoS-aware WSC problem can find optimal composite
web services earlier than our previous work [4], the
off-line version of LDFS. With experiment on a number
of examples by the test set generator employed in Web
Services Challenge 2009 [5,6], we show our method’s
efficiency. In the experiment, the proposed on-the-fly
LDFS method always generates the optimal solutions
earlier than the offline LDFS.

2 QoS-Aware Web Service Composition

Quality of Services (QoS)includes various non-functional
properties of services, e.g., throughput, response time,
availability, accuracy and capacity. The QoS value of each
web service helps clients select an appropriate service
provider for them from a number of candidate providers
with same functionality. In this section, we formally
define the QoS-aware web service composition (WSC)
problem that we study in this paper.

2.1 Example: Movie Theater Reservation
System

Consider that a client wants to find and make a
reservation for a movie theater, and to get a map to the
theater. He searches a movie and a theater by a movie
genre (e.g., ‘drama’) and a city name (e.g., ‘Seoul’), and
his QoS requirement is the fastest response time. Assume
that there is no single web service which finds/reserves a
movie theater and provides a map, and there are many
different services for movie theaters or maps with various
response times. In this case, he wants to combine several
web services to achieve his goal and also minimize
aggregated response time. Figure1 illustrates this
example. Initially, he sets a movie genre preference
(genre preference) and a location preference (city name)
for a movie theater. Given a city name and a genre
preference, the Recommend Movie Theater (RMT)
service returns a theater address and a movie title. When
the Reserve Theater (RT) service receives a theater
address and a movie title, it makes a reservation for the
theater. On the other hand, the Search Movie Theater
(SMT) service can find and reserve a theater for a given
city and genre preference. Once the Get Map 1 (GM1)
and Get Map 2 (GM2) services receive an address, they
both provide a map for a given address. The response
time for each web service is as follows:RRMT = 10 msec,

city name
genre preference

Reserve Theater (RT)
 60 msec

city name
genre preference
theater address
movie title
reservation

Get Map 1 (GM1)
 60 msec

Movie Theater (RMT)
Recommend

10 msec
(SMT)
Search Movie Theater

100 msec

Get Map 2 (GM2)
50 msec

Initial state

city name
genre preference
theater address
movie title

Goal state

city name
genre preference
theater address
movie title
reservation
map

Fig. 1: Movie theater reservation system

RRT = 60 msec,RSMT = 100 msec,RGM1 = 60 msec, and
RGM2 = 50 msec, respectively. In this example, we have
four sequences to find/reserve a movie theater and
provide a map: i.e., RMT-RT-GM1, RMT-RT-GM2,
SMT-GM1, and SMT-GM2. If considering the length of
composite web services as our aim, SMT-GM1, and
SMT-GM2 would be the best solutions. However, since
we want the minimal response time, RMT-RT-GM2 is the
best composition (i.e.,RRMT−RT−GM2 = 120msec).

2.2 QoS-aware Web Service Composition
Problem

Now, we formalize the definition of web services with QoS
criteria and the QoS-aware composition problem which we
consider in this paper. Aweb serviceis represented as a
tuplew(I ,O,Q) where:

–I is a finite set ofinput parametersfor the web service
w.

–O is a finite set ofoutput parametersfor the web
servicew; each input/output parameterp∈ I ∪O has a
typetp.

–Q is a finite set ofquality criteria for the web service
w.

When a web servicew(I ,O,Q) is called with all the
input parametersi ∈ I with the type ti , it provides all
output parameterso ∈ O with the typeto. The invocation
of the web servicew corresponds to each service quality
criterion q ∈ Q, e. g., throughput, response time,

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1L, 141-147 (2014) /www.naturalspublishing.com/Journals.asp 143

availability and capacity. Given two typest1 andt2, t1 is a
subtypeof t2 (denoted byt1 <: t2) if t1 is more informative
than or equal tot2 so that t1 can be replaced witht2
everywhere. In this case,t2 is asupertypeof t1. Note that
this relation is reflexive (i.e.,t <: t for any typet) and
transitive (i.e., ift1 <: t2 andt2 <: t3 thent1 <: t3). Given
two web servicesw1(I1,O1,Q1) and w2(I2,O2,Q2), we
denotew1 ⊑I w2 if w1 needs less informative inputs than
or the same inputs withw2; that is, for eachi1 ∈ I1, there
existsi2 ∈ I2 such thatti2 <: ti1. Given two web services
w1(I1,O1,Q1) andw2(I2,O2,Q2), we denotew1 ⊑O w2 if
w2 generates more informative outputs than or the same
outputs withw1; that is, for eacho1 ∈ O1, there exists
o2 ∈ O2 such thatto2 <: to1. These relationships,⊑I and
⊑O, are both reflexive. Given a setW of web services and
a request web servicewr , aweb service discovery problem
is to identify a web servicew∈ W such thatw⊑I wr and
wr ⊑O w. Intuitively, the solution web servicew asks less
inputs than or the same inputs withwr , and generates
more outputs than or the same outputs withwr .

However, it is sometimes possible that there does not
exist a single web service satisfying the user request. In
this case, needless to say, users want to search a sequence
w1 · · ·wn of web services such that they can legally call the
next web service in each step and achieve the desired goal
eventually. Formally, we extend the relations,⊑I and⊑O,
to a sequence of web services as follows.

–w1 · · ·wn ⊑I w (where w = (I ,O,Q) and each
w j = (I j ,O j ,Q j)) if ∀1≤ j ≤ n: for everyi2 ∈ I j there
existsi1 ∈ I ∪

⋃
k< j Ok such thatti1 <: ti2. Intuitively,

calling w1 · · ·wn requires less input parameters than
callingw.

–w ⊑O w1 · · ·wn (where w = (I ,O,Q) and each
w j = (I j ,O j ,Q j)) if for every o1 ∈ O there exists
o2 ∈

⋃
1≤ j≤nO j such thatto2 <: to1. In other words,

callingw1 · · ·wn provides more outputs than callingw.

Finally, given a setW of available web services and a
service requestwr , theQoS-aware WSC problem〈W,wr〉
is to identify a sequencew1 · · ·wn (everyw j ∈ W) of web
services such thatw1 · · ·wn ⊑I wr and wr ⊑O w1 · · ·wn.
Intuitively, calling the sequencew1 · · ·wn of web services
requires less inputs than or the same inputs withwr , and
generates more outputs than or the same outputs withwr .
The optimal solution for this problem is such a sequence
σ = w1 · · ·wn with the minimal aggregate QoS value
Q(σ) where the aggregate QoS valueQ(σ) is inductively
computed as follows:

–Q(σ) = c1 ·Q1(σ)+ · · ·+cm ·Qm(σ) where eachc j is
a given weight for thej-th QoS criterion.

–Each function Q j depends on the corresponding
quality criterion. For example, let us consider
throughput as the QoS criterion. Ifσ = w1, then
Q j(σ) = thw1 where thw1 is the throughput ofw1.
Otherwise (i.e., |σ | > 1), Q j(σ) = Min(thw1,

Q j(w2 · · ·wn)). On the other hand, let us consider
response time. Ifσ = w1 (i.e., |σ |= 1), thenQ j(σ) =

rt w1 wherert w1 is the response time ofw1. Otherwise
(i.e., σ = w1 · · ·wn,n > 1), Q j(σ) = rt w1+
Qi(w2 · · ·wn).

3 Reduction to Graph Search Problem

In this section, we explain our reduction method for the
QoS-aware WSC problem into a graph search problem.
Given a QoS-aware WSC problem〈W,wr〉, we first recast
into a graph search problem on aweighted
state-transition systemS = (S,s0,G,A,T,C) where:

–S is a finite set ofstates, where a state corresponds to a
node in search graphs.

–s0 ∈ S is theinitial state.
–G⊆ S is a finite set ofgoal states.
–A is a finite set ofactions.
–T : S×A → S is a transition functionwhich maps a
current state and an action into a next state.

–For each states∈ S and each actiona ∈ A, C(s,a) is
theaction cost.

The graph search problem on the above weighted
state-transition systemS = (S,s0,G,A,T,C) is to
identify a sequence of actionsa1, · · · ,an from the initial
state to a goal state, which has the minimal total cost.

Given a setW = {w1, · · · ,wn} of available web
services where for eachj, w j = (I j ,O j ,Q j), we denote as
TP a set of all types included inW, i.e.,
TP = {t | for eachp ∈

⋃
j(I j ∪ O j), t = type(p)}. Now,

given a setW = {w1, · · · ,wn} of available web services
and a requirement web servicewr(Iwr ,Owr ,Qwr), we can
build a weighted state-transition systemS = (S,s0,G,A,
T,C) as follows:

–S= {(x1, · · · ,xm) | x j = trueor false,m= |TP|}. Each
boolean variablex j means if we possess an instance
with the typet j at a states.

–s0 = (x1, · · · ,xm), where eachx j is true if and only if
there is an input parameteri ∈ Iwr such thatti is a
subtype of its corresponding typetx j (i.e., ti <: tx j). If
not, x j is false. Remark that since the supertype and
subtype relations are reflexive, every typet is its
supertype as well as its subtype.

–G= {(x1, · · · ,xm) | everyx j is true if and only if there
existso∈ Owr such thattx j <: to}.

–A=W.
–For s= (x1, · · · ,xm), s′ = (x′1, · · · ,x

′
m), andw = (I ,O,

Q), T(s,w) = s′ if and only if (1) for all i ∈ I , there
existsx j in s such thatx j is true and its corresponding
type tx j is a subtype of the type ofi (i.e., tx j <: ti), (2)
if xk is true, x′k is alsotrue, and (3)∀o∈ O j : for every
variable x′j in s′, if its corresponding typetx j is a
supertype ofto, x′j is true. Intuitively, a web servicew
can be called at a states if we have data instances that
are more informative than inputs ofw at the states. If
we call a web servicew at such a states, then we

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

144 H. Kil, W. Nam: On-the-fly Learning-based Search for QoS-aware...

proceed to a states′ where we preserve all the data
instances from the states and acquire outputs ofw
and their supertypes.

–For each statesand each web servicew, C(s,w) = c1 ·
q1 + · · ·+ ck · qk, where eachq j is j-th QoS criterion
value ofw.

Intuitively, we have the initial state in which we have
all the instances correspondent with the input ofwr and
instances correspondent with their supertypes. A states is
a goal state ifs includes more informative data instances
than or equal to the outputs ofwr . In addition, the optimal
path for the graph search problem instance on the above
weighted state-transition system exactly corresponds to
the optimal composite web service for a given QoS-aware
WSC problem instance. Finally, we modify the LDFS
algorithm to be appropriate for the QoS-aware WSC
problem. That is, we construct only the initial state of a
search graph at the beginning. Then, as we explore the
rest part of the search graph, we incrementally expand
successor states only when they are needed.

4 Learning Depth First Search with
On-the-fly Construction

The Learning Depth First Search (LDFS)[2,3] is
designed to attain the benefits of both a general dynamic
programming technique and the effectiveness of heuristic
search methods. Its basic idea is to search solutions by
applying a learning technique to combining iterative,
bound depth first searches [7,8]. In a searching iteration
step, if the algorithm finds a solution with a cost which
does not exceed a lower bound, then it returns the
solution. Otherwise, it repeats the searching process with
the updated value function and the lower bound. By
generalizing learning processand lower bounds, the
LDFS algorithm can reduce the searching space
effectively. In the recent works [2,3], the LDFS technique
has shown better execution time in many cases of
experiments than other searching techniques, e.g., AO*
algorithm, value iteration, and Min-Max LRTA* [9].
However, we observe a drawback of the LDFS algorithm;
even though the LDFS method can find a solution after
traversing a small portion of the search graph in many
cases, it should explicitly construct a whole search graph
before searching. Moreover, the graph construction can
take a significant amount of time, especially for large
sized problem instances. To resolve this challenge, in this
paper, we propose on-the-fly construction of a search
graph. At the beginning, we build only the initial state.
Then, during searching process, our on-the-fly method
partially expands a search graph as much as it needs in
each searching iteration step.

We assume that there exists an initial value functionV
which is a lower bound, i.e., V(s) ≤ V∗(s)). Also, this
function is monotonic, i.e., V(s) ≤ mina∈A QV(s,a) for
every non-terminal state. Therefore,learning process[7,

WS seq QoS WSC(WS SetW,Req WS wr){
1: ConstructPartially(W,wr);
2: do done:= On the fly LDFS(s0) while (done = false);
3: Translateto WS Sequence(σ ,solutionseq);
4: return solutionseq;
}

Boolean On the fly LDFS(state s){
5: if s.flag = terminalthen {
6: V(s) = 0;
7: s.flag:= solved;
8: }
9: if s.flag = solvedthen return true;
10: done = false;
11: foreacha∈ A do {
12: if QV(s,a)>V(s) then continue;
13: done:= true;
14: Successors:= ExpandSuccessors(s, a);
15: foreach t ∈ Successorsdo {
16: done:= LDFS(t)∧ (QV(s,a)≤V(s));
17: if ¬ donethen break;
18: }
19: if donethen break;
20: }
21: if done = truethen {
22: σ(s) := a;
23: s.flag:= solved;
24: } elseV(s) := mina∈A QV(s,a);
25: return done;
}

Fig. 2: QoS-driven WSC algorithm using LDFS

8] updates this function by an operation in the form of a
Bellman updateV(s) := mina∈A QV(s,a). The underlying
idea of LDFS algorithm is to search a state reachable
from a given initial state with the strategyσ such that
V(s) < mina∈A QV(s,a), and updateV(s). We note that if
V(s) is equal to mina∈A QV(s,a) for every states
reachable from an initial state,s0, with the corresponding
strategy,V(s) is the optimal. We will say that a states of
which value functionV(s) is equal to mina∈A QV(s,a) is
consistent. Otherwise (i.e.,V(s) < mina∈A QV(s,a) for
every actiona), a states is inconsistent. To efficiently
discover a consistent state, the LDFS algorithm uses the
depth-first search, and repeats the searching iteration until
no consistent state exist.

Figure 2 presents our on-the-fly algorithm for the
QoS-aware WSC problem. Given a setW of web services
and a requirement web servicewr , we construct a partial
weighted state-transition system as much as it needs, i.e.,
not the whole search graphbut the initial states0 with the
necessary information such as a set of goal states, and a
transition function (line 1). After this partial construction,
we repeat the on-the-fly LDFS procedure withs0 until
identifying the optimal strategyσ (line 2) which is
translated to the sequence of the web services (line 3).
The on-the-fly LDFS procedure considers all possible

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1L, 141-147 (2014) /www.naturalspublishing.com/Journals.asp 145

OWL file
type information

WSLA file
QoS information

Reduce to
Graph Search Problem

BPEL file
the optimal composition

WSDL file
a set of web services

WSDL file
a requirement web service

On−the−fly LDFS

Translate to Web Service

Fig. 3: Architecture diagram

actions in a given state, backtracks on unsolved states,
and updates both the unsolved states and their
predecessors. During this process, the LDFS procedure
includes two loops; for all possible actions a on the given
states (line 11) and for all successor statest which is
generated byT(s,a) (line 15). Again, our on-the-fly
method expands a set of successors only when they are
needed (line 14). When the algorithm reaches to an
inconsistent state, a terminal state, or a state labeled as
solved, it terminates. Therefore, if the search finds an
actiona∈ A on a states such that there does not exist any
inconsistent state belows, thens is labeled assolved(line
23). In this case, the algorithm sets the strategyσ for the
state s to a, and skips the other actions. Then, LDFS
procedure returnstrue. Otherwise, it continues searching
with another action until there is no action left. If there
exists no action which satisfies the above condition, the
state s is updated. Then, the LDFS procedure returns
false. Similarly, if the search on a successor state
t ∈ T(s,a) returns false or no action a satisfies the
condition (QV(s,a) ≤ V(s)), the algorithm skips
searching in the rest of successors.

As a summary, Figure3 presents the architecture of
our tool. As inputs, our tool takes a set of web services
and a requirement web service in WSDL, parameter type
information in OWL, and QoS specification in WSLA. It
reduces the QoS-driven WSC problem into a weighted
graph search problem, and then tries to find an optimal
strategy by the on-the-fly LDFS method. Finally, if our
tool finds the solution, it returns a BPEL file for the
optimal composition to which the strategy is translated.

5 Experiment

We have implemented an efficient tool for the QoS-aware
WSC problem employing the LDFS algorithm and the
on-the-fly construction. Given a set of web service
descriptions and a requirement web service description in
WSDL, their QoS information in WSLA, and their
parameter type information in OWL, our tool
automatically identifies the composite web service with
the minimal QoS value. To validate that our tool
efficiently identifies the optimal solutions, we have
compared the on-the-fly LDFS method with the offline
version of LDFS method which is our previous work [4].
The experiment has been performed on a number of
examples which are generated by the test set generator
employed in Web Services Challenge 2009 [5,6].

We have performed all experiments on a PC using a
2.93GHz Core i7 processor, 8GB memory and a Linux
OS. Table 1 describes the total number of web services
and their parameters, and the length of the optimal
composite web service for each problem instance. It also
presents the execution time in seconds for the offline
LDFS method and the on-the-fly LDFS method. In the
execution time column, ’–’ means that the corresponding
method cannot complete in 1,200 seconds. For the
on-the-fly method, the table presents the search graph
construction ratio, i.e., the number of states that the
on-the-fly method constructs over the number of states
that the offline method constructs. If any method cannot
terminate within the given time-out, we mark ’–’ for the
construction ratio since we cannot compare them. The
experiment result has shown that our on-the-fly LDFS
technique always outperforms the offline LDFS method
in terms of execution time. In the cases where the graph
construction ratio is very small (e.g.,P3: 5%,P9: 1%,P12:
5%, P14: 0.3%), the on-the-fly method has completed
earlier than the offline method by one to three orders of
magnitude. Even for the cases where the graph
construction ratio is relatively large (e.g.,P5: 69%, P7:
96%, P14: 50%), the on-the-fly method still has shown
better performance than the offline method. ForP6, P16,
P17, P18, P19, andP20, our on-the-fly method has converted
infeasible problems into feasible ones.

6 Related Work

In recent years, a number of efforts have been carried to
standardize web service specifications, especially,
non-functional description such as QoS. WS-Policy [10]
represents a set of specifications that allows web services
to describe their service policies on functionality,
requirements, quality of service, and other constraints. On
the other hand, Web Service Level Agreement (WSLA)
framework [11] defines assertions of a service provider
based on agreed QoS parameters and exception-dealing
methods to meet the asserted service guarantees.
WS-Agreement standard [12] that the grid resource

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

146 H. Kil, W. Nam: On-the-fly Learning-based Search for QoS-aware...

Table 1: Experiment result
Problem WS Parameter Solution length Offline LDFS On-the-fly LDFS Const. ratio

P1 25 300 8 203.33 54.54 49%
P2 25 300 10 14.70 1.69 28%
P3 25 500 6 92.57 1.15 5%
P4 25 500 7 16.18 4.80 43%
P5 25 500 9 189.80 92.64 69%
P6 50 500 7 – 42.27 –
P7 50 500 9 4.89 4.37 96%
P8 30 1,000 6 10.67 0.21 7%
P9 40 1,000 6 824.12 1.57 1%
P10 50 1,000 6 167.24 6.04 12%
P11 50 1,000 8 470.56 21.33 13%
P12 50 1,000 10 1121.17 16.94 5%
P13 30 2,000 4 6.83 0.14 9%
P14 50 2,000 5 806.79 0.34 0.3%
P15 50 2,000 8 41.41 13.35 50%
P16 30 5,000 7 – 3.55 –
P17 50 5,000 9 – 176.54 –
P18 80 5,000 5 – 2.19 –
P19 100 5,000 3 – 22.68 –
P20 100 5,000 5 – 238.21 –

allocation agreement protocol working group has
developed is targeted to negotiate and manage services
based on QoS attributes. Based on these standards, the
problem to find the composite web service with the
optimal QoS value also has received the attention. Zeng et
al. [13] suggest a linear programming method for this
problem. Lin et al. [14] reduce the service selection
problem to a fuzzy constraint satisfaction problem, and
then search the solution by using deep-first
branch-and-bound method. As related work to the LDFS
algorithm, Korf [7] has presented a Real-Time-A*
algorithm by applying the two-player game assumptions,
and then LRTA* algorithm which shows better
performance over successive problem by learning more
accurate heuristic values from previous trials. Koenig [9]
suggests a Min-Max LRTA* algorithm to construct an
optimal solution for a planning problem. In addition,
other studies on the LDFS algorithm exist. However, to
the best of our knowledge, there is no research to apply
the on-the-fly construction of LDFS algorithm for the
QoS-aware WSC problem. While Bertoli et al. [15]
suggest an on-the-fly belief space search method for the
behavior-description based WSC problem, since this
technique does not consider the QoS property, it cannot
be directly applied to the QoS-aware WSC problem in
this paper. Kil et al. [17,18] devised efficient methods by
using various techniques, but they consider only the
service functionality. Therefore, this work is the first trial
for QoS specification using the on-the-fly depth first
search with the learning technique. Recently, Kil and
Nam [16] propose to apply an anytime algorithm to the
QoS-driven web service composition problem which can

identify composite services with high quality much
earlier than optimal algorithms.

7 Conclusions

We have proposed a novel algorithm which finds the web
service composition with the optimal QoS value. To
identify the optimal solution, our proposal employs LDFS
with the on-the-fly construction. Still there are various
directions for future work. First, while we use a
state-of-the-art searching algorithm, i.e., LDFS, in this
work, we can apply other planning methods, e.g.,search
with value iterationor AO* search algorithm. Therefore,
we plan to apply other techniques and compare our
proposal with them. Second, we can extend this proposal
to consider ontologies such as OWL as well as parameter
types. Then, we can devise other alternatives by using
reasoning therein. Last, we can consider approximate
methods for a large-sized QoS-aware WSC problem since
it can be hard to find the optimal solution in large-sized
optimization problem instances.

Acknowledgement

This paper was supported by Konkuk University in 2012.

References

[1] R. Hull and J. Su, SIGMOD Record,34, 86-95 (2005).

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 1L, 141-147 (2014) /www.naturalspublishing.com/Journals.asp 147

[2] B. Bonet and H. Geffner, Proceedings of the National
Conference on Artificial Intelligence,20, 1343-1348 (2005).

[3] B. Bonet and H. Geffner, Proceedings of the International
Conference on Automated Planning and Scheduling,16,
172-151 (2006).

[4] W. Nam, H. Kil, J. Lee, Proceedings of the IEEE Conference
on Commerce and Enterprise Computing,11, 507-510
(2009).

[5] The Web Service Challenge (2009),
http://ws-challenge.georgetown.edu/wsc09/.

[6] S. Kona, A. Bansal, M. Blake, S. Bleul, T. Weise,
Proceedings of IEEE Conference on Commerce and
Enterprise Computing,11, 487-490 (2009).

[7] R. E. Korf, Artificial Intelligence,42, 189-211 (1990).
[8] A. G. Barto, S. J. Bradtke, S. P. Singh, Artificial Intelligence,

72, 81-138 (1995).
[9] S. Koenig, Artificial Intelligence,159, 165-197 (2001).

[10] W3C, Web services policy (WS-Policy) version 1.2 (2006),
http://www.w3.org/Submission/WS-Policy/.

[11] IBM Corporation, WSLA (Web Service
Level Agreements) project (2004),
http://www.research.ibm.com/wsla/documents.html.

[12] OGF, Web services agreement
specification (WS-Agreement) (2007),
http://www.ogf.org/documents/GFD.107.pdf.

[13] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q. Z.
Sheng, Proceedings of the International World Wide Web
Conference,12, 411-421 (2003).

[14] M. Lin, J. Xie, H. Guo, and H. Wang. Proceedings of IEEE
International Conference on E-Technology, E-Commerce,
and E-Services, 9-14 (2005).

[15] P. Bertoli, M. Pistore and P. Traverso. Proceedings of
the International Conference on Automated Planning and
Scheduling,16, 358-361 (2006).

[16] H. Kil and W. Nam, International Journal of Web and Grid
Services,9, 82-106 (2013).

[17] W. Nam, H. Kil, D. Lee, Proceedings of IEEE Joint
Conference on E-Commerce Technology. and Enterprise
Computing, E-Commerce and E-Services, 331-334 (2008).

[18] H. Kil, W. Nam, D. Lee. International Journal of Web and
Grid Services,9, 54-81 (2013).

Hyunyoung Kil received
the B.S. and M.Sc. degrees
from Korea University, Seoul,
Korea, in 1998 and 2001,
respectively. She received
the M.S.E. degree from the
University of Pennsylvania,
Philadelphia, PA, USA
in 2003, and the Ph.D. degree
from the Pennsylvania State

University, State College, PA, USA in 2010. She is
currently a researcher professor of Konkuk University,
Seoul, Korea. Her research interests include automated
planning, web services composition, SOA and web
sciences.

Wonhong Nam received
the B.S. and M.Sc. degrees
from Korea University, Seoul,
Korea, in 1998 and in 2001,
respectively, and the Ph.D.
degree from the University of
Pennsylvania, Philadelphia,
PA, USA in 2007. From
2007 to 2009, he was
a postdoctoral researcher with

the College of Information Sciences and Technology,
Pennsylvania State University, University Park, PA, USA.
He is currently an associate professor of the Department
of Internet and Multimedia Engineering, Konkuk
University, Seoul, Korea. His research interests include
formal methods, formal verification, model checking,
automated planning, and web services composition.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://ws-challenge.georgetown.edu/wsc09/
http://www.w3.org/Submission/WS-Policy/
http://www.research.ibm.com/wsla/documents.html
http://www.ogf.org/documents/GFD.107.pdf

	Introduction
	QoS-Aware Web Service Composition
	Reduction to Graph Search Problem
	Learning Depth First Search with On-the-fly Construction
	Experiment
	Related Work
	Conclusions

