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Abstract: In this paper, an SVEIR epidemic model with waning preventive vaccine and the infection acquired following effective
contact with infected population and exposed population isinvestigated. By analyzing the corresponding characteristic equations, the
local stability of a disease-free equilibrium and an endemic equilibrium is discussed. By means of Lyapunov functionaland LaSalle’s
invariance principle, it is shown that the global dynamics is almost determined by the basic reproduction number. It is proven that if the
basic reproduction number is less than unity, the disease-free equilibrium is globally asymptotically stable. If the basic reproduction
number is greater than unity, sufficient conditions are obtained for the global stability of the endemic equilibrium. Numerical simulations
are carried out to illustrate the main theoretical results.
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1 Introduction

Mathematical models describing the population dynamics
of infectious diseases is an invaluable epidemiological
tool about foreseeing the transmission dynamics of
infectious diseases. Over the past few decades, many
compartmental mathematical models, such as SIS, SIR or
SEIS (whereS, I,E, and R denote the populations of
susceptible, infectious, exposed and recovered), have
been used to investigate the spread and control of
infectious diseases (see, e.g. [1,2,3,4]). In [4], Gumel,
McCluskey and Watmough considered the following
infectious disease model:



















Ṡ(t) = Π −β SI− ξ S− µS,
V̇ (t) = ξ − (1− τ)βVI − µV,
Ė(t) = β SI+(1− τ)βVI−αE − µE,
İ(t) = αE − δ I− dI− µI,
Ṙ(t) = δ I − µR.

(1)

In (1), the total population is subdivided into five
compartments, which are the susceptible individualsS(t),
the vaccinated susceptible individualsV (t), the exposed
individuals but not yet infectiousE(t), the infectious
individuals I(t), and the recovered individuals with
acquired full immunity R(t). The parameters

Π ,β ,ξ ,µ ,d,α, andδ are positive constants in whichΠ
is the recruitment rate of susceptible human,β is the
effective contact rate,ξ is the vaccination coverage rate,
µ is the natural mortality rate,d is the disease-induced
mortality rate,α is the rate at which exposed individuals
become infectious,δ is the recovery rate. 0≤ τ ≤ 1 is the
vaccine efficacy(τ = 1 represents a vaccine that offers
100% protection against infection,τ = 0 models a
vaccine that offers no protection at all). In [4], Gumel et
al. considered the global stability of the disease free
equilibrium and the endemic equilibrium of system (1) by
Lyapunov function theory and the compound matrices
theory.

In (1), the infection was acquired following effective
contact with infected population. However, some patients
with infectious diseases can discharge infectious
pathogens at the end of the latent period, such as Hepatitis
B, measles and Pertussis. Hence, the infection can also be
acquired following effective contact with the latened
population(see, e.g. [5]).

In addition, it was assumed that the vaccinees
obtained the permanent immunity in system (1).
However, some clinical studies have shown that the
permanent immunity induced by the preventive vaccines
may wane over time. Mossong et al. [6] pointed that the
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mean duration of vaccine-induced protection against
Measles was 25 years. The additional cases of waning
immunity in vaccines have been shown in [7,8].

Motivated by the works of Gumel et al.[4], Li et al.[5]
and Mossong et al.[6], we consider the combined effects
of a waning preventive vaccines and the infection
acquired following effective contact with infected
population and latened population. To this end, we study
the following differential equations:



















Ṡ(t) = Π −β SI−ηβ ES− ξ S− µS+ωV,
V̇ (t) = ξ S− (1− τ)βVI − µV −ωV,
Ė(t) = β SI+ηβ ES+(1− τ)βVI−αE − µE,
İ(t) = αE − δ I− dI− µI,
Ṙ(t) = δ I − µR,

(2)

where 0< η ≤ 1 is a constant describing the decrease in
the relative infectiousness of population in the exposed
individuals E in comparison to those in the infectious
individuals I, the constantω > 0 is the rate at which
vaccine wanes (that is 1/ω is the duration of the loss of
immunity acquired by preventive vaccine or by infection),
and the other constants are the same as that defined in
system (1).

The initial conditions for system (2) take the form

S(0)> 0, V (0)> 0, E(0)> 0, I(0)> 0, R(0)> 0. (3)

By the fundamental theory of functional differential
equations [9], it is well known that system (2) has a
unique solution (S(t),V (t),E(t), I(t),R(t)) satisfying
initial conditions (3). Further, it is easy to show that all
solutions of system (2) are defined on[0,+∞) and remain
positive for allt ≥ 0.

Notice that although the recovered population still
make contacts with other members of the population, it
does not contribute to the spread of the disease. Since the
recovered populationR(t) does not feature in the first four
equations of system (2), the model composed of the first
four equations of system (2) will be discussed in the
following:














Ṡ(t) = Π −β SI−ηβ ES− ξ S− µS+ωV,
V̇ (t) = ξ S− (1− τ)βVI − µV −ωV,
Ė(t) = β SI+ηβ ES+(1− τ)βVI−αE − µE,
İ(t) = αE − δ I− dI− µI.

(4)

The dynamic behaviors ofR(t) can be obtained from the
last equation of system (2).

The paper is organized as follows. In the next section,
the ultimate boundedness of the solutions for system (4)
is presented. In Section 3, by analyzing the corresponding
characteristic equations, the local stability of a
disease-free equilibrium and an endemic equilibrium of
system (4) is discussed. In Section 4, by constructing a
suitable Lyapunov functional, it is shown that the
disease-free equilibrium is globally asymptotically stable
when the basic reproduction number is less than unity. By

means of Lyapunov functional and LaSalle’s invariance
principle, sufficient conditions are obtained for the global
asymptotic stability of the endemic equilibrium.
Numerical simulations are carried out in Section 5 to
illustrate the main theoretical results. A brief discussion is
given in Section 6 to conclude this work.

2 Basic properties

In this section, we study the ultimate boundedness of the
solutions for system (4).

Theorem 2.1.The arbitrary positive solution of system (4)
with initial conditions inR+

4 is ultimately bounded.

Proof. Let (S(t),V (t),E(t), I(t)) be any positive solution
of system (4) with initial conditions inR+

4 . Define

L(t) = S(t)+V(t)+E(t)+ I(t).

Calculating the derivative ofL(t) along the solutions of
system (4), it follows that

L̇(t) = Π − µL− dI− δ I ≤ Π − µL,

a standard comparison argument shows that

limsup
t→+∞

L(t)≤
Π
µ
.

Hence, forε > 0 sufficiently small, there exists aT1 > 0
such that ift > T1,

E(t)≤
Π
µ

+ ε, I(t)≤
Π
µ

+ ε. (5)

By the first two equations of system (4),
{

Ṡ(t) ≤ Π − (ξ + µ)S+ωV,
V̇ (t) ≤ ξ S− (µ +ω)V.

(6)

Consider the following auxiliary system

{

ż1(t) = Π − (ξ + µ)z1+ωz2,
ż2(t) = ξ z1− (µ +ω)z2.

(7)

It is easy to prove that the positive equilibriumz∗(Π(µ +
ω)/(µ(ξ +µ +ω)),ξ Π/(µ(ξ +µ +ω)) of system (7) is
globally asymptotically stable. By comparison, it follows
that

limsup
t→+∞

S(t)≤
Π(µ +ω)

µ(ξ + µ +ω)
, limsup

t→+∞
V (t)≤

ξ Π
µ(ξ + µ +ω)

.

Hence, forε > 0 sufficiently small, there exists aT2 > T1
such that ift > T2,

S(t)≤
Π(µ +ω)

µ(ξ + µ +ω)
+ε,V (t)≤

ξ Π
µ(ξ + µ +ω)

+ε. (8)
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By (5) and (8), the arbitrary positive solution
(S(t),V (t),E(t), I(t)) of system (4) is ultimately
bounded. This completes the proof.�

Denote

D =

{

(S,V,E, I) ∈ R4
+0 : S+V +E + I ≤

Π
µ
,

S ≤
Π(µ +ω)

µ(ξ + µ +ω)
,V ≤

ξ Π
µ(ξ + µ +ω)

}

.

Theorem 2.1 implies that the setD is a positively invariant
and the attracting region for the disease transmission
model given by system (4) with initial conditions inR4

+.

3 Equilibria and local stability

In this section, we discuss the local stability of a disease-
free equilibrium and an endemic equilibrium of system (4)
by analyzing the corresponding characteristic equations,
respectively.

System (4) always has a disease-free equilibrium

P0=(S0,V0,E0, I0)=

(

Π(µ +ω)

µ(ξ + µ +ω)
,

ξ Π
µ(ξ + µ +ω)

,0,0

)

.

The characteristic equation of system (4) at the
equilibriumP0 is of the form

(λ + µ)(λ + ξ + µ +ω)

[

λ 2+

(

α +2µ + δ + d

−
ηβ Π(µ +ω)

µ(ξ + µ +ω)

)

λ +(α + µ)(δ + d+ µ)(1−R0)

]

= 0,

(9)

whereR0 is defined as

R0=
ηβ Π(µ +ω)(δ + d+ µ)+αβ Π(µ +ω +(1− τ)ξ )

µ(α + µ)(δ + d+ µ)(ξ + µ +ω)
.

Clearly, Equation (9) always has two negative real roots
λ1 = −µ , λ2 = −ξ − µ − ω . The other rootsλ3,λ4 of
Equation (9) are determined by the following equation

λ 2 +

(

α +2µ + δ + d−
ηβ Π(µ +ω)

µ(ξ + µ +ω)

)

λ

+(α + µ)(δ + d+ µ)(1−R0) = 0. (10)

If R0 > 1, Equation (10) has one positive real part root.
Hence,P0 is unstable. IfR0 < 1,

λ3λ4 = (α + µ)(δ + d+ µ)(1−R0)> 0,

λ3+λ4 =
ηβ Π(µ +ω)

µ(ξ + µ +ω)
− (α + µ)− (δ + d+ µ)

≤

(

1−
αβ Π(µ+ω+(1− τ)ξ )

µ(α+µ)(δ+d+µ)(ξ+µ+ω)

)

(α + µ)

−(α + µ)− (δ + d+ µ)

=−
αβ Π(µ +ω +(1− τ)ξ )
µ(δ + d+ µ)(ξ + µ +ω)

−(δ + d+ µ)< 0.

Then, the characteristic roots of Equation (10) have
negative real parts. Therefore,P0 is locally asymptotically
stable whenR0 < 1.

In conclusion, we have the following results.
Theorem 3.1. The disease-free equilibriumP0 is locally

asymptotically stable ifR0 < 1 and unstable ifR0 > 1.
The threshold quantityR0 is known as the basic

reproduction number, which can also be derived by the
method of next generation matrix by van den Driessche
and Watmough [10].

To obtain the endemic equilibriumP∗(S∗,V ∗,E∗, I∗) of
system (4), we solve the following system of equations










Π −β S∗I∗−ηβ E∗S∗− ξ S∗− µS∗+ωV ∗ = 0,
ξ S∗− (1− τ)βV∗I∗− µV ∗−ωV ∗ = 0,
β S∗I∗+ηβ E∗S∗+(1− τ)βV∗I∗−αE∗− µE∗ = 0,
αE∗− δ I∗− dI∗− µI∗ = 0.

(11)
From the first two equations and the last equation of
system (11), we get

S∗ =
Π +ωV ∗

β I∗+ηβ E∗+ ξ + µ
, V ∗ =

ξ S∗

(1− τ)β I∗+ µ +ω
,

E∗ =
δ + d+ µ

α
I∗. (12)

From the third equation of system (11), we obtain

E∗ =
β S∗I∗+(1− τ)βV∗I∗

α + µ −ηβ S∗
. (13)

Substituting the expressions ofS∗,V ∗,E∗ in (12) into (13),
which gives

Q(I∗) = AI∗2+BI∗+C = 0, (14)

where

A =
(α + µ)(δ + d+ µ)(1− τ)β 2(α +η(δ + d+ µ))

α
,

B =
β (α + µ)(µ +ω)(δ + d+ µ)(α +η(δ + d+ µ))

α
[

1+
(1− τ)αµ(ξ + µ +ω)

(µ +ω)2(α +η(δ + d+ µ))

(

1−R0

+
ξ ω(α + µ)(δ + d+ µ)+αβ ξ Π(1− τ)

µ(α + µ)(ξ + µ +ω)(δ + d+ µ)

)]

,

C = µ(α + µ)(δ + d+ µ)(ξ + µ +ω)(1−R0). (15)

The endemic equilibrium of system (4) are given by
(12) with the positive rootI∗ of Equation (14). LetI∗1, I

∗
2 be

the roots of Equation (14), and the conditions for Equation
(14) to have positive roots are determined below.

Suppose 0≤ τ < 1, thenA > 0. If R0 > 1, C < 0.
Then Equation (14) has a unique positive root for
I∗1I∗2 = C/A < 0. If R0 = 1, B > 0,C = 0. Here,
Q(I) = I(AI + B), with I∗1 = 0, I∗2 = −B/A < 0. Hence,
Equation (14) has no positive root. IfR0 < 1,
A > 0,B > 0,C > 0. Thus, Equation (14) has no positive
root.
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Supposeτ = 1, thenA = 0,B > 0. Hence,Q(I) = BI+
C, with the rootI =−C/B. If R0> 1,C <0. Then Equation
(14) has a unique positive root. IfR0 ≤ 1, C ≥ 0. Then
Equation (14) has no positive root.

In conclusion, we have the following results.
Theorem 3.2. System (4) has a unique endemic

equilibrium P∗(S∗,V ∗,E∗, I∗) when R0 > 1 and no
endemic equilibrium whenR0 ≤ 1.

By Theorem 3.2, system (4) has a unique endemic
equilibrium P∗(S∗,V ∗,E∗, I∗) when R0 > 1. The
characteristic equation of system (4) at the equilibriumP∗

takes the form

λ 4+ a1λ 3+ a2λ 2+ a3λ + a4 = 0, (16)

where

a1 = (2− τ)β I∗+ηβ E∗+4µ+ω+α+ξ+δ+d−ηβ S∗,

a2 = ξ ((1− τ)β I∗+ µ)
+(δ + d+ µ)(β I∗+ηβ E∗+ ξ + µ)
+(2µ + δ + d)((1− τ)β I∗+ µ +ω)

+(β I∗+ηβ E∗)((1− τ)β I∗+2µ +α +ω)

+((1− τ)β I∗+2µ + ξ +ω)(α + µ −ηβ S∗),

a3 = ξ (α + µ)(1− τ)β I∗

+ω(β I∗+ηβ E∗+ µ)(δ + d+ µ)
+(β I∗+ηβ E∗+ξ+µ)(δ+d+µ)((1− τ)β I∗+ µ)
+(β I∗+ηβ E∗)((α + µ)((1− τ)β I∗+ µ +ω)

+ηβ S∗(δ + d+ µ))+αβ S∗(τβ I∗+ηβ E∗)

+(2µ + δ + d)(1− τ)β I∗(α + µ −ηβ S∗)

+µ(ξ + µ +ω)(α + µ −ηβ S∗),

a4 = ηβ S∗((1− τ)β I∗+µ+ω)((δ+d+µ)(β I∗+ηβ E∗)

+αβ E∗)+α((1− τ)β I∗+ω)(1− τ)βV∗ηβ E∗

+(δ + d+ µ)(α + µ)ξ (1− τ)β I∗+ τµαβ S∗β I∗

+(δ + d+ µ)((1− τ)β I∗(µ +β I∗)

+ωβ I∗)(α + µ −ηβ S∗). (17)

Equation (13) impliesα +µ > ηβ S∗, thena1 > 0,a2 > 0,
a3 > 0,a4 > 0. Hence, by Routh-Hurwitz criterion, all
characteristic roots of Equation (16) have negative real
parts forH = a3(a1a2− a3)− a2

1a4 > 0.
From what has been discussed above, we have the

following results.

Theorem 3.3. The unique positive endemic equilibrium
P∗(S∗,V ∗,E∗, I∗) of system (4) is locally asymptotically
stable ifR0 > 1 andH > 0.

4 Global stability

In this section, we discuss the global stability of the
disease-free equilibriumP0 and the endemic equilibrium
P∗ of system (4) by Lyapunov functional and LaSalle’s
invariance principle, respectively.

Theorem 4.1. If R0 < 1, then the disease-free equilibrium
P0 is globally asymptotically stable.

Proof. Let (S(t),V (t),E(t), I(t)) be any positive solution
of system (4) with initial conditions inR+

4 .
System (4) can be rewritten as



































Ṡ(t) = −(ξ + µ)(S− S0)−β I(S− S0)−ηβ E(S− S0)
+ω(V −V0)−β IS0−ηβ ES0,

V̇ (t) = ξ (S− S0)− (1− τ)β I(V −V0)
−(µ +ω)(V −V0)− (1− τ)β IV0,

Ė(t) = β I(S−S0)+ (1−τ)(V−V0)+β I(S0+(1−τ)V0)
+ηβ E(S− S0)+ηβ ES0− (α+µ)E,

İ(t) = αE − (δ + d+ µ)I.
(18)

Define a Lyapunov function

U1(t) =
c1

2
(S− S0)

2+
c2

2
(V −V0)

2+ c3E + c4I, (19)

whereci are positive constants to be determined.
Calculating the derivative ofU1(t) along solutions of

system (18), it follows that

U̇1(t) = c1(S− S0)Ṡ+ c2(V −V0)V̇ + c3Ė + c4İ

= −c1β I(S− S0)
2− c1ηβ E(S− S0)

2

−c2(1− τ)β I(V −V0)
2− c1(ξ + µ)(S− S0)

2

+(c1ω + c2ξ )(S− S0)(V −V0)

−c2(µ +ω)(V −V0)
2+(c3− c1S0)β I(S− S0)

+(c3− c2V0)(1− τ)β I(V −V0)

+(c3− c1S0)ηβ E(S− S0)

+(c3β (S0+(1− τ)V0)− c4(δ + d+ µ))I
+(c3ηβ S0− (α + µ)c3+αc4)E. (20)

Setc1 =(δ +d+µ)/S0,c2 =(δ +d+µ)/V0,c3 = δ +
d+ µ ,c4 = β (S0+(1− τ)V0). We derive from (20) that

U̇1(t) = −
(δ + d+ µ)β I

S0
(S− S0)

2

−
(δ + d+ µ)ηβ E

S0
(S− S0)

2

−
(δ + d+ µ)(1− τ)β I

V0
(V −V0)

2

−
(δ + d+ µ)(ξ + µ)

S0
(S− S0)

2

+

(

(δ+d+µ)ω
S0

+
(δ+d+µ)ξ

V0

)

(S−S0)(V−V0)

−
(δ + d+ µ)(µ +ω)

V0
(V −V0)

2

+(α + µ)(δ + d+ µ)(R0−1)E
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≤ −
(δ + d+ µ)(ξ + µ)

S0
(S− S0)

2

+

(

(δ + d+ µ)ω
S0

+
(δ + d+ µ)ξ

V0

)

(S− S0)(V −V0)

−
(δ + d+ µ)(µ +ω)

V0
(V −V0)

2

+(α + µ)(δ + d+ µ)(R0−1)E

=−
(δ + d+ µ)(ξ + µ)

S0

{[

(S−S0)−
ωV0+ ξ S0

2V0(ξ + µ)
(V−V0)

]2

+
4S0V0(ξ + µ)(µ +ω)− (ωV0+ ξ S0)

2

4V 2
0 (ξ + µ)2

(V −V0)
2
}

+(α + µ)(δ + d+ µ)(R0−1)E. (21)

On substitutingV0 = ξ S0/(µ +ω) into (21), we obtain
that if R0 < 1,

U̇1(t) ≤ −
(δ + d+ µ)(ξ + µ)

S0

{[

(S− S0)

−
ωV0+ ξ S0

2V0(ξ + µ)
(V −V0)

]2

+
µ [ξ (3µ +4ω)+4(µ+ω)2]

4ξ (ξ + µ)2 (V −V0)
2
}

+(α + µ)(δ + d+ µ)(R0−1)E

≤ (α + µ)(δ + d+ µ)(R0−1)E

< 0. (22)

Hence, by the Lyapunov Theorem, the disease-free
equilibrium P0 of system (4) is globally asymptotically
stable. This completes the proof.�

Theorem 4.2. If R0 > 1 and H > 0, then the endemic
equilibrium P∗(S∗,V ∗,E∗, I∗) is globally asymptotically
stable.

Proof. Let (S(t),V (t),E(t), I(t)) be any positive solution
of system (4) with initial conditions inR+

4 . By Theorem
3.3, the endemic equilibriumP∗ of system (4) is locally
asymptotically stable ifR0 > 1 andH > 0.

System (4) can be rewritten as















































































Ṡ(t) = S

[

Π
(

1
S
−

1
S∗

)

+ω
(

V
S
−

V ∗

S∗

)

−β (I− I∗)

−ηβ (E −E∗)

]

,

V̇ (t) = V

[

ξ
(

S
V
−

S∗

V ∗

)

− (1− τ)β (I− I∗)

]

,

Ė(t) = β E

[(

SI
E

−
S∗I∗

E∗

)

+(1− τ)
(

VI
E

−
V ∗I∗

E∗

)

+η(S− S∗)

]

,

İ(t) = αI

(

E
I
−

E∗

I∗

)

.

(23)

Define a Lyapunov function

U2(t) =

(

S− S∗− S∗ ln
S
S∗

)

+

(

V −V ∗−V ∗ ln
V
V ∗

)

+

(

E −E∗−E∗ ln
E
E∗

)

+ c5

(

I− I∗− I∗ ln
I
I∗

)

,

(24)

wherec5 is a positive constant to be determined.

Calculating the derivative ofU2(t) along solutions of
system (23), it follows that

U̇2(t) =

[

Π
(

1
S
−

1
S∗

)

+ω
(

V
S
−

V ∗

S∗

)

−β (I− I∗)

−ηβ (E −E∗)

]

(S− S∗)

+β
[(

SI
E

−
S∗I∗

E∗

)

+(1− τ)
(

VI
E

−
V ∗I∗

E∗

)

+η(S− S∗)

]

(E −E∗)

+

[

ξ
(

S
V
−

S∗

V ∗

)

− (1− τ)β (I− I∗)

]

(V −V ∗)

+c5α
(

E
I
−

E∗

I∗

)

(I − I∗)

= Π
(

2−
S∗

S
−

S
S∗

)

+ω
(

V −
V
S

S∗−
S∗

V ∗
V +V ∗

)

+β (S∗I + SI∗)−β
(

SI
E

E∗+
S∗I∗

E∗
E

)

−(1− τ)β
(

VI
E

E∗+
V ∗I∗

E∗
E

)

+ξ
(

S−
S
V

V ∗−
S∗

V ∗
V+S∗

)

+(1− τ)β (V ∗I+VI∗)

+c5α
(

E −
E
I

I∗−
E∗

I∗
I +E∗

)

= Π
(

2−
S∗

S
−

S
S∗

)

+
S
S∗

(β S∗I∗−ωV ∗+ ξ S∗)

+
V
V ∗

(ωV ∗− ξ S∗+(1− τ)βV∗I∗)

+
E
E∗

(−β S∗I∗− (1− τ)βV∗I∗+ c5αE∗)

+
I
I∗
(β S∗I∗+(1− τ)βV∗I∗− c5αE∗)

−ω
V
S

S∗+ωV ∗− ξ
S
V

V ∗+ ξ S∗−β E∗ SI
E

−(1− τ)β
VI
E

E∗− c5αI∗
E
I
+ c5αE∗. (25)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


142 L. Wang, R. Xu: The global properties of an SVEIR epidemic model

Setc5 = β I∗(S∗+(1− τ)V ∗)/(αE∗). We derive from
(25) that

U̇2(t) = Π
(

2−
S∗

S
−

S
S∗

)

+
S
S∗

(β S∗I∗−ωV ∗+ ξ S∗)

+
V
V ∗

(ωV ∗− ξ S∗+(1− τ)βV∗I∗)

−ω
V
S

S∗+ωV ∗− ξ
S
V

V ∗+ ξ S∗−β E∗ SI
E

−(1− τ)β
VI
E

E∗−
β I∗(S∗+(1− τ)V∗)

αE∗
αI∗

E
I

+
β I∗(S∗+(1− τ)V∗)

αE∗
αE∗. (26)

From the first two equations of system (11), we obtain
{

Π = β I∗(S∗+(1− τ)V∗)+ µS∗+ µV ∗+ηβ S∗E∗,
ξ S∗ = (1− τ)βV ∗I∗+ µV ∗+ωV ∗.

(27)
Substituting the expressions ofΠ andξ S∗ in (27) into

(26), which gives

U̇2(t) = ηβ E∗S∗
(

2−
S∗

S
−

S
S∗

)

+ µS∗
(

2−
S∗

S
−

S
S∗

)

+ωV ∗

(

2−
S∗

S
V
V ∗

−
S
S∗

V ∗

V

)

+β S∗I∗
(

3−
S∗

S
−

E
E∗

I∗

I
−

S
S∗

I
I∗

E∗

E

)

+µV ∗

(

3−
S∗

S
−

V
V ∗

−
S
S∗

V ∗

V

)

+(1− τ)βV∗I∗
(

4−
S∗

S
−

S
S∗

V ∗

V

−
E
E∗

I∗

I
−

V
V ∗

E∗

E
I
I∗

)

. (28)

Since the arithmetic mean is greater than or equal to the
geometric mean, it is shown that

2−
S∗

S
−

S
S∗

≤ 0,

2−
S∗

S
V
V ∗

−
S
S∗

V ∗

V
≤ 0,

3−
S∗

S
−

V
V ∗

−
S
S∗

V ∗

V
≤ 0,

3−
S∗

S
−

E
E∗

I∗

I
−

S
S∗

I
I∗

E∗

E
≤ 0,

4−
S∗

S
−

S
S∗

V ∗

V
−

E
E∗

I∗

I
−

V
V ∗

E∗

E
I
I∗

≤ 0,

with equality if and only if

S∗

S
=

S
S∗

,
S∗

S
V
V ∗

=
S
S∗

V ∗

V
,

S∗

S
=

E
E∗

I∗

I
=

S
S∗

I
I∗

E∗

E
,

S∗

S
=

V
V ∗

=
S
S∗

V ∗

V
,

S∗

S
=

S
S∗

V ∗

V
=

E
E∗

I∗

I
=

V
V ∗

E∗

E
I
I∗
,

that is,S = S∗,V = V ∗,EI∗ = E∗I. Together with (28), it
follows thatU̇2 ≤ 0, with equality if and only ifS= S∗,V =

V ∗,EI∗ =E∗I. Hence, we now look for the invariant subset
M within the set

N = {(S,V,E, I) : S = S∗,V =V ∗,EI∗ = E∗I}.

Since V = V ∗ and S = S∗ on M , then
0 = V̇ (t) = ξ S∗ − (1 − τ)βV ∗I − µV ∗ − ωV ∗, which
yields I = I∗. It follows from the fourth Equation of
system (4) that 0= İ(t) = αE − (δ + d + µ)I∗, which
yields E = E∗. Thus, the only invariant set inN is
M = (S∗,V ∗,E∗, I∗). Hence, by Lasalle’s invariance
principle,P∗ is globally asymptotically stable. The proof
is complete.�

5 Numerical simulations

In this section, we show the feasibility of the conditions of
Theorem 4.2.

Example In system (2), let Π = 4.1920,β =
3.4843,η = 0.7623,ξ = 1.0135,µ = 0.9550,ω =
4.6852,τ = 0.9966,α = 1.4990,δ = 2.2815,d = 1.0379.
System (2) with above coefficients has an endemic
equilibrium P∗(0.6327,0.1136,1.4178,0.4972,1.18786).
A direct calculation show thatR0 = 5.8812> 1,
H = 5.05× 104 > 0. By Theorem 4.2, we see that the
endemic equilibriumP∗ is globally asymptotically stable.
Numerical simulation illustrates our result (see Fig.1).
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Fig.1 The temporal solution found by numerical integration
of system (2) withΠ = 4.1920,β = 3.4843,η = 0.7623,ξ =
1.0135,µ = 0.9550,ω = 4.6852,τ = 0.9966,α = 1.4990,δ =
2.2815,d = 1.0379 and initial conditionsS(0) = 1,V (0) =
1,E(0) = 1, I(0) = 1,R(0) = 1.

6 Discussion

In this paper, the dynamics of a SVEIR epidemic model
with waning preventive vaccine and the infection
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acquired following effective contact with infected
population and exposed population is investigated. We
have shown that the dynamics of the system are almost
completely determined by the basic reproductive number
R0. If R0 < 1, the disease-free equilibrium is globally
asymptotically stable while the endemic equilibrium is
not feasible. In this case, the disease dies out. IfR0 > 1
and H > 0, the endemic equilibrium is globally
asymptotically stable. To control the disease, a strategy
should reduce the basic reproduction number to below
unity. From the expression ofR0, we see that the rateτ
describing the vaccine efficacy, the rateξ measuring the
vaccination coverage rate and 1/ω describing the
duration of the loss of immunity acquired by preventive
vaccine do affect the value of the basic reproduction
number. Clearly, if τ,ξ or 1/ω increase, the basic
reproduction number decreases. Hence, it is necessary
and important for public health management to control an
epidemic by increasingτ,ξ or 1/ω , which reduces the
the basic reproduction number.
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