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Abstract: Quadratic fields have applications in different areas oheiatics such as quadratic forms, algebraic geometryhditme

equations, algebraic number theory, and even cryptogrdteyUnit Theorem for real quadratic fields says that eveiinithe integer

ring of a quadratic field is given in terms of the fundamentait of the quadratic field. Thus determining the fundamentats of

quadratic fields is of great importance. In this paper, waioled an explicit formulation to determine the forms of domed fraction

expansion and fundamental units of certain real quadraticher fields where the period in the continued fraction egjmmof the

quadratic irrational number of the certain real quadraétd§ is equal to 7 by using a practical algorithm for spedales. Moreover,
a part of this paper is generalize and compl&ie [

Keywords: continued fractions for quadratic irrational numbers damental unit
subjclasg2010] Primary 11A55, Secondary 11R27

1 Introduction and Notation not only congruent to 1 modulo 4 but also congruent to 2
modulo 4 and the periokly = k in the continued fraction
Determination of the fundamental units of quadratic fieldse€xpansion of the quadratic irrational numbey in
has a great importance at many branches in numbe®(1/d) is equal to 7 and describe explicitly, Uq in the
theory. Although the fundamental units of real quadratics,nqamental unigg — (Td+Ud\/H) > 1 of Q(v/d) and also
fields of Richaut-Degert type are well-known, explicit ihe form ofd is written bf/ using parameters which are

form of the fundamenpal units are not !(npwn very well appearing in the continued fraction expansionugf
and these determinations were very limited except for

these type. Therefore Tomita has described explicitly the
form of the fundamental units of the real quadratic fields
Q(vd) such thatd is a square-free positive integer Let 1(d) be the set of all quadratic irrational numbers
congruent to 1 modulo 4 and the peridg in the n Q(vd). For an elementé of I(d) if & > 1,
continued fraction expansion of the quadratic irrational _; < & <0 then& is called reduced, wher& is the
numberwy = (1+—2‘/a) in Q(v/d) is equal to 3 and 4, 5 conjugate ofé with respect toQ. More information on
respectively in §] and [6]. Later, explicit form of the  reduced irrational numbers may be found 8 &nd [7].
fundamental units for all real quadratic fiel@$\/d) such ~ We denote byR(d) the set of all reduced quadratic
that the periodky in the continued fraction expansion of irrational numbers inl(d). It is well known that if an
the quadratic irrational numbey is equal to 6, has been element§ of I(d) is in R(d) then the continued fractional
described in4]. The aim of this paper is to determine the expansion of £ is purely periodic. Moreover, the
general forms of continued fractions and fundamentaldenominator of its modular automorphism is equal to
units for special cases and also generalize and complet@indamental unitey of Q(+/d) and the norm ofeg is
the some of theorems had been givenZh | (—1)% in [1] and [7]. In this paperix] means the greatest
In this paper, we will deal with some real quadratic integer less than or equal foand continued fraction with
fields Q(v/d) such thatd is a square free positive integer periodky = k is generally denoted bjgo, a3, a3, ..., &)
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2 Preliminaries and Lemmas

In this section some of the
preliminaries and lemmas are given.
Now, for any square-free positive integkwe can put
d=a’?+bwitha,be Z, 0<b< 2a. Here, since/d—1<
a < v/d the integersandb are uniquely determined

important

required

g = [0o,d1y e ,Ok-1,200— 1]. Furthermore, let
R = (B2l — (200~ 1,0f,...or, O 1, 0R] DE @
modular automorphism adr, then the fundamental unit
&4 of Q(v/d) is given by the following formula:

& = (Td+L21d\/a) >1,

Ta = (200 — 1)Qx_1+ 2Qk_2, Ug = Qx_1, whereQ; is

Let d be a square-free positive integer then we will determined byQ_; =0, Qo = 1, Qi1 = 0i+1Q + Qi—1,

consider the following two special cases:

Casel.d = 1mod(4), if ais even, the = 8¢+ 5 with
lez ¢>0.

Case2.d =2mod(4), if ais odd, therb = 4m+ 1 with
meZ, m>0.

Let denote byD;¥ the set of all positive square-free
integerd such thad = k(8) andb =t(8). Hence, we have

Di* = {d € Z | d = k(8),b = t(8)}. Then, we get
some remarks as follows:

Remark 2.1. d can be congruentto 1 or 5 modulo 8
sinced is congruent to 1 modulo 4.
In the case ofl = 1(8), b can be congruentto 0, 1 or

5 modulo 8. Therefore, the set of all positive square-free

integers congruent to 1 modulo 8 is eqlat UD; ' UDs.

(i>0).

Moreover, for a square-free positive integer
congruent to 23 modulo 4, we puty = /d, go = [awy],
R = Qo+ wy. Thenwy ¢ R(d), but wr € R(d) holds.

Moreover for the period k of wr, we get
WR = [200,1, ... , Ok—1] and
g = [0o,01,-e.- ,Ok—1,2q0)- Furthermore, let
wr = A2 = (200,01, G 1,@R] b @

modular automorphism afr, then the fundamental unit
&4 of Q(v/d) is given by the following formula:

&g = (Td+L2Jd\/a) >1 ,

Ta = 200Qk-1 + 2Q-2, Uy = 2Q_1, where Q; is
determined byQ_ 1 =0, Qo =1, Q11 = §+1Qi + Qi_1,

Thus the set of all positive square free integers congruenti > 0).

tol modulo 8 is the union dbgt, D11, Ds?.
In the case ofl = 5(8), b can be congruentto 1, 4 or 5

Proof. See[6, Lemma 1].

modulo 8. So the set of all positive square-free integers

congruent to 5 modulo 8 is equal B3 ® U D4° U Ds®.

Remark 2.2. Letd be a square-free positive integer
congruent to 1 modulo 4, then,

If ais even;b can only be congruentto 1 or 5 modulo
8 sinceb = 1(mod4) whena is even. Thend belongs to
Ds®UDst in the Casel.

Remark 2.3. The setsDol, D11, Dst,D1°,D4° and
Ds° are represented as follows;

Dol ={deD|d=a?+8m,a=1(mod2),0< 4m< a}

Di'={deD|d=a+8m+1a=0(mod4),0 <
dm< a}

Ds!={deD|d=a?+8m+5a= 2(mod4),0 <
dm<a-—2}

Di°={deD|d=a+8m+1a=2(mod4),0 <
dm< a}

D ={deD|d=a%+8m+4,a= 1(mod2),0 <
dm<a-—2}

Ds® = {de D |d=a®+8m+5a= 0(mod4),0 <
dm<a-—2}

Lemma 2.5. For a square-free positive integarwe
putd =a?+b (0 < b < 2a), ab € Z Moreover let
@ = {i+ g (4 =[], 1> 0) be the continued fraction
expansion otw = ap in R(d). Then eachy is expressed
in the formay = w (ci,ri € Z), and4;, ¢, ri can be
obtained from the following recurrence formula:

wp = 2D

2a—r1i =Gl +riy1,
Cit1=Ci—1+(riza—ri)4i (i > 0), where 0< rj;1 < ¢j,
_ (b+2arg—r¢?)
C_l = T
Moreover for the perio#t > 1 of ay, we get
b=l (1<i<k=1),
M ="rk—i+1, G = Ck—j (1 <i <Kk).

Proof. See[1, Proposition 1] .

Lemma 2.6. For a square-free positive integdr
congruent to 1 modulo 4, we puly = (”—2‘/3), do = [y
andwr = qo— 1+ ay.

If we put w = wr in Lemma 2.5. , then we have the

Now in order to prove our theorems we need thefollowing recurrence formula:

following lemmas.

Lemma 2.4. For a square-free positive integer> 5
congruent to 1 modulo 4, we pa = (£5/9), go = [a]

, R =0o— 14 wy. Then wy ¢ R(d), but wr € R(d)
holds. Moreover for the periodk of wr, we get

WR [Zqo - 17 (S FRTRII ) CIk—l] and

ro=ri=a—lp=a—2qp+1,

a2
Co=2,C1=C 1= (b+2a(r:g ro ),

lo=200— 1,4 =q (1§i§k—1).

For a square-free positive integércongruent to 23
modulo 4, we putyy = v/d, do = [wy] andwr = 0o + wy.

(@© 2016 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theo#, No. 1, 23-27 (2016) www.naturalspublishing.com/Journals.asp NS = 25

If we putw = wr in Lemma 2.5. , then we have the c3=c1+ (r3—r2)l2 = C3 = (a+4m+2) 4 (r3—r2)l.
following recurrence formula:
ro=r1=0,c0=1,c1=Dh, and

fo=200, i =G (1=i<k—1). Ca=Cp+(rg—r3)lz3=Ca= (r2+1)+(rg—ra)ls.

Proof. It can be easily proved by using Lemma 2.5. By using equalitiexs = ¢4 anda = 4m+r, + 3 we
obtain

8M+4=(rp—r3)la+ (ra—r3)ls. (3)

Since A = c3l3+r3+r4 from Lemma 2.5 then we
Theorem 3.1. Letd =a?+b = 1mod(4) is a square have
free integer for positive integexris even and satisfying
0<b<2ab=5mod(8), (i.e.dec DsuUD®) . Letthe

3 Theorems

periodky of the integral basis element ofy = (£5/9) in re=2a—[(@a+4m+2)+(rs—r2)lolls —rs.  (4)
Q(v/d) be 7. Then, and
wy = [5,1,02,03,03,02,1,a—1] 8M+6=(rp+1)la+r3—ro. (5)
for the positive integer&, /3 suchthat K ¢ <a(i=1,2) It follows from (3) and (5) we get immediately
and then
(Td,Ud):(A(AC+D)+BZ(C+E),A2+BZ) r2:(r3—r4)€3+(r3+1)82+r3—2. (6)
and By takinga = 4m+r,+ 3 and by using equalities (1),

2 (3) and (4) we can make an explication as follows:
d=C°+2F+G d € D15 = r, = 3mod(4), r3 = 1mod(4) holds fora=
hold, whereA, B,C, D, E, F, Gand the integers> 0 and ~ 2mod(4),

s> 0 are determined uniquely as follows: de D% = r, = 1mod(4), r3 = 1mod(4) or
A=10l3+103+1 r3 = 3mod(4) holds fora = Omod(4).
B=/(+1 If d € D%5|JD?s then we haves = 2r +1 = 1mod(2),
C=Ar+s r > 0andry =2s+1 > s> 0. Furthermore we can easily
D= (A+2)lplz+3+1 see that
E=0(3+1
F=D-AE o2 , ) rp=2(r—s)lz+2(r+1)l+2r—1 @
G=2CE+ (A— B-2 B-1
a=A(r +—;)(+ 3_322'+ (52(63 )_ ;)(+ 1 :)rBZ _GA from the Lemma 2.5 and from (4), (6).

We know thatc; = ¢4 = (ra+ 1) + (r3 —rg)¢3 and so
if we putro =203(r—s)+2(r+1)l+2r—1in 2a=

Proof. In the casea is even and = 5mod(8), d -
(8) [(r24 1)+ (r3+ra)¢s]l3+r3+ra then we can obtain

1mod(4) can only belong t®s! UDs®. Sinceqo = [wy
g, itfollows from Lemma 2.6 thatg = r; = a—20o+
l=a—{gthenlfg=a—1,ry=1andcg=2,c1=cCc_1
a-+4m+ 2. Fori =1 and by Lemma 2.5 we have;
2a—r;=Cli+r, = 2a=(a+4m+2)l1+ra+1
= a(2— /1) = (4m+2)l1+r,+ 1= ¢1 =1 holds from

120,a>0andl <2. . 1) +4/43(r —s) +4r — 2 and by taking in this equation =
Sincely = le, (2 = {5, (3 = (4 then we obtain; er —s)€(3+22r +L)lp+2r—1,r3=2r+1andry=2s+1

Wy = [%, 1,05,03,03,00,1, a— 1]. we haver(éz + 1)2 — S(ézég + 3+ 1) — 52[53 — 4y — 1] —

for £1 = 1 we have 1=0. SinceA=ll3+(3+1,B=1{,+1thent,[l3—

B] + 1 = rB? — sA holds. We can immediately tha&ainds

=Y

a=r(lplz+l3+1)+s+lal3+ 1. (8)

In this equation, if we takéy/3+ 3+ 1= Athen we can
also writea = A(r + 1) + s— ¢3. By using equalities (1),
(3)and (7) we get@= (ro —r3)lo+ (rg—r3)lz+40(r +

a=4m+rp+3. (1) uniquely-defined fromzthe equalities= (r + 1)A+s—/3
, and/y[¢3—B]+1=rB—sA
a=4m+rz+3=rz=a-4m-3 s an odd number Now, let's determine the coefficienty andUg of the
because oh is even, and s@; < a holds from (1) and  f,n,damental unigg by using Lemma 2.4. Since
b < 2a. From Lemma 2.5;2—rp; = Cpfo+rz andcy = Q1=0
Co+ (r2—r1)f1 = ¢ = a—4m—2holds, and so we have Q=1
Cp =+ 1. Moreover, from Lemma 2.5 we get G=0,(1<i<kg—1)
i+1 = 0i+1.Qi +Qi— i>0
2a=(ro+1)la+r2+4r13 (2) 8;; glqlii Q+Qi1 ( )
On the other hand, we have Q=/0+1=B
(@© 2016 NSP
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Qz3=1/lal3+l3+1=A

Q4s=Al3+B

Qs = (2(Alz+B) + A= A(lal3+ 1) + Bly

Qs = A(lal3+1) +Bla+Alz+B =A%+ B

then we hav@y = (Ar +s)(A2+B2) + All2l3(A+2) + 2] +
5[(A+ 1) + B] andUq = A? + B2 for taking the following
equalities Zp—1=a— 1= Ar +s+¥xl3, Tg = (200 —
1)Qs+2Qs, C=Ar+s D= (A+2)lpl3+/3+1,E =
¢3+1and soly = A(AC+D) +B?(C+E),Uq = A? + B?
hold.

Now, we writed = a2 + b depends on the parameters

{2, L3, r ands. For this if we putro = 2(r —s)l3+ 2(r +
Dilo+2r—1,r3=2r+1,ry=2s+ 1linstead of,,r3 and
ra4 in (4) then we obtain 8+ 4 = [2/3(r — S)l2 + 205(r +
1) — 205+ 2(s—r)]¢z andb = 8m+5= 2/3(r + 1) +2(r —
s)(¢2 — 1)¢3 — 202 + 1. By putting the values = A(r +
1)+s—¢zandbind = a?+bwe haved = a® + b= (Ar +
§)2+42r(D — AE) +2CE + (A—(3)2 4 (B—2)?+ (B— 1)
Where, if we takéD — AE = F and ZE + (A—/3)? + (B—
2)?+ (B—1)2=Gthend =C?+2rF + G holds. Thus, the
theorem is proved completely.

Theorem 3.2. Letd = a2+ b= 2mod(4) is a square
free integer such that a is odd integer and the pétjoaf
the integral basis element afy = v/d in Q(+/d) be 7. If
b = 1mod(4) then,

Wy = [a7 Zla 827 é3a‘€37‘€27 éla 2a-]

for the positive integersly,fo,f3 such that¢ > 1
(i=1,2,3)
and then

(Tq,Uq) = (2[a(A% 4 B?) + BC + Aly],2(A2 + B?))
and
d=A%2_2rD+E

hold, whereA, B, C, D, E, r > 0, e > 0 are integers and
these are determined uniquely as follows:
A=10l1l+1
B=1/{1+Al3
C=/ly3+1
D=Ael1—{;
E=1(2—2e+1
a = Ar — 21
A2 4 B?—C2— (3 =2rB+2e(A+ Bl3).
Proof. Sinced = 2 (mod4) and = 1(mod4) then we
haveb = 4m+ 1 for the positive integers, b, m with
a < b <?2a From the Lemma 2.6. it is clear that
Wy = [@,01,02,03,04,05,05,2a] for gp = a and kg = 7.
Besides from the Lemma2.6 we obtaig = r; = 0,
co=1,c1 =b=4m+ 1 /9= 2qp = 2a. By using Lemma
2.5 and Lemma 2.6vy = [a,(1,2,¢3,03,(2,01,28] for
by =Vlg, lop=1"l5,l3=F{sandl; >1>5Vi=123.
If we use the equality —rij = ¢i¢; +ri.1 fori >0 in
Lemma 2.5 then we write 2= (4m+ 1)¢1 + ro.
Therefore(dm+ 1)¢1 +r, = 0(mod2) andry = 2r — ¢4

hold for the convenient integer> 0. If we consider these
equalities thera = 2m¢1 +r holds, wherea is an odd
number and it is clear that should be an odd number.
Furthermore we obtaioy, = ¢+ (rp —r1)ls = 14r2lp
from the equalityci;1 = ¢i_1+ (riza —ri)4i (i > 0).
Therefore if we use this equality an@ 2 ro = Colp +r3
then we obtain@= (1+ryl1)lo+r2+r3.

Since &= (dm+1)¢1+r12 and 2= (14 rplq)l2 +
r, +rz then we have

(dm+ 1)¢1 = (L+ral1)lo +r3. If we get (mod/y)
then ¢, 4+ r3 = 0(mod/¢;) andrz = (1t — ¢> hold for the
convenient integer > 0. If r3 = (3t — ¢, then it is easily
seen that =t + 2r¢», — (14, — 1. Moreover if we take
A= (10, + 1 thent — A =4m— 2r/, holds and ift < A
then there is an integes < 0 such thatt — A = 2s. (if
t > A then look in [2].) If it is takens < 0, s= —e and
e > 0 then it is obtained = A—t = 2r¢, — 4m,
e=r/l,—2mand 2n=r/, — e By putting 2n=r/, —ein
a=2m¢;+r thenwe hava = (ré; —e)ly1+r =Ar —(1e.
Sincecz =cC1+ (r3—r2)lp =4m+1+ (r3—ra)l>
ro = 2r — {1 ve rz3 = {1t — > from the Lemma 2.5 then
c3 = At — é% holds. If we put the valuecs in
2a = C3lz3 + r3 + 14 then we have
2a = (At — (3)l3 + r3+rs. We know thatcs = c4
therefore if we take the equalities
At —f% =Co+(ra—r3)ls, Co=1+4r2l1 ,r2=2r—1{1
T3 ="/l1t —lovery = (2r — {1 —tl3)A+ l2(l2¢3+ 1) then
we obtain At — 2 = 1 + (4 — r3)ls
=1+4r201+ralz—r3lz =1+ (2r —l1)l1 + [(ZI’ — 01—
tl3)A + lo(lats + 1)z — (Lt — £)l3 =
(14 L2l3)2 + 2r (01 + Alz) —tla(ly + Als) — (1 (01 + Al3).

Ifitistakenfy+Al3=B,t=A—2eand 1+ (/3 =C
then A? + B? — C? — (3 = 2rB + 2e(A+ Bl3) holds from
At — (3 =C2+B(2r —tl3— (1) andt = A— 2e.

Now we will show that the integersande are uniquely
determined with the inequalities = Ar — /1€ and A2 +
B2 —C? — (2 = 2rB+2e(A+ B(3). If we assume that the
integersr ands is not determined uniquely then we have
A2+ B2 = 0 which is a contradiction because/AfB > 0.
Therefore, the integersande are uniquely determined.

Then, we can calculateQ; 1 = G +1Qi + Qi—1, (i > 0)
whereQ_; = 0Qy = 1 as follows

Q.1=0
Q=1
Q=101
Q=A
Q:=B

Qs =1(3B+A

Qs = C(Alz+ (1) + Aly = BC+ Al and Qs = A({102 +
1) + £3(Alz + £1) + BCl; = A2 + B? hold by Lemma 2.4,
we obtain that

Tq = 2[a(A?+ B?) + BC + Alp] andUy = 2(A% 4 B?).
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4 An Application References

In this section, we will give numerical example by using [ T- AZUHATA,  On the fundamental Unit and the class
the algorithm of our Theorem 3.1. and Theorem 3.2. This numbers of real quadratic fieldsiagoya Math. J., Vol. 95,

: . . 125-135, 1984,
provides us to determingy andeq rapidly. [2] G. KARADENIZ GOZER, A. PEKIN, Explicit Form of

the Fundamental Units of Certain Real Quadratic Fields

As an application of Theorem 3.1. we can practically European Journal of pure and Applied Mathematics, \Vol. 7,

determine the continued fraction expansionugfwhere No. 1, 55-64, 2014,

d = 113= 10° + 13= 1mod(4) for a = 10= 2mod(4) = [3] R.A MOLLIN, Quadratics, CRC Press Books Raton FL,

Omod(2) andb = 13= 5mod(8). We easily see thd =1, 1995.

Co=2,rp=ri=1,c=a+4m+2=16,rp =3, for  [4]A. PEKIN, H. ISCAN, Continued Fractions of Period Six

a=4m+3+rpandc, =4 forc, =ro,+ 1. Moreover and Explicit Representations of Fundamental Units of Some
2a= (rp+ 1)l +r2+r3 = rz3 =1 holds fort; = 4, Real Quadratic Fieldslournal of the Indian Mathematical

ro=3a=10, Society Vol. 72, 184-194, 2005.

C3=C1+(r3—ra)lp = c3=8and 8n+4=(r, — [5] K. TOMITA, Expl!cit represantation of fundamental usipf
r3)lo+(ra—r3)l3=rs=3holdforly =1,/ =4,(3=2, some quadratic field$roc. Japan Acad. Ser. A Math. i,
M=1,rp =3 r3=1. Vol. 71, No:2, 41-43,1995. _

Hencewy can be determined rapidly as follows; [6] K. TOMITA, Explicit represantation of fundamental usiof

some quadratic fields, 10ournal of number theory, Vol. 63.,
Issue 2, 275-285, 1997.

[71Y. YAMAMOTO, Real quadratic number fields with large
fundamental units Osaka J. Math., Vol. 8, 261-270, 1971.

wy=1[514,22419

Moreover, the fundamental unit 6J(+/113) is easily
determined as
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__ 1552+146V113
gy = T2V

sinceA=11,B=5,C=1,D=121,E=3,F =88
andG=112.

In the same way, we can give an application for
theorem 3.2 by using the algorithm has been expressed in \ J )
this theorem and so if we take M) University, Isparta (Turkey).

d = 538= 232+ 9 = 2mod(4) for a = 23= 1mod(2) / Currently, she works as an
andb = 9= 1mod(4). We can easily get théd{ =5,co =1, Asistant Professor Doctor in
fo=r=0,ci=b=9m=2,r,=1r3=3r=23,and Department of Mathemqths at the' Krklareli Umversny.
¢, =6 . Furthermore, we can calculate=c, + (rs—rp)¢, ~ Her research of specialization includes theagic
= C3=2374 =550y =7,(3=1t=2,5= —17,e= 17, Analysis, q AnaIyS|s anq th.e Theory of Real Quadratic
r4 = 55. Number Fields with applications.

Hencewy can be determined rapidly as follows;
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Moreover, the fundamental unit of)(v/538) is
obtained that

__ 138102-5954,/538
& = =

sinceA=36,B=41,C=8,D =3053,E =7192. ,i/\
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