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Abstract: In this paper we introduce the idea of relative Nevanlibthaorder and relative Nevanlinria® -lower order of an analytic
function with respect to an entire function in the unit dise= {z: |7 < 1}. Hence we study some comparative growth properties of
composition of two analytic functions in the unit digcon the basis of their relative Nevanlinh& -orders and relative Nevanlinmz
-lower orders.
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1 Introduction, Definitions and Notations discU = {z:]z] < 1} whereL = L (%) is a positive
continuous function in the unit didd increasing slowly
A function f, analytic in the unit dist) = {z: |7 <1}, e, L(:&) ~L(f¥) asr — 1, for every positive

is said to be of finite Nevanlinna orde?][if there exista  constant&’, in the following manner:

numberpu such that the Nevanlinna characteristic function
Definition 1.If f be analytic in U then the Nevanlinna L-

order pt and the Nevanlinna L-lower ordeX} of f are

/'09 fe'e ’de defined as
pk =limsup—9Z 0o and A¢ = liminf 997 C0
f r—1 |09< (ll r)) r—1 | (L( —r))
satisfiesT (r, f) < (1—r) Hforallrin0<ro(u) <r <1. - -

The greatest lower bound of all such nhumbgeris called
the Nevanlinna order of. Thus the Nevanlinna ordex;
of f is given by

Now we introduce the concepts of relative
NevanlinnaL*-order and relative Nevanlinna*-lower
order of an analytic functiorf with respect to another
logT (r, ) analytic functiong in the unit discU which are as

ps =limsu follows:

r—1 _|Og(1_r) .

imilarl i | dex fis qi b Definition 2.If f be analytic in U and g be entire, then

Similarly, Nevanlinna lower ordet; of f is given by the relative Nevanlinna l-order of f with respect to g,
L* . .

logT (r, f) denoted byy (f) is defined by

—log(1-r) " p'f-zinf{u>0:Tf()<Tg{w]“forallo<

Af = Ilmlnf

Datta et. al. ] introduced the notion of ro(u)<r<1}.
NevanlinnalL-order for an analytic functiori in the unit  Similarly, relative Nevanlinna 1-order of f with respect
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to g denoted by (f) is given by ie.

AgL*(f)_nmme 1
MECEany 09T g () (1) @
(P (f)+e€) 1-r
Wheng(z) = expz, the definition coincides with the  Now from ( ) and(2), it follows for all sufficiently large
definition of the Nevanlinn&*-order and the Nevanlinna 3|yes of( ;) that
L*-lower order.

In this paper we study some growth properties of ()\ L' (fog)— s)
composition of two analytic functions in the unit didc= |OgTh’1Tfog (r)> hL—g
{z:|2 < 1} on the basis of their relative Nevanlinha- (py (f)+¢)
orders (relative Nevanlinnk*-lower orders). We do not
explain the standard definitions and notations in the theory-€-.
of entire functions as those are available3h [

logT, 1T (r)

logT, *Trog (1)
2 Theorems logT,, T+ (1) +L ()

A (fog)—e logT.~1T¢ (r)
In this section we present the main results of the paper. = ( " K ) : 1 : T
(o () +€)  logTy T () +L(3)

Theorem 1Let f, g be any two analytic functions in U

and h *be an entirg function such that "€
0 < Ay (feg) < pi(fog) < o  and (O (te9<)
0 < AV () < pb(f) < o . If 1 AV oA
log T, “Toqg (r L*(f)+
L(ﬁ) = of{logT, T (r)} as r — 1 g n Treg (1) > Cil )1 ) (3)
L* logT, *Tr(N+L() 1 L)
thenﬂ < liminf — 9T Treg(!) Ay (fog) r +'09Th ITi ()
pE () r—1 logT, 1Tf<>+L(1—1,) S U B
- log T, *Treg(r) ph (fog) SinceL (1) = oflogT, *Ts (r)} asr — 1, it follows
limsu —h <9 <2 . - h !f ]
oy PiogT, T +L() = AT from (3) that

ProofFrom the definition of relative Nevanlinnig-order —1 L

and relative Nevanlinnd*-lower order of an analytic  |iminf lo%Th Trog () > ()‘h Lﬂf"g)‘g) . (4)
function in the unit distJ we have for arbitrary positive =1 log T, Tt (r) + L (13) Py (f)+¢)

and for all sufficiently large values d¢fL-) that

1
I0gT, Treg(r) = (AL (fog)— ¢) log <w>

As £ (> 0) is arbitrary, we get frong4) that

1 L*
liminf lo%Th Ttog (1) > i Lgf °9)
r=1 logT, T (r) +L (=) P (F)

()

Again for a sequence of values L ) tending to infinity,

exp{L (1—1r)}>

{|og<i)+|_(i>} O IogTh—leog(r)g()\h (fog)+ ) ( (1—6

1-r 1-—r
ie.,
and
logT, 1T (r) < (pr'; (f)+g) log (ﬂ‘#) log T, 1 Trog (1) < (/\hL (f og)—|—£)

(TESINENI

. . l
and for all sufficiently large values ¢fL ),

e ) B N 9
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logT, 1T (r)
(ALY (f)—¢)

>log (%)JA(%) . (D

Combining(6) and(7) , we get for a sequence of values of

(1) tending to infinity that

(A’ (fog) )IogTh’le (r)

(A5 () —¢)

logT, 1 Trog (r) <

logT, Treg (1)
log T, 1T (r) + L (%)
_ (A (fog)+e)
RRCHGED

logT, 1T (r)
log T, T (1) + L ()

ie.,
()\r';*(fog)+a)
IogTh—leog (r) - (ALi*(f>7£) -
logT, *Tr (N +L () ~ 14 logLT( ;)()
h f
AsL(1X) =o{logT, 'Ts (r)} asr — 1 we get from(8)
that
—1 L*
jiminf— 09T _Ttea (1 A (feg)te g

=1 logT, 1T () +L () = AF (f)—¢
Sincee (> 0) is arbitrary, it follows from(9) that

logT, 'Tto AL (f
fimint—29T Tee(t) A (To9)
=1 log T, *Ts (r) + L (%) A (F)

Also for a sequence of values 0fL-) tending to infinity,

1
logT, ¢ (r) < (/\hL (f) +£) log <exp({L (S)}>

ie.,

ie.,

T <folit) (). o

Nowfrom( ) and(11) , we obtain for a sequence of values
of (1) tending to infinity that

(A (fog)—¢) logT, ¢ (r)

IogTh*leOg (r) > W

i.e.,
log T, 1 Troq ()

log T, T (r) + L (%)

(ALY (fog)—¢)
~ (AF(H+e)

ie.,

logT, 1T (r)
log T, 1T (r) + L (%)

()\#*(fog)—“:)
log T, 1 Troq (r) (AF (T)+e)

IogTh‘le (r)+L(1—fr) 1+ﬁ .
ho'f

(12)

In view of the conditionL () = o{logT, *Ts (r)} as

r — 1, we obtain from(12) that

logTy *Trog ()~ _ AF (fog)—¢

limsu > . (13
r—1 pIogTh M +L(y) — AF () +e (13)
Sincee (> 0) is arbitrary, it follows from(13) that

log T 1 Tfoq (r AL (fo

lim msup 1h g()l > hLE g) (14)
1 logT T (N +L() — Ay ()
Also for all sufficiently large values dfzL-),

. L(
logT, Troq(r) < (pr'; (f og)+£) Iog< p({ (lr )}>

ie.,

I0gTy Treg(r) < (P (fog)+¢)

() () o0

So from(7) and(15), it follows for all sufficiently large
values of(71-) that

(pL (fog)+e)

IogTh—leog(r) < ()‘hL O e)

logT, 1T (r)
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logT, Trog (r)
log T, 1T (r) + L (%)
- (pk (fog)+e)
<Oy -e

ie.,

logT, 1T (r)
logT, *T¢ (r) +L (%)

(ot (fog)+e)
(A (H—¢)
()

log T, 1Tf( r)

logT, Ttog (r)
log T, *Tr (1) +L (%) ~

(16)
1+

Using L (1) = o{log T, *T¢ (r)
from (16) that

logT, Tteg (1)
log T, 1T (r) + L (£2)

} asr — 1, we obtain

py (fog)+e)
(AF" (f)—¢)

As £(> 0) is arbitrary, it follows from(17) that

log T, 1Tt L*
limsup 091 h Tiog(r) < Pr ,_Ef 0g)
1 log Ty Tr (N +L (k) — Ay ()

0),(14) and(18).

|

limsup

r—1

(17)

(18)

Thus the theorem follows frortb) , (1

Similarly in view of Theoreni , we may state the
following theorem without its proof for the right factgr
of the composite functiofiog:

Theorem 2Let f, g be any two analytic functions in U

and h be an entire function with
0 < At (fog) < pi(fog) < o  and
. M@ < pi(@ < o . f
L( ) =o0{logT, *Ty(r)} asr— 1then
L L*
h (fog < IogTh Tfog() Ay (fog)
Xt > < liminf ITg< B O

IogTh Tfog( )

L' (fog)
logT, *Ty(N+L(L) — AL*(g) )

Theorem 3Let f, g be any two analytic functions in U
and h be an entire function such thai p” (f og) <
and0 < pi’ (f) <o . If L (%) = o{logT, *T; (1)} as

r — 1then

limsup
r—1

log T, Tt L (f
liminf 091 i g(r)l < PhL£ og) <
r—1 logT, “Te(r )+L(1j) py ()
logT.~ TO
lim sup—29Th_Treg()

1 JogT T (N +L(£)

ProofFrom the definition of pt (f), the relative
NevanlinnalL*-order of an analytic functiori in the unit
discU with respect to an entire functidmwe get for a
sequence of values ¢f1-) tending to infinity that

exp{L (1—1r)}>

logT, T (r) > (ph” (f)— 8) log ( )

logT, *Ts (1)
(P (f)—¢)

(19)

) (2

Now from (15) and (19), it follows for a sequence of
values of( 1.) tending to infinity that

(of (fog)+e)

IogThfleOg (< W

logT, 1T (r)

logT, *Trog (r)
logT, 1Tr (r) +L ()
_ Pk (fog)+e) _
(o5 (f)—¢)

logT, 1T (r)
log T, 1T (r) +L (%)

ie.,
(ot (fog)+e)
logT, Trog (r) - (oF" (f)—¢) (20)
0T, (1) +L(2) 14 LG
IogTh Ts (r)

Using L (1) = o{logT, ¢ (r
from (20) that

)} asr — 1, we obtain

logT, *Trog (r) - pt (fog)+e

liminf S . (21
1 logT, T (N +L (L) — of (f)— (21)
As € (> 0) is arbitrary, it follows from(21) that
logT, T, L’
fiminf— 29T Trg() _py (Tog) )

=1 IogT, T (N +L () © AF (D)

Again for a sequence of values@lﬁ—r) tending to infinity,

L
log Ty, 1 Troq (r) > (ph*(fog)—e) Iog( xp{L (1 5 )}>

ie.,

log T, 1 Troq ()

vV
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So combining( ) and (23), we get for a sequence of The proof is omitted.
values of( =) tending to infinity that Combining Theoren? and Theoremt, we may
state the following theorem:
L*
logT. MTrog () > (P (fog)—¢) logT. 1T (1) Theorem 6Let f, g be any two analytic functions in U
h1eg Pk (f) +¢) h and h be an entre function  with
_ 0 < A (fog) < p-(fog) < o  and
e 0 < A(@ < pi(@ < o . I
. L(5) =o{logT, Ty(r)} asr— Lthen
logT, "Trog(r) log T, 1 Trog (1) (A (fog) ot (fog)
e < h b2 <
log T, T (r) + L (%) llrrTH?flogTh To(r >+L( =) mm{ P CTIR=C) }
L* f _¢ I T_lT h ifog) ph £ oQ) IogTh Tfog
(ph (fog)—g)  logT, T (r) max) Secr Gy | < ImsupeeE Rt ey

(P5 (F)+€)  logT, *Ts (r)+L (%)
) Theorem 7Let f be an analytic function in U and h be
I.e., entire such thapl:™ (f) < . Also let g be analyticin U. If

L* —
04 A (fog) = then

log T, *Trog (¥ ot (f)+e ~1
9T Tal) o B0 (o i 09T g ()
|OgTh Tt (r)‘f'l-(ﬁ) 1+ (1—r) rol |OgTh71Tf (r)

ProofLet us suppose that the conclusion of the theorem do
not hold.Then we can find a constght> 0 such that for a
sequence of values (Qfl%r) tending to infinity

SinceL (L) = o{logT, Tt (r)} asr — 1, it follows
from (24) that

-1 L* _ _ _
limsup lO%Th Tiog (1) — > Pn LEf °9) ¢ (25) log T, Trog (1) < BlogT, *Te (r) . (27)
= ogT*Te (N+L (k) — Py (F)+e . - e
Again from the definition op\:" (), it follows that for all
As € (> 0) is arbitrary, we get fron(25) that sufficiently large values o(fﬁ) that

|°9Thfleog (r) < pi (fog)

Ilmsup — > (26) log T, T (r) < (pr';*(f)+g) log ex D{L(l%)}
(28)
Thus the theorem follows frort22) and(26). Thus from(27) and(28) , we have for a sequence of values

Theorem 4Let f, g be any two analytic functions in U of ( ) tending to infinity that

and h be an entire function with < p5” (f og) < e and
0<pt (g <w.IfL (i) =0oflogT, 'Tg(r)} asr—1  logT, Treg(r) < (pk (f) +£) log <

exp{L (TL)}>

then (1-
L logT,~ Tfog<) < Ph (f09> < .
R e Y S
Iimsu% L (f log [ &P{L(=0)}
r—1 hololf |OgThileog(r) _ B(ph ( )+8) 0g T a-n
The proof is omitted . exp{L()}) — exp{L( )}
The following theorem is a natural consequence Iog( =8 > Iog( N )
of Theoreml and Theoren3: | .
ogT, Tfog r Lt
Theorem 5Let f, g be any two analytic functions in U I|m|nf exp{L( )} =An (fog) <o
and h be an entire function such that ( )
0 < Af(fog) < py(fog) < o  and . -
0 < A(H) < pF () < o ' If Thliﬁacontra?rl]cn?hn.
L(zX) =o{logT, T (r)} asr— 1then IS proves the theorem.
o o . . .
iminf IOngh Tfog(r)l < min A (f g)jph (fog) .RemarkThe(?‘r'em"? is aILs*o valid _thh .I|m|t superior
r—1 logT 1T (N+L( L) A 0 b instead of “limit” if Ay (fog) = « is replaced by
A (fog) pi" (fog) log T, Tfogr pL (fog) = o and the other conditions remaining the
* ) * p—
max{ AE(H) 7 b } 'T_?lu logT, T (N+L( L) same.
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Corollary 1.Under the assumptions of Theoret or References
Remarkz,
: ICThileog(r) _ [1] S. K. Datta, T. Biswas and P. Sen, Measure of growth
Ilr‘rnjlu T, () ©- properties of functions analytic in unit disc, Internaabd.
of Math. Sci. & Engg. ApplS8(IV), 147-216 (2014).
Proof From Theoreni7 or Remark2, we obtain for all  [2]O. P. Juneja and G. P. Kapoor, Analytic functions-growth

sufficiently large values O(fli) and forK > 1 that aspects, Pitman advanced publishing program, 1985.
- [8] G. Valiron, Lectures on the general theory of integral

functions, Chelsea Publishing Company, 1949.
log T, 1 Troq (r) > KlogT, 2T () g ~ompany
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same.

Ty MTrog (1) > {7, Ty (r)}K=

from which the corollary follows.

Theorem 8Let f, g be any two analytic functions in U
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AL (fog)=w. Then

log Ty, Troq(r)
r—1 logT, 1Ty(r)
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