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Low autocorrelation is an important prerequisite of Boolean functions when used as
combiners in stream ciphers. In this paper, we investigate the autocorrelation of two
classes of semi-bent functions constructed by Charpin et al.. We give all the autocorre-
lation coefficients of these semi-bent functions and prove that they have not correlation
immune. Our results show that, although these semi-bent functions have good non-
linearity, they have high autocorrelations. The cipher constructed by these semi-bent
functions can be prone to differential-like cryptanalysis, and they can not resist corre-
lation attacks. These potential weakness have to be considered before we deploy them
in applications.
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transforms, Additive autocorrelation.

1 Introduction

Boolean functions have wide applications in cryptography and coding theory. In gen-
eral, a Boolean function should have good nonlinearity, resiliency and low autocorrelation.
High nonlinearity ensures the cipher is not prone to linear approximation attack [1], while
resiliency offers protection against correlation attack [2]. Usually, the resiliency of order
1 is enough for a Boolean function. Another criteria is low additive autocorrelation [3].
This ensures that the output of the Boolean function is complemented with a probability
close to 1/2 when any number of input bits are complemented. As a result, the cipher
does not suffer from differential-like cryptanalysis [4]. This is a more practical criteria for
Boolean function than the propagation criteria of order k [5]. A function satisfying the
propagation criterion of order k shows the perfect avalanche characteristic with respect to
vectors of Hamming weight not larger than k. This property, however, does not rule out the
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possibility that the function can have vectors of Hamming weight larger than k as its lin-
ear structures. Therefore the propagation criterion, though being an extension of the strict
avalanche criterion (SAC), is merely another indicator for local properties. On the other
hand, the criterion is too strict in the sense that it requires that f(x) ⊕ f(x + a) be 100

percent balanced. This leads to the situation where a function satisfying the propagation
criterion of the largest possible order becomes bent. Although bent functions have nice
nonlinearity, they are not balanced and hence can hardly be directly employed in practice.
Global avalanche characteristics of cryptographic functions (GAC) [5] overcome the short-
comings of the SAC or its generalizations, and be able to forecast the overall avalanche
characteristic of a cryptographic function. Additive autocorrelation is one of the two indi-
cators of GAC. In addition, autocorrelation functions in another form also have applications
in physics [6] [7].

Determining the autocorrelation coefficients ∆f (a) for all a ∈ F2n , in other words, the
addtive autocorrelation ∆f , is of great interest in coding theory and cryptography [3] [8].
If all of the autocorrelation coefficients ∆f (a) are low, then the Boolean function f(x) can
resist the differential-like cryptanalysis in all a ∈ F2n . Otherwise, the Boolean function
f(x) can suffer from differential-like cryptanalysis in some elements a ∈ F2n which make
∆f (a) be high. Although autocorrelation coefficient is an important indicator for a Boolean
function, it is a difficult task to determine all the autocorrelation coefficients of the Boolean
function. This is because computing the Hamming weights of these functions f(x)⊕f(x+

a) for all a ∈ GF (2n) is not an easy thing.

In this paper, we investigate two classes of semi-bent functions constructed by Charpin
et al. [9]. We point out the weakness of the construction techniques for these semi-bent
functions in terms of autocorrelation coefficients and correlation immune. First, we prove
that the two classes of semi-bent functions are not balanced, and give the conditions of
their Hadamard transforms takeing zero or nonzero. We also correct an error statement
for the conditions of Hadamard transforms of the semi-bent functions in [9] Theorem 12 i)
takeing zero. Next, we deduce the dual functions of the two classes of semi-bent functions.
By using the former conclusions, we get all the autocorrelation coefficients of the two
classes of semi-bent functions, and obtain their absolute indicators ∆f and sum of square
indicators σf . In Section 2, we introduce some concepts and definitions which will be used
throughout this paper. In Section 3, we deduce the dual functions of the two classes of semi-
bent functions. Simultaneously, we give their all autocorrelation coefficients. Their orders
of correlation immune are also given in Section 3. Concluding remarks and discussions
will be given in Section 4.
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2 Preliminaries

Let GF (2n) be the finite field of order 2n and GF (2n)∗ denote the set composed of all
nonzero elements in GF (2n). The trace function Tr : GF (2n) → GF (2) is defined as,

Tr(x) = x+ x2 + · · ·+ x2n−1

.

It is a linear function on GF (2n) and is basic to the representation of polynomial functions
f : GF (2n) → GF (2). The Hadamard transform of a polynomial function f : GF (2n) →
GF (2) at an element λ ∈ GF (2n) is define by,

f̂(λ) =
∑

x∈GF (2n)

(−1)f(x)⊕Tr(λx).

where ⊕ denotes the addition module 2. There is a natural correspondence between the
polynomial functions f : GF (2n) → GF (2) and the Boolean functions g : GF (2)n →
GF (2). Let {α0, α1, · · · , αn−1} be a basis of GF (2n). This corresponding is given by

g(x0, x1, · · · , xn−1) = f(x0α0 + x1α1 + · · ·+ xn−1αn−1)

The Hadamard transform or Walsh transform of a Boolean function f : GF (2)n → GF (2)

is
f̂(ω) =

∑
x∈GF (2)n

(−1)f(x)⊕<ω,x>.

The scalar product < ω, x >: GF (2)n → GF (2), of vectors x ∈ GF (2)n and ω ∈
GF (2)n is defined as < ω, x >=

∑n−1
i=0 ωixi. We define the Walsh spectrum of g(x) as

the set {Wg(u)|u ∈ F2n}. The weight of a vector ω ∈ GF (2)n is the number of ones in
ω and is denoted by wt(ω). Correspondingly, The weight wt(f) of a Boolean function f

is the number of x ∈ GF (2)n such that f(x) = 1. A function f is said to be balanced
if wt(f) = wt(f ⊕ 1), that is f̂(0) = 0. A Boolean function f : GF (2)n → GF (2) is
kth order correlation immunity if f̂(ω) = 0 for all 1 ≤ wt(ω) ≤ k. Furthermore, if f is
balanced and kth order correlation immunity, we say the Boolean function f is resilient of
order k.

The nonlinearity of functions f(x) is related to the Hadamard transform f̂(ω). It is
defined as follows,

Nf = 2n−1 − 1

2
maxω∈GF (2)n |f̂(ω)|

The Boolean function f(x) with a high nonlinearity can resist the linear approximation
attack. Therefore, A high nonlinearity is necessary for a Boolean function. For even n,
the bent functions are the functions of best nonlinearity. Semi-bent functions have almost
optimal nonlinearity [15].

Definition 2.1 ( [9]). Let n be an odd number. A Boolean function f(x) with f(0) = 0 is
said to be semi-bent if and only if its Walsh spectrum is
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value number it occurs

0 2n−1

2(n+1)/2 2n−2 + 2(n−3)/2

−2(n+1)/2 2n−2 − 2(n−3)/2

Table 2.1: The Walsh spectrum of semi-bent function f (n is odd)

For even n, the semi-bent functions can be defined as follows.

Definition 2.2 ( [9]). Let n be an even number. A Boolean function f(x) with f(0) = 0 is
said to be semi-bent if and only if its Walsh spectrum is

value number it occurs

0 2n−1 + 2n−2

2(n+2)/2 2n−3 + 2(n−4)/2

−2(n+2)/2 2n−3 − 2(n−4)/2

Table 2.2: The Walsh spectrum of semi-bent function f (n is even)

For an element a ∈ GF (2)n
∗, if f(x) ⊕ f(x + a) = constant, then we call the a

as a linear structure of f(x). A nonzero linear structure is a bad character for a Boolean
function because it makes the Boolean function be prone to differential-like cryptanalysis.
If a Boolean function f(x) is a bent function, then the function f(x)⊕ f(x+ a) must be a
balanced function. Therefore, bent functions have not nonzero linear structure.

Given a Boolean function f : GF (2)n → GF (2), the autocorrelation coefficient in an
element a ∈ GF (2)n is defined as follows:

∆f (a) =
∑

x∈GF (2)n

(−1)f(x)⊕f(x+a)

We say f satisfies the propagation criteria of order k, denoted PC(k), if ∆f (a) = 0

for all 1 ≤ wt(a) ≤ k. In informal terms, f satisfies the propagation criterion of order
k if complementing k or less bits results in the output of f being complemented with a
probability of a half. If ∆f (a) = ±2n, then a is a linear structure of f which is undesirable.

Definition 2.3 ( [5]). Let f be a Boolean function on GF (2)n. The additive autocorrela-
tion or the absolute indicator for the avalanche characteristic of f is defined by

∆f = maxa∈GF (2)n,a ̸=0|∆f (a)|.

The sum-of-squares indicator for the characteristic of f is defined by

σf =
∑

a∈GF (2)n

∆f (a)
2.
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The smaller ∆f and σf , the better the GAC of a function. Like many other nonlinearity
characteristics of a function including nonlinearity, algebraic degree et. al., the two indica-
tors for the GAC are invariant under nonsingular linear transforms on the input coordinates.
0 ≤ ∆f ≤ 2n, 22n ≤ σf ≤ 23n. Moreover, ∆f = 0 if and only if f is bent, and ∆f = 2n

if and only if f has a nonzero linear structure [5]. Let f be a non-bent cubic function on
GF (2n), then ∆f ≥ 2(n+1)/2 [5].

3 The autocorrelation coefficients of semi-bent functions

3.1 General theory of autocorrelation of semi-bent functions

In [8], Guang Gong and Khoongming Khoo gave the concept of dual functions on the
Boolean functions f : Fn

2 → F2 to investigate the autocorrelation coefficients of 3-valued
spectrum function.

Definition 3.1. Let f(x) be a Boolean function on F2n . Its dual function of is defined as

of (ω) =

{
0 if f̂(ω) = 0

1 if f̂(ω) ̸= 0

The dual functions can be used to establish the relationship between the autocorrelation
coefficients and the Walsh spectrum of f(x) [8].

Lemma 3.1. If f(x) be a Boolean function on F2n with 3-valued spectrum 0,±2i, then for
all a ̸= 0

∆f (a) = −22i−(n+1)ôf (a). (3.1)

Where ôf (a) denotes the Walsh spectrum of the dual function of in an element a ∈ Fn
2 .

From Lemma 3.1, if n = 2p + 1, and f(x) be a semi-bent function on Fn
2 , then we

have
∆f (a) = −ôf (a). (3.2)

Similarly, if n = 2p, and f(x) be a semi-bent function on Fn
2 , then we have

∆f (a) = −2ôf (a). (3.3)

Therefore, the autocorrelation coefficients of a semi-bent function f(x) depend on the
Walsh spectrum of its dual function of . We can give the autocorrelation coefficients by
investigating the Walsh spectrum of dual function of .

3.2 The semi-bent functions investigated in this paper

In [9], Charpin, Pasalic and Tavernier first introduced some infinite classes of quadratic
Bent and semi-bent functions with more trace form.These functions can be represented as
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follows

fc(x) =

⌊n−1
2 ⌋⊕

i=1

ciTr(x
2i+1), ci ∈ F2. (3.4)

Lemma 3.2. Let n be even, g(x) and h(x) be two semi-bent functions on GF (2n). Let
f(x, y) = g(x)y⊕h(x)(y⊕1) be the Boolean function on GF (2n)×GF (2). Then f(x, y)

is semi-bent if and only if for any ω ∈ GF (2n),

ĝ(ω) = ±2(n+2)/2 ⇒ ĥ(ω) = 0.

Let n be an even integer, then GF (4) is a subspace of GF (2n). Let

GF (4)⊥ = {u ∈ GF (2n)| Tr(uv) = 0, for all v ∈ GF (4)}.

Obviously, GF (4)⊥ is a subspace of GF (2n) under the addition operation and
#GF (4)⊥ = 2n−2, where #GF (4)⊥ denotes the cardinality of the set GF (4)⊥. A coset of
GF (4)⊥ is any subset of GF (2n) of the form of u+GF (4)⊥, u ∈ GF (2n).

Lemma 3.3 ( [9]). Let n = 2p. We consider the fc(x) defined by (4) which is a semi-bent
function. Set Ie = {i| ci ̸= 0 and i even}. Consider the function gλ(x) = fc(x)⊕Tr(λx).

• If #Ie is even then gλ(x) is balanced if and only if λ /∈ GF (4)⊥.

• If #Ie is odd then gλ(x) is balanced if and only if Tr(λ) = 1 or λ ∈ GF (4)⊥.

Where #Ie denotes the cardinality of the set Ie.

This Lemma shows that the set of {λ|f̂c(λ) = 0} can be determined by GF (4)⊥ if
fc(x) is a semi-bent function. The following Lemma 3.4 is Theorem 12 in [9].

Lemma 3.4. Let n = 2p and fb(x),fc(x) defined by (4), be two semi-bent functions on
GF (2n). Let u ∈ GF (2n). Let us define the Boolean function on GF (2n)×GF (2)

f : (x, y) 7→ (fb(x)⊕ Tr(ux))y ⊕ fc(x)(y ⊕ 1).

Set Ie(b) = {i| bi ̸= 0 and i even} and Ie(c) = {i| ci ̸= 0 and i even}. Then we have the
following

1. Assume that p is odd, #Ie(b) is odd, #Ie(c) is even and u = 0, then f(x, y) is
semi-bent.

2. Assume that p is even or #Ie(b) and #Ie(c) are even. Then for any u /∈ GF (4)⊥,
the function f is semi-bent. Moreover, f(x, y) ⊕ Tr(µx) ⊕ νy is balanced if and
only if u+ µ /∈ GF (4)⊥.

Moreover, f(x, y) is of degree 3 if and only if fb(x)⊕ fc(x) ̸= 0.

We are here to correct an error statement in Lemma 3.4 2.. From the proof of Theorem
12 in [9], we can know that f(x, y) ⊕ Tr(µx) ⊕ νy is balanced if and only if u + µ /∈
GF (4)⊥ and µ /∈ GF (4)⊥, rather than u+ µ /∈ GF (4)⊥.
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3.3 On the autocorrelation coefficients of semi-bent functions

This subsection concentrates on the autocorrelation coefficients of quadratic semi-bent
functions in Lemma 3.4. The quadratic semi-bent functions have been fully studied in
the form of Boolean functions [10]. However, the autocorrelation coefficients of these
functions have not yet been involved in.

In the following theorem, we give the dual functions of of f(x, y) in Lemma 3.4.

Theorem 3.1. 1. Let f(x, y) be the function defined in Lemma 3.4 1., then its the dual
function is

of (µ, ν) =

{
0, if Tr(µ) = 1, ν ∈ GF (2);
1, if Tr(µ) = 0, ν ∈ GF (2).

(3.5)

f(x, y) is not balanced.

2. Let f(x, y) be the function defined in Lemma 3.4 2., then its the dual function is

of (µ, ν) =

{
0, if u+ µ /∈ GF (4)⊥ and µ /∈ GF (4)⊥, ν ∈ GF (2);
1, if u+ µ ∈ GF (4)⊥ or µ ∈ GF (4)⊥, ν ∈ GF (2).

(3.6)

f(x, y) is not balanced.

Proof. Now, in order to to determine of (µ, ν), we firstly find the points that the Walsh
transform of f(x, y) is zero and nonzero.

1. Let f(x, y) be the function in Lemma 3.4 1., then its Walsh transform is

f̂(µ, ν) =
∑

x∈GF (2n)
y∈GF (2)

(−1)
f(x,y)+Tr(µx)+νy

=
∑

x∈GF (2n)
y=0

(−1)
fc(x)+Tr(µx)

+
∑

x∈GF (2n)
y=1

(−1)
fb(x)+Tr(µx)+ν

.(3.7)

(a) Since #Ie(b) is odd, from Lemma 3.3, fb(x) + Tr(µx) is not balanced if and
only if Tr(µ) = 0 and µ /∈ GF (4)⊥. Because fb(x) is a semi-bent function,
f̂b(µ) is ±2(n+2)/2. By Lemma 3.2, f̂b(µ) = ±2(n+2)/2 ⇒ ˆfc(x) = 0. There-
fore, f̂(µ, ν) = ±2(n+2)/2 if Tr(µ) = 0 and µ /∈ GF (4)⊥. Since fb(x) is a
semi-bent function on GF (2n), where n is even, from Table 2.2, the number of
µ for f̂b(µ) = ±2(n+2)/2 is 2n−2. At 2n − 2n−2 points f̂b(µ) = 0. Because of
ν ∈ GF (2), the number of (µ, ν) for f̂(µ, ν) is 2n−1.

(b) Since #Ic(b) is even, from Lemma 3.3, fc(x) ⊕ Tr(µx) is not balanced if
and only if µ ∈ GF (4)⊥. In a same method as (a), we can have f̂(µ, ν) =

±2(n+2)/2 if µ ∈ GF (4)⊥, and the number of (µ, ν) for f̂(µ, ν) is 2n−1.
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From (a) and (b), the number of (µ, ν) for f̂(µ, ν) ̸= 0, that is f̂(µ, ν) = ±2(n+2)/2,
is 2n. By noting that n + 1 is odd and f(x, y) is semi-bent, from Table 2.1, the
number of (µ, ν) for f̂(µ, ν) ̸= 0 is exactly 2n. Therefore, f̂(µ, ν) ̸= 0 if and only
if Tr(µ) = 0 and µ /∈ GF (4)⊥, or µ ∈ GF (4)⊥. That is, f̂(µ, ν) ̸= 0 if and
only if Tr(µ) = 0, or Tr(µ) = 1 and µ ∈ GF (4)⊥. However, by th definition
of GF (4)⊥, we can know Tr(x) = Tr(x1) = 0 for all x ∈ GF (4)⊥, where “1”
is the multiplicative identity element on GF (4)∗ and GF (2n)∗. Therefore, the µ

for Tr(µ) = 1 and µ ∈ GF (4)⊥ does not exist. Thus, f̂(µ, ν) ̸= 0 if and only
if Tr(µ) = 0. f̂(0, 0) ̸= 0, so f(x, y) is not balanced. From Definition 3.1, the
conclusion follows.

2. Let f(x, y) be the function in Lemma 3.4 2.. From Lemma 3.4 2, f(x, y)⊕Tr(µx)⊕
νy is balanced if and only if u+ µ /∈ GF (4)⊥ and µ /∈ GF (4)⊥. That is, f̂(µ, ν) =
0 if and only if u + µ /∈ GF (4)⊥ and µ /∈ GF (4)⊥. From Definition 3.1, the
conclusion follows. �

In the following, we determine the walsh transforms at all points (ω, ε) ∈
GF (2n)×GF (2)

∗ of the dual function of .

Theorem 3.2. Let f(x, y) be the function defined in Lemma 3.4 1. or 2., then

ôf (ω, ε) =

{
−2n+1, if (ω, ε) = (1, 0);
0, else.

(3.8)

where “1” is the multiplicative identity element on GF (4)∗. And, of (µ, ν) is an affine
function.

Proof. The Walsh transform of of (µ, ν) in Lemma 3.4 is

ôf (ω, ε) =
∑

µ∈GF (2n)
ν∈GF (2)

(−1)
of (µ,ν)+Tr(ωµ)+εν

=
∑

µ∈GF (2n)
ν=0

(−1)
of (µ,0)+Tr(ωµ)

+
∑

µ∈GF (2n)
ν=1

(−1)
of (µ,1)+Tr(ωµ)+ε(3.9)

GF (4)⊥ is a subspace of GF (2n) and #GF (4)⊥ = 2n−2, so we have

GF (2n) = GF (4)⊥ ∪ {α1 +GF (4)⊥} ∪ {α2 +GF (4)⊥} ∪ {α3 +GF (4)⊥}, (3.10)

where α1, α2, α3 ∈ GF (2n)∗. And α1 + α2 = α3, otherwise Eq. (3.10) does not hold.
Tr(x) = 0 for all x ∈ GF (4)⊥, and a linear function Tr(x) is balanced on GF (2n).

From Eq. (3.10) and Tr(0) = 0, without loss of generality, it is possible to suppose that
Tr(α1) = 0, Tr(α2) = 1, Tr(α3) = 1.
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If µ ∈ α1 +GF (4)⊥, let µ = α1 + µ′, where µ′ ∈ GF (4)⊥, then Tr(µ) = Tr(α1 +

µ′) = Tr(α1)⊕ Tr(µ′) = Tr(α1) = 0. And, when ω ∈ GF (4), Tr(ωµ) = Tr(ω(α1 +

µ′)) = Tr(ωα1)⊕Tr(ωµ′) = Tr(ωα1); In a similar way, we can get if µ ∈ α2+GF (4)⊥,
then Tr(µ) = Tr(α2) = 1, Tr(ωµ) = Tr(ωα2) when ω ∈ GF (4); if µ ∈ α3 +GF (4)⊥,
then Tr(µ) = Tr(α3) = 1, Tr(ωµ) = Tr(ωα3) when ω ∈ GF (4).

1. Let f(x, y) be the function defined in Lemma 3.4 1.. Suppose ω ∈ GF (4), substitu-
tuing Eq. (3.5) to the right side of Eq. (3.9), we have

∑
µ∈GF (2n)
ν=0

(−1)
of (µ,ν)+Tr(ωµ)

=
∑

µ∈GF (4)⊥

ν=0

(−1)
1+0

+
∑

µ∈α1+GF (4)⊥

ν=0

(−1)
1+Tr(ωα1)

+
∑

µ∈α2+GF (4)⊥

ν=0

(−1)
0+Tr(ωα2) +

∑
µ∈α3+GF (4)⊥

ν=0

(−1)
0+Tr(ωα3)

∑
µ∈GF (2n)
ν=1

(−1)
of (µ,ν)+Tr(ωµ)+ε

=
∑

µ∈GF (4)⊥

ν=1

(−1)
1+0+ε

+
∑

µ∈α1+GF (4)⊥

ν=0

(−1)
1+Tr(ωα1)+ε

+
∑

µ∈α2+GF (4)⊥

ν=0

(−1)
0+Tr(ωα2)+ε

+
∑

µ∈α3+GF (4)⊥

ν=0

(−1)
0+Tr(ωα3)+ε

Since α1+α2 = α3, Tr(α3) = Tr(α1)⊕Tr(α2). Let (ω, ε) = (1, 0). When ω = 1,
Tr(ωα1) = Tr(α1) = 0, Tr(ωα2) = Tr(α2) = 1, Tr(ωα3) = Tr(α3) = 1.
Therefore, we have∑

µ∈GF (2n)
ν=0

(−1)
of (µ,ν)+Tr(ωµ)

= −2n−2 + (−2n−2)

+(−2n−2) + (−2n−2) = −2n,

∑
µ∈GF (2n)
ν=1

(−1)
of (µ,ν)+Tr(ωµ)+ε

= −2n−2 + (−2n−2)

+(−2n−2) + (−2n−2) = −2n.

Substituting these into Eq. (3.9), we get ôf (1, 0) = −2n+1. Thus, ôf (ω, ε) is not
zero only if (ω, ε) = (1, 0), else ôf (ω, ε) = 0. Otherwise, Parseval’s equation can
not been met:

∑
µ∈GF (2n)

Wf (µ)
2
= 22n for any Boolean function f(x) on GF (2n).

From the Walsh spectrum of of (µ, ν), we can have of (µ, ν) is an affine function.
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2. Let f(x, y) be the function in Lemma 3.4 2.. u /∈ GF (4)⊥, so

u ∈ {α1 +GF (4)⊥} ∪ {α2 +GF (4)⊥} ∪ {α3 +GF (4)⊥}.

Suppose ω ∈ GF (4) = {0, 1, b1, b2}.

(a) If u ∈ {α1 + GF (4)⊥}, substitutuing Eq. (3.6) to the right side of Eq. (3.9),
we have ∑

µ∈GF (2n)
ν=0

(−1)
of (µ,ν)+Tr(ωµ)

=
∑

µ∈GF (4)⊥

ν=0

(−1)
1+0

+
∑

µ∈α1+GF (4)⊥

ν=0

(−1)
1+Tr(ωα1)

+
∑

µ∈α2+GF (4)⊥

ν=0

(−1)
0+Tr(ωα2) +

∑
µ∈α3+GF (4)⊥

ν=0

(−1)
0+Tr(ωα3) (3.11)

∑
µ∈GF (2n)
ν=1

(−1)
of (µ,ν)+Tr(ωµ)+ε

=
∑

µ∈GF (4)⊥

ν=1

(−1)
1+0+ε

+
∑

µ∈α1+GF (4)⊥

ν=0

(−1)
1+Tr(ωα1)+ε

+
∑

µ∈α2+GF (4)⊥

ν=0

(−1)
0+Tr(ωα2)+ε

+
∑

µ∈α3+GF (4)⊥

ν=0

(−1)
0+Tr(ωα3)+ε (3.12)

Since α1 + α2 = α3, Tr(ωα3) = Tr(ωα1)⊕ Tr(ωα2).

Let (ω, ε) = (1, 0). If ω = 1, then Tr(ωα1) = Tr(α1) = 0, Tr(ωα2) =

Tr(α2) = 1, Tr(ωα3) = Tr(α3) = 1. Therefore,∑
µ∈GF (2n)
ν=0

(−1)
of (µ,ν)+Tr(ωµ)

= (−2n−2) + (−2n−2)

+(−2n−2) + (−2n−2) = −2n,

∑
µ∈GF (2n)
ν=1

(−1)
of (µ,ν)+Tr(ωµ)+ε

= (−2n−2) + (−2n−2)

+(−2n−2) + (−2n−2) = −2n.

Substituting these into Eq. (3.9), we get ôf (1, 0) = −2n+1. From Parseval’s
equation, ôf (ω, ε) is not zero only if (ω, ε) = (1, 0), else ôf (ω, ε) = 0.
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(b) If u ∈ {α2 +GF (4)⊥}, by Eq. (3.6), we have∑
µ∈GF (2n)
ν=0

(−1)
of (µ,ν)+Tr(ωµ)

=
∑

µ∈GF (4)⊥

ν=0

(−1)
1+0

+
∑

µ∈α1+GF (4)⊥

ν=0

(−1)
0+Tr(ωα1)

+
∑

µ∈α2+GF (4)⊥

ν=0

(−1)
1+Tr(ωα2) +

∑
µ∈α3+GF (4)⊥

ν=0

(−1)
0+Tr(ωα3)

∑
µ∈GF (2n)
ν=1

(−1)
of (µ,ν)+Tr(ωµ)+ε

=
∑

µ∈GF (4)⊥

ν=1

(−1)
1+0+ε

+
∑

µ∈α1+GF (4)⊥

ν=0

(−1)
0+Tr(ωα1)+ε

+
∑

µ∈α2+GF (4)⊥

ν=0

(−1)
1+Tr(ωα2)+ε

+
∑

µ∈α3+GF (4)⊥

ν=0

(−1)
0+Tr(ωα3)+ε

Similarly, ôf (ω, ε) is not zero, that is −2n+1, only if (ω, ε) = (1, 0), else
ôf (ω, ε) = 0.

(c) If u ∈ {α3 +GF (4)⊥}, we can also have the same conclusions.

From the Walsh spectrum of of (µ, ν), we can have of (µ, ν) is an affine function. �
Let f : GF (2n) → GF (2) be a polynomial function with 3-valued spectrum 0,±2i.

Then there exists a basis of GF (2n) such that the Boolean representation of f(x) is 1th
order correlation immune if and only if of is not affine [8]. Therefore, by Theorem 3.2 and
equation (3.2), we have the following theorem.

Theorem 3.3. Let f(x, y) be the function defined in Lemma 3.4 1. or 2., then

∆f (ω, ε) =

{
2n+1, if (ω, ε) = (1, 0) or (0, 0);
0, else.

(3.13)

where “1” is the multiplicative identity element on GF (4)∗. ∆f = 2n+1, σf = 2 ·22(n+1).
And, there exists a basis of GF (2n) such that the Boolean representation of f(x, y) has
not correlation immune.

Remark 3.1. Comparing σf = 2 · 22(n+1) with 22(n+1) and 23(n+1), we can see that the
sum-of-squares avalanche characteristic of the function is extremely good. However, from
Theorem 3.3, we known that the two classes of functions f(x, y) have the worst additive
autocorrelation 2n+1. So, (1, 0) is their linear structure.
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4 Conclusion

We have given all the autocorrelation coefficients of the two classes of semi-bent func-
tions constructed by Charpin et al., and obtain their absolute indicators ∆f = 2n+1 and
sum of square indicators σf = 2 · 22(n+1). Our results show that these semi-bent func-
tions have the worst autocorrelation coefficients at nonzero point (1, 0), which make these
functions suffer from differential-like cryptanalysis. Therefore, in stream ciphers, these
functions can not be used alone. Before using these functions, we have to consider these
potential weakness to avoid the differential-like cryptanalysis..
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