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Abstract: In this paper, an SVEIR epidemic model with waning preventraccine and the infection acquired following effective
contact with infected population and exposed populatidnvsstigated. By analyzing the corresponding charadiegsjuations, the
local stability of a disease-free equilibrium and an enaeeqjuilibrium is discussed. By means of Lyapunov functicaral LaSalle’s
invariance principle, it is shown that the global dynamg&alimost determined by the basic reproduction number. foiggm that if the
basic reproduction number is less than unity, the dise@sedquilibrium is globally asymptotically stable. If thadic reproduction
number is greater than unity, sufficient conditions areiobthfor the global stability of the endemic equilibrium.Nerical simulations
are carried out to illustrate the main theoretical results.
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1 Introduction Mn,B,&,u,d,a, andd are positive constants in whidf

is the recruitment rate of susceptible hum#h,s the
Mathematical models describing the population dynamicseffective contact ratef is the vaccination coverage rate,
of infectious diseases is an invaluable epidemiologicalu is the natural mortality rated is the disease-induced
tool about foreseeing the transmission dynamics ofmortality rate,a is the rate at which exposed individuals
infectious diseases. Over the past few decades, manyecome infectious) is the recovery rate. & T < 1 is the
compartmental mathematical models, such as SIS, SIR ovaccine efficacyf = 1 represents a vaccine that offers
SEIS (whereS,1,E, and R denote the populations of 100% protection against infectiof = 0 models a
susceptible, infectious, exposed and recovered), haveaccine that offers no protection at all). I4][ Gumel et
been used to investigate the spread and control o&l. considered the global stability of the disease free
infectious diseases (see, e.4,7,3,4]). In [4], Gumel,  equilibrium and the endemic equilibrium of system (1) by
McCluskey and Watmough considered the following Lyapunov function theory and the compound matrices

infectious disease model: theory.
S(t) —M—BS —&S—uS, In (1),'the'\ infection was a}cquired following effectjve
V(t) =& —(1—T)BVI — pV, contact Wlth_ mfectepl population. Hovyever, some patients
E(t) =BS + (1 1)BVI — aE — UE 1) with infectious diseases can discharge infectious
i(t) =aE— 38l —di— pl ’ pathogens at the end of .the latent perlqd, suph as Hepatitis
R(t) =5l — uR ’ B, measles and Pertussis. Hence, the infection can also be

acquired following effective contact with the latened

In (1), the total population is subdivided into five POPUlation(see, e.g5].

compartments, which are the susceptible individ&a$, In addition, it was assumed that the vaccinees
the vaccinated susceptible individuadisét), the exposed obtained the permanent immunity in system (1).
individuals but not yet infectiou€(t), the infectious However, some clinical studies have shown that the
individuals 1(t), and the recovered individuals with permanent immunity induced by the preventive vaccines
acquired full immunity R(t). The parameters may wane over time. Mossong et ab] pointed that the
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mean duration of vaccine-induced protection againstmeans of Lyapunov functional and LaSalle’s invariance

Measles was 25 years. The additional cases of waningrinciple, sufficient conditions are obtained for the globa

immunity in vaccines have been shown h§]. asymptotic stability of the endemic equilibrium.
Motivated by the works of Gumel et &]| Li et al.[5] Numerical simulations are carried out in Section 5 to

and Mossong et ab], we consider the combined effects illustrate the main theoretical results. A brief discuas®

of a waning preventive vaccines and the infectiongiven in Section 6 to conclude this work.

acquired following effective contact with infected

population and latened population. To this end, we study

the following differential equations: 2 Basic properties

St) =M —BS —NBES—ES— S+ wV,
V() =&S—(1-T1)BVI —uV —wV,

solutions for system (4).
E(t) =BS ES+(1—-1)BVI—aE—uE, (2
i (E)) _ gE jgﬁ_ d|+—(ll| B HE. (@) Theorem 2.1.The arbitrary positive solution of system (4)

R(t) = 8 — R, with initial conditions inR; is ultimately bounded.
Proof. Let (S(t),V(t),E(t),I (t)) be any positive solution
where 0< n < 1 is a constant describing the decrease inof system (4) with initial conditions iiR; . Define
the relative infectiousness of population in the exposed
individuals E in comparison to those in the infectious L(t)=S(t)+V({t)+E({)+1(t).
individuals I, the constantw > 0 is the rate at which
vaccine wanes (that is/t is the duration of the loss of ~Calculating the derivative of(t) along the solutions of
immunity acquired by preventive vaccine or by infection), system (4), it follows that
and the other constants are the same as that defined in )
system (1). Lt)=m—pL—dl -3l <[T—pL,
The initial conditions for system (2) take the form

In this section, we study the ultimate boundedness of the

a standard comparison argument shows that
S(0) >0, V(0) >0, E(0) >0, 1(0) >0, R(0)>0. (3)

By the fundamental theory of functional differential t—co

equations 9], it is well known that system (2) has a . )

unique solution (S(t),V(t),E(t),I(t),R(t)) satisfying Hence, fore >0 sufficiently small, there exists & > 0

initial conditions (3). Further, it is easy to show that all such thatift >Tj,

solutions of system (2) are defined [f)+) and remain

positive for allt > 0. E(t) <
Notice that although the recovered population still

make contacts with other members of the population, it

does not contribute to the spread of the disease. Since the

recovered populatioR(t) does not feature in the first four {

+&. (5)

By the first two equations of system (4),

St) <M —(E+H)S+wV,

equations of system (2), the model composed of the first V(1) < ES— (u+ W)V. (6)

four equations of system (2) will be discussed in the
following: . . .

Consider the following auxiliary system
S(t) =11 —BS — r]BES— ES— [JS+ Q)V, {Zl(t) —n— (E‘FIJ)Z]_—F(A)ZZ,

V(t) =&S—(1-T1)BVI — pV — wV, () =&z — (U+ w)2.

E(t) = BS + nBES+ (1 1)BVI — aE — ug,
[(t) =aE—dl—dl —ul.

()

It is easy to prove that the positive equilibriut{/7(u +

w)/(H(&+p+w)), &M/ (p(& + p+ w)) of system (7) is

The dynamic behaviors k() can be obtained from the  5ha " asymptotically stable. By comparison, it follows

last equation of system (2). that
The paper is organized as follows. In the next section,

the ultimate boundedness of the solutions for system (4&_ nu+w) &n

is presented. In Section 3, by analyzing the correspondin t@fgps(t)ﬁmv Iltrzing(t)g LE+pt @)

characteristic equations, the local stability of a

disease-free equilibrium and an endemic equilibrium ofHence, fore > 0 sufficiently small, there exists® > Ty

system (4) is discussed. In Section 4, by constructing aych that it > To,

suitable Lyapunov functional, it is shown that the

disease-free equilibrium is globally asymptotically $tab M(u+ w)

———+¢eV &
when the basic reproduction number is less than unity. By S(t) < U(E+ U+ w) +eV(t) =

< Erare e 8)

(@© 2016 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett5, No. 2, 137-143 (2016)Wwww.naturalspublishing.com/Journals.asp NS = 139

By (5) and (8), the arbitrary positive solution Then, the characteristic roots of Equation (10) have
(S(t),V(t),E(t),I(t)) of system (4) is ultimately negative real parts. Therefol®,is locally asymptotically
bounded. This completes the pradf. stable wherRry < 1.
Denote In conclusion, we have the following results.
n Theorem 3.1. The disease-free equilibriui®, is locally
D= {(S’V’E’U €Rlg:S+V+E+I < o asymptotically stable iRy < 1 and unstable iRy > 1.
M(u+ o) £ The threshold quantityRy is known as the basic
< V< } reproduction number, which can also be derived by the
H(E+p+w) H(E+H+w) method of next generation matrix by van den Driessche
Theorem 2.1 implies that the dBtis a positively invariant ~and Watmough10].
and the attracting region for the disease transmission To obtain the endemic equilibriuRi (S*,V*,E*,1*) of

model given by system (4) with initial conditionsm. system (4), we solve the following system of equations
M—pBsi1*—nPE*S — &S — uS" + wv* =0,
3 Equilibria and local stability 5 —(1-T)BV*I* —pV* — v =0,

BS1* +nBE'S + (1-T)BV*I* —aE* — pE* =0,

* * * *
In this section, we discuss the local stability of a disease- aE*—oI" —dI* —pl* =0.

free equilibrium and an endemic equilibrium of system (4) (11)

. : - .~ From the first two equations and the last equation of
by analyzing the corresponding characteristic equatlonssys,[em (11), we get

respectively.
System (4) always has a disease-free equilibrium B I+ wV* . £S
E E* ’ - (1-1)BI* ’
Po=(So, Vo, E |)—< T+ w) il ) §+gﬂﬁ e e
0 » Vo, Eo, lo L+ o) HEtpr ) E*:TI*' (12)

The characteristic equation of system (4) at theFrom the third equation of system (11), we obtain
equilibriumPy, is of the form
B _ BS1*+(1—1)BV*I*

)\2+<a+2u+6+d a+u—nps

A+)A+E+u+w) (13)

nBM(u+ w) B Supstitqtingthe expressions8f V* E* in (12) into (13),
U Tt @) At+(a+u)(0+d+u)(1-Ro)| =0,  which gives
9) Q") =AI"2+BI*+C=0, (14)
whereRy is defined as
where
ROZan(u+w)(5+d+u)+aBI‘l(u+w+(1—r)£). A (a@+p)(3+d+p)(1—1)BXa+n(3+d+u))
pla+p)(6+d+p)(§ +H+w) B a ’
Clearly, Equation (9) always has two negative real rootsg — Bla+m)(p+w)(d+d+p)(a+n(6+d+p)
A1 = —U, Ao = —& — 4 — w. The other rootsAz, A4 of a
Equation (9) are determined by the following equation (1-tap(+p+w) "R
+w)2(a+n(d+d+p))
2 nBM(u+w) (W
A +(U+2H+5+d—m A Ew(a+u)(6+d+u)+aﬁfﬂ(1—r))]
H(a+p)(3+d+p)(1—Ro) =0 (10) Hla+p)(E+p+w)(+d+u)

If Ry > 1, Equation (10) has one positive real part root. C=p(a+u)(d+d+p)(&+p+w)(l-Ro. (15)
Hence R, is unstable. IRy < 1, The endemic equilibrium of system (4) are given by
_ (12) with the positive roott* of Equation (14). Let;, |5 be
Asdg = (a+ p)(d+d+p)(1—Ro) >0, the roots of Equation (14), and the conditions for Equation

_npnp+w) B (14) to have positive roots are determined below.
)‘3+)\4_u(f+u+w) (@ k)= (0+d+h) Suppose KX 7 < 1, thenA>0.If Ry >1,C<O.
<< - aB(p+ow+(1—1)8) )(04—#) ;I;rlw*en Eg/u:tigno (1#) Rr;as zi ugi(iu% Cpositige Iflc()a?(ta for
=~ 1l = . = s R = . s
Hla+p)(0+d+p)(E+ptw) Q1) = I(Al +B), with I; = 0,13 — —B/A < 0. Hence,
—(a+p)—(5+d+pu) Equation (14) has no positive root. IRy < 1,
aBn(p+w+(1-1)8) A > 0,B > 0,C > 0. Thus, Equation (14) has no positive
= —(0+d 0.
H@ETarEFarw TR0 oo
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Supposea =1, thenA=0,B > 0. HenceQ(l) =Bl +
C, with the rootl = —C/B. If Ry > 1,C < 0. Then Equation
(14) has a unique positive root. Ry < 1, C > 0. Then
Equation (14) has no positive root.

In conclusion, we have the following results.
Theorem 3.2. System (4) has a unique endemic

equilibrium P*(S*,V* E*/1*) when Ry > 1 and no

Theorem 4.1. If Ry < 1, then the disease-free equilibrium
Po is globally asymptotically stable.

Proof. Let (S(t),V
of system (4) with initial conditions iR, .
System (4) can be rewritten as

(t),E(t),I(t)) be any positive solution

endemic equilibrium wheRy < 1. Sit)= —(&+u)(S—S) - BI(S— %) — NBE(S— %)
By Theorem 3.2, system (4) has a unique endemic| +w(V Vo) - B1S— NBES,
equilibrium P*(S",V* E*/1*) when Ry > 1. The V(t)=¢&(S—S)— (1—1)BI(V—Vp)
characteristic equation of system (4) at the equilibriim . —(u+w)(V—Vo)— (1—1)B1Vy,
takes the form E(t) = BI(S—S) + (1-1)(V-Vo) + BI(So+(1— 1))
_ +NBE(S—S)+NBES— (a+H)E,
AMrardrar?+agh +as =0, (16) I(t)= aE—(5+d+pu)l.
(18)
where Define a Lyapunov function
a1 = (2—1)BI"+nBE"+4u+w+a+&+5+d—npSs,
a=§((1-1)BI"+ ) Us(t) = (3 S)*+ (V Vo)®+GE+cal,  (19)

+(O+d+u)(BIF+nBE* +E&+ 1)
+Ru+o+d)(1-1)BI"+ u+ w)
+(BI"+nBE)((L-1)BI"+2u+ 0 + w)
HA-1)BI" +2u+ & +w)(a+u—nps),
E(a+p)(1-T1)BI"

+(BI* +NPE* + u)(d+d+ )
+(BI"+nPE*+&+1)(S+d+p)((1—T)BI"+ 1)
+(BI"+nBE")((a+ 1) (1-1)BI" + p + w)
+nBS(d+d+p))+aBS (181" +nPBE)
+2u+o+d)(1—-1)BI"(a+u—nBS)

+H(E +H+w)(a+p—nBS),

nBS ((1—1)BI"+p+w)((d+d+u)(BI*+nPE")
+aBE ) +a((1-1)B1"+ w)(1—1)BV*nBE*
+(3+d+p)(a+p)E(L—-1)BI" +THaBSBI*
+(0+d+u)((1-1)BI"(H+BI7)
+wBl*)(a+pu—nps). a7)

wherec; are positive constants to be determined.

Calculating the derivative dfi; (t) along solutions of
system (18), it follows that

Ul(t) =c1(S— S))S—i— c(V —Vo)V + CGE +cal
= —c1l(S—S)* — anBE(S-S)?

—C(1—1)BI(V —Vo)? — c1(& + 1) (S— )?
+(Crw+c26)(S— ) (V — Vo)
—Co(H+ w)(V —Vo)? + (c3 — ¢19) B! (S— S)
+(c3—C2Vo) (1 —1)BI(V — Vo)
+(Cs— aS)NPE(S- %)
+(C3B(So+ (1 1)Vo) —Ca(6 +d + )l

(

+(canBS— (a + p)c3+ aca)E. (20)

Setc; = (0+d+ )/, C2=(0+d+ ) /Mo,c3 =0+

d+ H,cs = B(So+ (1—T)Vp). We derive from (20) that

Equation (13) impliesr + u > nBSf, thenag > 0,a, > 0,
az > 0,a4 > 0. Hence, by Routh-Hurwitz criterion, all

characteristic roots of Equation (16) have negative reaMi(t) = —

parts forH = ag(aya, — az) — a§a4 > 0.
From what has been discussed above, we have the
following results.

Theorem 3.3. The unique positive endemic equilibrium
P*(S",V* E*,1*) of system (4) is locally asymptotically
stable ifRy > 1 andH > 0.

4 Global stability

In this section, we discuss the global stability of the
disease-free equilibriurRy and the endemic equilibrium
P* of system (4) by Lyapunov functional and LaSalle’s
invariance principle, respectively.

(0+d+ p)BI 2
—s 5%

B (6+d;u)nBE(S_ S)?
(O4+d+uwd-t
_ v
_(0+d+p)(E+H)
S
(0+d+u)w
+< )
(04+d+u)(p+w)
_ =
+(a+p)(d+d+u)(Ro—1E

L (V—Vo)?

(S—S)?

(0+d+p)é
+ Vo

) (S-So)(V—Vo)

(V —Vo)?
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- S
Jr((cSerﬂl)wJr (0+d+pu)é

. ) (s v -ve
_(6+d+\l/10)(ﬂ+w) Vo)
+(a+p)(d+d+pu)(Ro—1E

_ (B+dHEH [ e oy MFES,, ]
g e o)
ASVo(& + ) (U + @) — (Vo + & Sp)? 2
i AVE(E + )2 V=) }
+a+u)(d+d+u)(Ry—1)E. (21)

On substituting/o = £ S/ (U + w) into (21), we obtain
thatif Ry < 1,

(0+d+p)(§+u)
S {{(S_S")

o+ &S 2

Y ) v _VO)}

U[E (BU+4w) + 4(u + w)?] 2
wErpr W }

+(a+p)(d+d+p)(Ro—1)E
< (a+u)(6+d+pu)(Ro—1)E
<0.

U(t) < —

+

(22)

Hence, by the Lyapunov Theorem, the disease-free

equilibrium Ry of system (4) is globally asymptotically
stable. This completes the prdaf.

Theorem 4.2. If Ry > 1 andH > 0, then the endemic
equilibrium P*(S*,V* E*,1*) is globally asymptotically
stable.

Proof. Let (S(t),V(t),E(t),I(t)) be any positive solution
of system (4) with initial conditions ifR; . By Theorem
3.3, the endemic equilibriur®* of system (4) is locally
asymptotically stable iRy > 1 andH > O.

System (4) can be rewritten as

=8| (g5 ) +o(s-5 ) -pi-1)

nBE—E|.

Vo =v[E(§-3) - a-npu-1).

e —pe| (3 -3 )+a-n(g o)
+n(S=9S)|,

(23)

Define a Lyapunov function

S Y
Us(t) = <S—S*—S*In§)+<V—V ~V InV*>

+(E—E*—E*In;>+Cs<l—l*—l*ln||—*>,
(24)

wherecs is a positive constant to be determined.

Calculating the derivative dfiz(t) along solutions of
system (23), it follows that

o(2)ol55) o0

—nB(E—E*)] (5-5)

AF)eofd )

+n(S— Sk)} (E—E")

Ua(t) =

(-5 ) -a-mpa-m|v-v)

+c5a(|E—IIE—:)(I—I*)

s s V, S .
_n(2—§—§>+w<v—§s*—wv+v>

+B(ST1+9%) - B (%E* + Sé' E)

-(1-1)B (\%E + VEl E)

+s(&§v*—%v+s*>+(1—r)ﬁ(v*|+V|*)
+Csa(E—IEI*—I|E—*I+E*)
S S S “ X
:n(2—§—§>+§([39| —wV*+ES)

\Y

+W(wv*—ES*+(1—r)BV*|*)
+§(—BS*I*—(1—r)BV*I*+C5aE*)
+II—*(BS*I*+(1—T)BV*I*—C5OIE*)
—w§§+wv —Evv +&S" —BE =

VI E
—(1- T)BEE* —csal* =+ csaE*.

i (25)
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Setcs = B1*(S + (1—1)V*)/(aE*). We derive from
(25) that
Ua(t) = 11 (2—%—§> +§(BS*I*—wV*+ES*)
+\%(wv* —EST+(1-T)BVIY)
S

V * S * *
—w§§+wv —E\—/V +é&S - BE £

vVi_, BI*(S+@@-1)Vv") LE
—(1—r)B—E E* — aE al T
BI*(S+(1-1)V*) _,
+ = aE*. (26)

V* EI* =E*l. Hence, we now look for the invariant subset
A within the set

N={(SV,E,1):S=S"V=V*EI"=E"l}.

Since V. = V* and S = S on .#, then
0=V({) =£&S — (1-1)BV*l — uV* — wV*, which
yields | = I*. It follows from the fourth Equation of
system (4) that G=I(t) = aE — (8 +d + u)I*, which
yields E = E*. Thus, the only invariant set ilN is
A = (S,V*,E*I*). Hence, by Lasalle’s invariance
principle, P* is globally asymptotically stable. The proof
is complete.]

From the first two equations of system (11), we obtain5 Numerical simulations

{ M =pI*(S+(1-1)V*)+ uS +uVv*+nBSE*,
ES' = (1-1)BV*I* + uV* + wV*.
(27)
Substituting the expressions Bf andé S* in (27) into
(26), which gives

Ua(t) = nBE*S*(Z—%—g) +u9(2_§_§)

+Mﬁ@—§l—§¥>

SV* SV
(. S EI* SIE
+BS1 (3_§_§T_§FE>
. S VvV SV
THY (3_§_W_§V>

+(1—r)BV*I*(4—§—§V

EI* VE*I
____\FET*) (8)

Since the arithmetic mean is greater than or equal to the

geometric mean, it is shown that

S S
2-=_=<0
S s
SV Sv*
—————— <
2 SV* SV 0
S VvV Sv*
——————— <
3 S Vv 9v—0’
S EI* S|E*
————————— <
3 S E* | S*I*E*O’
4 S SV EID VET 4
S SV E*I V*EI*
with equality if and only if
S S SV SvV- § EI* SIEFE
S $ SV* SV’ S E*|l SI*E’
S V SvV* § Sv* EI* VE"I
S V¥ SV’ S SV E*|l V*EI*

that is,S= S,V = V* EI* = E*I. Together with (28), it
follows thatU, < 0, with equality if and only iS=S",V =

In this section, we show the feasibility of the conditions of
Theorem 4.2.

Example In system (2), letlT = 4.19208 =
3.4843n = 0.7623¢ = 1.0135u = 0.955Qw =
4.685271 =0.9966 0 = 1.4990 6 = 2.2815d = 1.0379.
System (2) with above coefficients has an endemic
equilibrium P*(0.6327,0.11361.41780.49721.18786.

A direct calculation show thd®y = 5.8812> 1,

H = 5.05x 10* > 0. By Theorem 4.2, we see that the
endemic equilibriunP* is globally asymptotically stable.
Numerical simulation illustrates our result (see Fig.1).

2 2 2
1.5 15 1.5
5 1 S I 1
0.5 0.5
0 0 0
0 50 100 0 50 100 0 50 100
time t time t time t

2 2

15 1.5

= 1 ¥ 1

0.5 0.5

0 0

0 50 100 0 50 100

time t time t

Fig.1 The temporal solution found by numerical integration
of system (2) with/T = 4.192Q3 = 3.4843n = 0.7623¢ =
1.0135u = 0.955Qw = 4.68521 = 0.9966 a = 1.49900 =
2.2815d = 1.0379 and initial conditionsS(0) = 1,V(0) =
1,E(0)=1,1(0) =1,R(0) = 1.

6 Discussion

In this paper, the dynamics of a SVEIR epidemic model
with waning preventive vaccine and the infection
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acquired following effective contact with infected
population and exposed population is investigated. We
have shown that the dynamics of the system are almost
completely determined by the basic reproductive number
Ro. If Ry < 1, the disease-free equilibrium is globally
asymptotically stable while the endemic equilibrium is
not feasible. In this case, the disease dies ouRylf> 1

and H > 0, the endemic equilibrium is globally
asymptotically stable. To control the disease, a strategy
should reduce the basic reproduction number to below

unity. From the expression d®, we see that the rate  College, China. Her research interests are in the areas of
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vaccination coverage rate and/d describing the
duration of the loss of immunity acquired by preventive
vaccine do affect the value of the basic reproduction
number. Clearly, ift,& or 1/w increase, the basic
reproduction number decreases. Hence, it is necessar
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