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Abstract: A relationship between discrete and continuous fractiondér nonlocal elasticity theory is discussed. As a discsgstem
we consider three-dimensional lattice with long-rangernattions that are described by fractional-order lattmerators. We prove that
the continuous limit of suggested three-dimensionaldattiquations gives continuum differential equations withRiesz derivatives
of non-integer orders. The proposed lattice models givenamierostructural basis for elasticity of materials withwar-law type of
non-locality. Moreover these lattice models allow us toehawnified microscopic description for fractional and ugnah-fractional)
gradient elasticity continuum.
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1 Introduction

Deformations of elastic materials can be described bycktpproachl], 2], and continuum approaciB,@4]. Continuum
approach can be considered as a continuous limit of latppecach, where the length-scales of continuum element are
much larger than the distances between the lattice parti€lentinuum models of elastic materials with microstruetu
have been suggested by Mindlin iB][ In the Mindlin’s models, two scale-types of physical gties are used to
characterize elastic materials at the micro and macro scale quantities of microstructured materials are comsitie
for both of these scales. The Mindlin’s continuum modelshef naterials with microstructures differ by equations that
describe connections of the microscopic quantities witkknmgcopic quantities. The main Midlin’s continuum modefls o
gradient elasticity§] are the first-gradient and the second-gradient modelsfit$teMidlin’s model is characterized by
assumption that the microscopic deformation gradientaditst gradient of the macroscopic strain. The second Mgllin
model is characterized by assumption that the microscadmrohation gradient is defined as the second gradient of the
macroscopic displacement. Despite these difference thesgradient models have the same displacements equations
[5].

In strict sense, the models of gradient elasticity cannatdresidered as real nonlocal models. It is caused by the fact
that the equations of these models include a finite numbarttefer-order derivatives of with respect to coordinates. T
describe weak nonlocality we should use infinite series witbger-order derivatives. It is difficult to solve this ptem
for general infinite series of integer-order derivative® $dggest solution of this problem for power-law type of weak
nonlocality by using derivatives of non-integer ordersisTpossibility is based on the fact that the derivatives af-no
integer orders are actually equivalent to infinite numbetderivatives of integer orders (see Lemma 15.3i). [

Derivatives and integrals of non-integer orde§/[ 8] have a long historyd,10,11] and a wide application in physics
and mechanicsl, 13,14,15,16]. The derivatives of non-integer orders allow us to fornbellgeneralization of models
of elastic continuum with weak nonlocality of power-law &/-irst time the derivatives fractional order with respect
space coordinates were used in the elasticity theory by fkaoj@7,18] in 1957. Recently the derivatives of non-integer
orders have been used to describe continua with power-faswdi/non-locality (for example, se&9,20,21] and [22,23)).
Fractional generalizations of integral non-local modélslasticity are considered ir8f, 35,36,24,37]. In these models
the integration of non-integer orders is used to descrilteoa@ nonlocality of continuum. In our consideration welwil
focus on continuum models with weak nonlocality and coroesiing lattice models.
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Differential equations with fractional derivatives arenmful tools to describe continua with nonlocal propertés
power-law type. In papers8p, 29,32 33] we have shown that the differential equations with fraasiicderivatives can be
obtained from models of physical lattices with long-rangfeiactions. The one-dimensional lattice models for foaet
gradient elasticity and the corresponding continuum equsthave been suggested B2[23,24]. All suggested lattice
models of fractional gradient elasticity are one-dimenalanodels only. In this paper, we use the lattice fractional
calculus suggested i8R, 33] to propose three-dimensional models of lattices with loagge interactions and continua
with power-law nonlocality. We propose three-dimensidattice models for fractional gradient elasticity of theeBz
type and the corresponding models of fractional nonlocatinaum. To give these three-dimensional generalizafions
we use a lattice fractional calculus based on the fractiondér derivatives of Riesz type. In this paper, we applg thi
new mathematical tool to describe physical lattices witingloange interactions and corresponding fractional ieltyst
equations for nonlocal continuum with power-law nonloalA new relationship between discrete and continuous
fractional-order nonlocal dynamical systems is discus®¢l consider a lattice model with long-range interactiars f
the Mindlin continuum model of first gradient elasticity fieotropic materials and its generalizations for fracticvder
nonlocalities.

2 Lattice with Long-Range Interactions

For simplification we consider unbounded three-dimengdidatiices. For unbounded lattices we can use three
non-coplanar vector, ap, as, that are the shortest vectors by which a lattice can bealispland be brought back into
itself. Sites of this lattice can be characterized by the Ineinvectom = (ny,nz,n3), wheren; (j = 1,2,3) are integer.
For simplification, we consider a lattice with mutually penglicular primitive lattice vectors;, (j = 1,2,3), i.e. a
primitive orthorhombic Bravais lattice. Let us choose diiens of the Cartesian axes to coincide with the vecégrs
Thena; = aj e}, wherea; = |a;j| > 0 ande; are the basis vectors of the Cartesian coordinate systahtharvecton can

be represented as= nie; + Nye + Nzes.

Let us consider a coordinate origin at one of the latticessitée positions of site with = (n1,np, n3) are described
by the vector (n) = nia; + nyaz + nzas. We assume that the equilibrium positions of particles cidie with the lattice
sitesr(n). If particles are displaced relative to their equilibriumsfiions then the coordinates of the lattice particles
differ form coordinates (n) of lattice sites. For this case, we describe the coordinzftesparticle by the vector field
u(n,t) = z?zluj(n,t)ej that is the displacement of this particle. Hexgn,t) = uj(ng,nz,n3,t) are components of the
displacement vector for lattice particle that is definedh®tectom = (ng, n2, n3).

To describe long-range interactions in the lattices, we define fractional-order lattice operators. Let us give a
definition [32,33] of lattice partial derivative of arbitrary positive reaidera; in the directione; = aj/|a;| in the lattice.

Definition. Lattice fractional partial derivatives are the operatdig [‘H andD {‘ﬂ such that

aj aj 1 =
| u(m):(Dj ) u)(n):—a. Y Kg(nj—m)um), (j=1,2,3), 1)
] J a' m&Ew
_|aj _laj 1 _ .
o | Jum) = (o0 [ ] ) 0= 5 5 kg -myum), (=12 @
i mj=—oo

where n=m fori # j (i.e.n=m+ (n; —mj)ej), m € Z3, aj € R, a; > 0, and the interaction kernelsjj.((nj —m;) are
defined by the equations

i aj+1.1 aj+3  1(nj—mj)?
K(jj(nj—mj):aj+11F2< 12 15 12 - (J4 J)>, aj >0, ®3)

(4)

_ it (n—m aj+2.3 aj+4, m(n—m)?
Kg, (N—m) = — ( )12(J S )), aj >0,

aj+2 2 20 2 4
where 1F is the Gauss hypergeometric functia2b]. The parametersy; > 0 will be called the orders of the lattice
derivatives.

Let us explain the reasons for definition the interactiomktsK: (n— m) in the forms 8), (4), and describe some
properties of these kernels.
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The kerneIsKOj,Ej (n;) are real-valued functions of integer varialge Z. The kerneIKOTj (nj) is even function and
Kg; (nj) is odd function, i.e.Kg,fj (—nj) = +K;“J. (nj), andKg, (—n;j) = —Kg; (nj) hold for alin; € Z andj = 1,2,3.
The Fourier series transforrf@j (kj) of the kernelS(S{j (n;j) in the form
~ g ikini &
Ko (kj) = 5 e ™MKy (n) =2y Kg (nj)coskin) +Kg (0) (5)

nj:—oo nj:

satisfy the condition A
Kg; (ki) = Ikj|®T,  (aj >0). (6)

The Fourier series transforrﬁg,j (kj) of the kernels<q, (n;j) in the form

- +o° ik: . — . i — .
Ky (k)= 5 e™MMKg (nj)=—-2i Y Kg () sin(kin;) ()
nj=—oo njzl
satisfy the condition A
Kg; (Kj) =i sgn(kj) [Kj|*T,  (aj > 0). (8)

Note that we use the minus sign in the exponent$pa(d (7) instead of plus in order to have the plus sign for plane
waves and for the Fourier series.
The form @) of the interaction terrKOTj (nj —m;) is completely determined by the requiremes)tif we use an inverse

relation to ) with K(jj (kj) = |kj|“i that has the form
+ 1 /7 a
Ka, (Nj) = —/ ki’ cognjkj)dk, (aj R, aj>0), 9)
i mJo ]

then we get equatiorB) for the interaction kerneIKj;j (nj —m;j). The form @) of the interaction term(gj (nj —m;) is
completely determined bys) If we use an inverse relation t@)(with ng (kj) =1isgn(kj)|kj|% that has the form

m
K;j(nj):—%/o K sinn;kj)dky  (aj € Ry, a; > 0), (10)

then we get equatior for the interaction kerne!((;j (nj —m;). Note thaIK(;j (0)=0.

The interactions with3) and @) for integer and non-integer ordems can be interpreted as a long-range interactions
of n-particle with all other particles. R

Let us give the exact forms of the kern&s (k) for integer positiven € N. Equations 8) and @) for the caser € N
can be simplified by using Equation 2.5.3.5 B6]. For integer values = 1,2, 3,4, we get the kernel&; (n) with n £ 0
in the form

1—(~1)n 2(~1)"

Kf(n) = 2 ) K;(n) = 2 (11)
K (n) = 3n$1)n . 6(1 ;E;l)n)a K () = 4n2r22—1)n - 24(n;1)n’ w2
wheren # 0, n € Z, andK;(0) = m™/(m+ 1) for all me N. Fora = 1,2,3,4, the kernel¥, (n) with n# 0 are
k= G = ET 202U (13)
Ks () = (—)"r*  6(-1) K= (_121 m 12(-1)"m  24(1—(-1) ). (14)

n3 mmn°
wheren # 0, n € Z, andK,,(0) = 0 for allme N. Note that(1— (—1)") = 2 for oddn, and(1— (—1)") = 0 for evenn.
These kernels can allow us to consider lattice models foaluswn-fractional) gradient elasticit27, 28].

In the definition of lattice fractional derivativeg)(and @) the valuej € {1,2,3} characterizes the component
of the lattice vecton with respect to which this derivative is taken. It is simitarthe variablex; in the usual partial
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derivatives for the spad@3. The lattice operatod@f H } are analogous to the partial derivatives of ordewith respect
to coordinates; for a continuum model.
To describe isotropic physical lattices we should use ttieéeoperator§D; H } and{D{ {

forall j=1,2,3.
For simplification, we use the combination of the repeatadtfonal-order lattice operators

ai Bj
i

"ﬂ with ordersaj = a

RD:Lt7i

= [ %] " m | (15)

wherei, j take values from the sétl;2;3}. The action of the operatot$) on the lattice fieldsi(m,t) is

R 400 4o
RD;* [ai. f‘] wmb= 5 Yy Kg: (ni —my) K5 (nj — mp) u(m, t), (16)

m=—00 Mj=—00 Bj

wherei, j,k € {1,2,3}. Analogously, we can define the repeated fractional-ordticé operator§D; ** [O“ BJ”},

il
Rp*F [“I' ?J’I” } and other.

3 Three-Dimensional Lattice Models for Fractional Gradiert Elasticity

The gradient terms are used to take into account so-calledt wenlocality. In order to describe a weak nonlocality of
power-law type, we should use terms with the fractional gmatd and fractional Laplace operators. The one-dimeasion
lattice models for fractional elasticity and the corresp@mt continuum equations have been suggested2/28,24].
To generalize the one-dimensional lattice models of fometi elasticity for three-dimensional lattices we can gbé
fractional-order lattice operators of the Riesz type. Fapdification we will consider a primitive orthorhombic Brais
lattice with long-range interactions, wheae= a; g, ande is the basis of the Cartesian coordinate system.
For microstructural models of the three-dimensional foal gradient elasticity of anisotropic continua, we use t
lattice equations
d2ui(n,t 3 ~ 11
i PR | mos

3
lal

L Rpy—t.—

+ Bijk| ]D)L |:m|

jml=1

} ug(m,t) +F(n,t), a7)

whereug(m,t) = u(mg, mp, mg, t) is the displacement for the lattice, aAﬁH anchkI are the lattice coupling constants.
We assume that the fourth—ordertens@y']qg1 andB}-jkI have the same type of symmetry as the fourth-order elagfirests
tensorCin .
Al = A = Ak =Adij>  Bliw = Bl = Bljik = Biij- (18)
For primitive orthorhombic Bravais lattice, we have ninaiplting Constants!\hm and nine gradient coupling constants
Bl -
To describe anisotropic long-range interaction in lagtjsge should use the lattice operat8is [‘H and{Dj [‘ﬂ

with unequal orders; at least for ong = 1,2, 3.

In the Mindlin continuum models of elastic materials withcnaistructure $], two different types of quantities are
used for the micro and macro scales. These models of gragliesticity differ in the assumed relation between the
microscopic deformation and the macroscopic displacem&nthe same time, despite the theoretical differences
between these models, the equations for displacementesd tmodels are identica][ In order to derive a fractional
generalization of the Mindlin gradient model,[and a corresponding there-dimensional lattice modelasgeime that
lattice is characterized by the mutually perpendiculatmes@; = a, = az with equal lengtha; = ap = az = a. As lattice
equations for the Mindlin gradient elasticity we can coesithe equation

d?ui(n,t) 2a] . R laa]
Midtz = A5(a) leR]D)f{ j } Gi(m,t) — Af(a) j;%&iDL [j i ] Ui (m,t)—
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ui(m,t)—

-#s(e)0¢ 5| uim ) 5 "o
1A

3

~Bi(a) Y (o~

T

3a a __|a3a
. uj(m,t) + RDL’ .

)uj(m,t)—

3
20 2a
—B5(a) > RpH+ i ui(m,t) — B5(a)RD; ui(m,t)—

4a
i :

2a 2a
j k

aaz2al L S Ryt
j i k uJ(mvt)_BS(a) gj DL

y :
ke kA i k]

—Bj(a) "Dt ui(m,t)—

3
—Bh(a) 3 "oy
=1

41.“] ui(m,t) + F(n,t), (19)

whereA;(a), AL (a), As(a), As(a), andBi(a), ...,B5(a) are corresponding coupling constants of the lattice Icgye
interactions.

In the lattice modelX9) all lattice operators have fractional orders. For widesslaf nonlocal elastic material the
short-range and long-range particle interactions arecpitet the same time. This means that the lattice equatiangdsh
include the lattice operators of integer and non-integeer. For this class of materials, we can use the latticetiequa
in the form

3
Mii(n,t) = A§ ZRIW{]u.th—
+A} ; R~ [11] uj(m,t) +As d R]D)*{Z ui(m,t)
1 L . ] ) 2 L H | sL)
20 i 2P
3 3
_ 4+ _l1a1 e 1al
+B} j%iRDL*’ imi uj(m,t) 4 B5 J%iRDL*’ ui(m,t) +F(n,t), (20)

where the displacement for the latticeuigm,t) = uj(my, mp, Mg, t), andAj, AL, A5, BL, BS are the coupling constants of
the lattice long-range interactions.

These three-dimensional lattice models in the continuamit fjive fractional generalization of the Mindlin model of
the first gradient elasticity and allow us to have a micragtrtal basis for continua with weak nonlocality.

4 Continuum Fractional Derivatives of the Riesz Type

Let us give definitions of continuum derivatives of non-geeorders that allow us to describe materials with nonlgcal
of power-law type.
The continuum derivative of non-integer ordeis defined g, 7] by the equation

De [ﬂ u(r) = dl(r:],a) /Rl |Z|i+1(A£“U)(f>dZa (0<a<m) (21)

where(Az'u)(r) is a finite difference of ordem of a functionu(r) with the vector steg; =z g ¢ IR3 for the pointr € R3.
The centered difference

= ZO(—l)“ﬁ u(r—(m/2—n)ze). (22)
The constand; (m, a) is defined by

/2 Am(a)

WM ) = e AT a/2)r (1+ ) 2 sna/2)’
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where
m/2]

220 )(/2)

for the centered differenc@2). The constantd;(m, a) is different from zero for albr > 0 in the case of an evanand
centered differenceA™u) (see Theorem 26.1 ir6]). Note that the integral(1) does not depend on the choicenof> a.
Therefore, we can always choose an even numbgo that it is greater than parameterand we can use the centered
difference 22) for all positive real values odr.

The continuum fractional derivativégt [ ] u(r) can be considered as the Riesz derivative of the functiphwith

respect to one componexte R* of the vector € R3, i.e. the operatob{ | { | is a partial fractional derivative of Riesz
type. An important property of the Riesz fractional derives is the Fourier transfon:ﬁ‘ of this operators in the form

7 (¢ [T]un) 0 = ki (Fuyk). (23)

The property 23) is valid for functionsu(r) from the spacec®(R?) of infinitely differentiable functions ofR® with
compact support. It also holds for the Lizorkin space (sexi@e8.1 in f]).
Using (—i)?™ = (—1)™, the Riesz fractional derivatives for evan= 2m, wherem € N, are connected with the usual
partial derivatives of integer ordersiby the relation
D [Zm} 2%™u(r)
i

axem

u(r) = (=" (24)

The fractional derivative® {2{“} for even ordersr are local operators. Note that the Riesz derivaﬁgem cannot be

considered as a derivative of first order with respect; to.e., D¢ H u(r) # du(r)/dx. All Riesz derivatives for odd

ordersa = 2m+- 1, wherem € N, are non-local operators that cannot be considered as destiahtivesd?™ /gx>™1,
We can define a continuum fractional integ]]’@l[ﬂ of the Riesz type as the Riesz potential of ordewith respect
to x; by the equation

= [ Ra(x—z)ulr+(z-x)a)dz, (a>0) (25)

whereg is the basis of the Cartesian coordinate system, the funB{dr) is the Riesz kernel. that is defined by

v l(a)r|® " a#3+2n, neN,
Ra(r) = (26)
—yXa)|r|®BIn|r|a=3+2n, neN.
The constanys(a) has the form
29132 (a /2) /T ((3—a)/2) a #3+2n,
y(a) = @7)
(—1)3-20/220-13/2 [ (a/2) I (1 + [ — 3]/2) a = 3+ 2n,

wheren € N anda € R... An important property of this Riesz fractional integratis the Fourier transforn# of this
operators in the form

7 (&[] un) t0 = ki~ (Fu) k). (28)

Note the distinction between the continuum fractionalgnaélt [ ] and the Riesz potential consists in the usgkdf @

instead of|k| . The continuum integral! [¢] is an integration ofi(r) with respect to one variabbe instead of all
variables«s, Xo, X3 in the Riesz potential.
If u(r) as a function ok; belongs to the Lizorkin space, then we ha§kthe semi-group property

} It [?] u(r) =1t

wherea > 0 andf > 0, and the continuum fractional derivatiig: [ | yields an operator inverse to the continuum
fractional integratiod{ [ | as

TP, (29)

e[

ng ﬂgm ur)=u(r), (a>0). (30)
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Note that the property3Q) is also valid for the continuum fractional integration tetframe oﬂ_p—spacesl_p(Rl) for
1< p<1/a(see Theorem 26.3 ir€]).

The continuum fractional derivativig: {ﬂ with a = 1 cannot be considered as usual derivative of first order with

respect toxj. Therefore we will define new continuum fractional derivatd < [ﬂ of the Riesz type by the equation

7] fa—1]
—D¢ | . 1
axj | j | a=
_[a ] B
De il 0_XJ a=1 (31)
0 [1—a]
— It . O<a<l
el i <a<

For 0< a < 1 the operatob | {] is analogous to the conjugate Riesz derivat8#.[Therefore, the operatdr [ ¢ |
for all positive valuesr also can be called the conjugate derivative of the Riesz type
The Fourier integral transfort of the fractional derivative3Q) is given by

_|a . _ .
7 (Dc j U(r)> (k) = ik;[kj | T (Fu)(k) =i sgrkj) kj| @ (Fu) (k). (32)
For the odd integer values af, equationsZ4) and @1) give the relation
_[2m+1 92mHLy(r

Equation 83) means that the fractional derivativeg [‘I’] of the odd ordersr are local operators represented by the
usual derivatives of integer orders.

Note that the continuum derivativig- m cannot be considered as a local derivative of second ordemespect to

Xj. The derivatived) {ﬂ for even ordersy = 2m, wherem € N, are non-local operators that cannot be considered as

usual derivativeg2"/gx>".
Using equationsd4) and @3), we can state that the partial derivatives of integer ardeg obtained from the fractional

derivatives of the Riesz tydeg {ﬂ for odd valuesx = 2m+1 > 0 by D¢ [‘j’ , and for even values = 2m> 0, where

me N, by D¢ {ﬂ only. The continuum derivatives of the Riesz typg {ij} andD{ [2"}“} are nonlocal differential
operators of integer orders.

5 From Lattice Models to Continuum Models

Using the methods suggested 80[29], we can define the operation that transforms a lattice fighj into a fieldu(r)
of continuum, For this transformations, we will consides tattice scalar fieldi(n) as Fourier series coefficients of some
functionu(k) for k; € [—Kjo/2,kjo/2], wherej = 1,2,3. As a next step we use the continuous likgit— o to obtainu(k).
Finally we apply the inverse Fourier integral transforratio obtain the continuum scalar fiel¢r ). Let us describe these
steps with detalils:

Step 1:The discrete Fourier series transfouim) — %, {u(n)} = G(k) of the lattice scalar field(n) is defined by

Q00 = Zafum= Y u(n)e ko) (34)

Nn1,Np,N3=—00
wherer (n) = Z?:lnj aj, anda; = 271/K;q is distance between lattice particle in the directgn
Step 2:The passage to the limitK) — Lim{d(k)} = (i(k), where we us@; — 0 (orkjo — ), allows us to derive the

functiond(k) from (k). By definitionu(Kk) is the Fourier integral transform of the continuum fiald), and the function
G(Kk) is the Fourier series transform of the lattice fialeh), where

(2m)®

u(n) = Kyok20K30
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andr(n) =y°_;njaj = zf’:lij/kjo .
Step 3:The inverse Fourier integral transforrtk) — .# ~1{(k)} = u(r) is defined by

u(r) = (2—;)3 /] _J:odkldhzdkg ¢ Zkdi(k) = 7 Ya(k)). (35)

The combinationZ 1o Limo .%, of the operationsZ 1, Lim, and.%, define the lattice-continuum transform
operation
A c= Z1oLimo Fp (36)

that maps lattice models into the continuum mod2g30].

The lattice-continuum transform operaticfi_,c as the combination of three operatiofs ! o Limit o .%, can be
applied not only for lattice fields but also for lattice opera. The operatio ¢ allows us to map of lattice derivatives
D{ [9] into continuum derivativeBZ [ 7].

The functipnszgf(ki), are defined by the discrete Fourier series transt@irof the kernels of lattice operators, and
the functionsK; (ki) are defined by the Fourier integral transforsisof the correspondent continuum derivatives. The
equation that defingé. (k) has the form

(0 []] utm) = 2Kz tkayath. (37

whereulk) = Z,{u(m)}, and.#, is an operator notation for the discrete Fourier seriesstcam. The equation that
definesK (ki) is

7 (0g [ 7] un) =Rz k) ak), (38)

whereu(k) = F{u(r)}, and.%, is an operator notation for the Fourier transform. In gelhéna order of the partial
olerivativeIDDjCE [ﬂ is defined by the order of lattice operaﬁmf [ﬂ This order can be integer and non-integer positive
real number.

We can formulate and prove statement about relation betiwretattice and continuum fractional derivatives of
non-integer orders.

Proposition The lattice-continuum transform operatidii _,c maps the lattice fractional derivatives
1 @

a
i a
a] mJ =—00

D J u(m) Kar (nj —my)u(m), (39)

where K (nj —mj) are defined by3),(4), into the continuum fractional derivatives of ordemwith respect to coordinate
X by

a a

e (o ur), (40)

u(m)) =DZ

where ur) =.# 1o Limo.%4 (u(m)).
Proof. The multiplication equation39) by ex—ik; nja;j), and the sum ovar; from —co to 40 give
+o00

efikj nj a; Df

nj=-o0

a

1 +00 +00 A
= e i3 K5 (nj —mj)u(m). (41)

u(m) = a
nj

=—00 mJ =—00

Using 34), the right-hand side o#(l) gives

400 400 "
e "IN Ky (nj —mj)u(m) =
nj=—°0 mj =—00

+0o0 ) 1o
= 5 e'imaKg(nj—m) Y um)=
nj=—°0 mj=—oo
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Rl H / o, too f ~
= 3 e NEKEM) Y u(m)e ™A =Ky (kjay) G(k), (42)
n=—o mj=—oo
]
wheren = nj —m;.
As a result, equatiori(l) has the form
a 1. .
Za(DE | |um)) = R (g ay) (k). (43)
i
where.%, is an operator notation for the Fourier series transform.
Then we use R
Ka (ajkj) = |ajkj|“, (44)
Ka (ajkj) =i sgrikj) [aj k|, (45)
and, the limita; — O gives
~ o1 .
Ka (kj) = Jm, & Ka (kjay) =[kj|*, (46)
- 1 . _
Ka (kj):leToa_?Ka (kjay) = ikj [kj|**. (47)

As a result, equatiord@) in the limita; — 0 gives

a

Limo 7 (D

u(m) ) = Rz (kj) Gi(k), (48)
where . .

Ka (ki) =lkj|?.  Kg (k) =ikj k|7, G(k) = Lim (k).
The inverse Fourier transform o) is

a

F~Lo Limo 2 (Df [ﬂ u(m)) =Dg || u), (a>0), (49)
F o Limo.7, (]D)[ {a] u(m)) = 9 (Dg a._l u(r)) . (a>1), (50)

J 0X; J
F1loLimo.Z, (D[ [a} u(m)) = iﬂé 1—.01 ur), (O<a<1i). (51)

j 0X; ]
Here the fractional derivative and fractional integral are

Dt a _ g1 kil Gi(k It a _ g1 ki | =9k 52
cl u(r) =7 H[kj|"a(k)}, I¢ | | ulr) =F"{lkj|~a(k)}, (52)

where we use the connection between the continuum deri@ind the continuum integral) of the Riesz type of the order
o and the corresponding Fourier integral transforms.

As a result, we prove that lattice fractional derivatives mansformed40) into continuum fractional derivatives of
the Riesz type.

This ends the proof.

Using the Propositiord(), and the independence mfandn; for i # j, it is easy to prove that the continuum limits
for the lattice mixed partial derivative3®) and (L6) have the form

aLdz u(m)) —Dg [Oﬂ D

i

az

J u(r), (@i#19), (53)

<7L—>C <Df’i

a1 Q o
T (7| 722 uem) ) =0 [ ] me

We have similar relations for other mixed lattice fractibderivatives.

az

J u(r), (i#1J). (54)
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6 Three-Dimensional Continuum Models of Fractional Gradient Elasticity

The proved Proposition allows us to get continuum modelsnfrihe suggested lattice models by using the
lattice-continuum transform operatiodg).
In the continuum limit §; — 0), the lattice equationsl{) give the continuum equations for the fractional gradient
elasticity in the form
2,y 3 3
p U _ s Rpg [1.1] w(r )+ S BG RDgt [1.“1] Ue(r,t)+ (1, 1), (55)
ot = il |1 jml

wherevu;(r,t) are the components of the displacement vector field for santn, andA%kI and Bﬁkl are the coupling
constants for the non-local continuum. We note that theigontn operators, which are used in equatiéB){ can be
represented by

11 02
R+ _
DC |:j| :| N 0XJ'0X|7 (56)
. _[1la1l 1 a 1 d ajl o
Rmy—+ _ Rpy— R+ Ry — R+
c imi _]DJCL_] DC[}DC{I]_OXJ-D{}M (57)

The coupling constants of continuum are defined by the éataipling constamzﬁtI K andBIJKI by the relations

3 2a
aajp aa a2) p
A = J Al B = J (ZW,\T ) Bliki- (58)

Inthe case, = a; = ag = a, we get the fourth-order elastic stiffness tenSgy in the form

2
Cijki = Afja = i\ﬂ—pAhkr (59)

If Bl = gBA”H, then the scale parameiéris IZ = 3a*” gs, and we haveBf;, = |2 Cij . For isotropic materialsGj
are expressed in terms of the Lame constanasdu by

Gij = A &j & + U (3K Oj + O Ojk)- (60)

Note thatx, ax, 13 are dimensionless values.
If a =2, then equationdb) gives the well-known continuum equation of gradient étityt

3 9%u(r,t) F*ui(r,t)

pui(r,t) = i~ 15 Cilkl 3o 55—
i OX;j 0% i k;m_l OXj 0%5,0%

+fi(r ). (61)

Let us give the stress-strain constitutive relation focfi@al gradient elasticitys’). Equation §5) can be represented
in the form
3 aaij(r,t)

e, (62)

pui(r,t) =
=1

whereg;j (r,t) is the stress tensor that is connected with the strain tespgort) by the constitutive relation
o+ [@
gij (r,t) Z A”H &a(r,t)+ z B.Jm C [m} & (r,t). (63)
whereey (r,t) = 1/2(duk(r,t)/9x + dui(r,t)/9x). If we use B9) and assume tha;, = +17 A, then relation §3)

can be rewritten as

O'” (r,t) Z C|Jk| (1:|:|2RAG +) &l (64)
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whereRAg”r is the fractional Laplacian of the Riesz type of the form

3
g = 5 R ME (65)
m=

Equation 64) gives the constitutive relation for fractional gradietatsicity. Fora = 2, relation 64) has the form
aij(r.t) Z G (17134) 8a(r ). (66)

This is the well-known stress-strain constitutive relatifor gradient elasticity. If we consider the case with
Ux(r,t) = u(x,t), fx(r,t) = f(x,t), where the other components,, u,, fy, f,, are equal to zero, then we get the
one-dimensional fractional elasticity models suggested [22,23]. The lattice models 20) and (7) are
three-dimensional generalizations of the one-dimensiatiice models proposed ir22,23. In addition, the equation
(17) of lattice with long-range interactions allows us to derithe stress-strain constitutive relations for fractional
nonlocal elasticity by using usual la\82).

The continuum limit for lattice equation2@) gives the continuum equations of the fractional graditasteity in the
form

3 92i(r,1) 3(92ujrt 3dzulrt

pui(r,t) — Aogl X2 1Z OX;0%; ZZ

3 9 au;j(r,t) 3 9 a7 dui(r,t)
+BY D¢ 17 — D¢ — 4 fi(r ), (67)
1;1 [ } mz_ x; De {m} x;
where the constants for continuum are defined by
azp . a2+crp )
A=A (1=012), Bf=-1—B (=12 (68)
The Lame constants and are defined by the lattice coupling constants
a a
=P A= TR, (69)
The three additional parametéysly(a), I3(a) of the Mindlin model are
L o BL o BL
|]2- AOa |2(a):a | 1| |2 _a | 2|

= 70
Note thatx, a, 12, 13(a), 13(a) are dimensionless values. Equatiof3)(can be considered as the fractional Mindlin
equations.
The three-dimensional lattice modé&lj in the continuum limit gives the fractional generalizatiof Mindlin model
of the first gradient elasticity, if the Lame constahtandu are defined by the lattice coupling constants

Ha _@0A5(a) Ao @0 1
= = (M) - As(@)), (71)
and the three additional paramethrd,, I3 of the Mindlin model are
a2d As(a) a9 B (a) Bt (a)
|2 _ |2 — e R |2 ] 72

where the coupling constants are not independent

As(a) = A(a) +A5(a),  Bi(a) =Bj(a) =Bj(a) =Bj(a), Bs(a)=Bg(a). (73)

In the continuum limit & — 0), we obtain the equations for fractional non-local comtim model that is a
generalization of the Mindlin first gradient elasticity. d4e equations have the form

d2u; 3
Poz =P I Z

Gi(r,t)+
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3

+(Aa + ta) (_z Rpg™ ﬁ I"] uj(r,t) + RDE [Zla] ui(r,t)> + Ha 21 RDg ﬁ“} ui(r,t)—

INE
uj(r,t)) —

3
__|3aa __|a3a
~(Aa+Ha)l3(a) 5 (RDa uj(r.t) + "D |

iy

3 2a 2a
~(Aa+Ha)l3(a) Y RDT T ui(r -

INES

200 a

_()‘a +IJG)|§(G) R]D)Cﬁﬁ k J i

)]t
Ak kA

ui(r,t) + D¢ [4;1} ui(r,t) | —

2a 2a
_ 2 Rmy+,+
Hal3(a) g Dc K j
kAl
whereui(r,t) are components of the displacement field for the continuurd,fgr,t) are the components of the body
force.

Fora = 1, equations{4) give the differential equations for gradient elasticity

3
Z g[ . }u. (rt) | + fi(r,t), (74)

3 92i(r,t)
2N a2y N
P Pl & 0%

+(A+H) ( i AR 02ui(r7t)> +u i o%ui(rt)
J J

% 0j 0% ox2 5 0%

3 [0%uj(r,t)  d%u(r,t)  d%ui(r,t)
—(A |2 J INE i, -
A+l z < ox;j 0% * 9x3 9 * 0x2 9%

3 *ui(r,t)  d%ui(r,t)
_ )\ |2 I\!> 1\ _
A+l sz 2 ox 0% X
A j#K kA

3 o%ui(r,t) & d%ui(r,t)

—ul3 S o fi(r,t 75

U 3 (9XE(9X12 JZl 0X? + I( ) )7 ( )
p
whereA = Aq, 4 =y, andlj = 1j(1), wherej = 1,2, 3. In equations{5) the derivatives of integer orders with respect to

the same spatial coordinates are clearly marked. Equdfi@hsan be written as the Mindlin equations for displacements
components in the form

3 92Ui(r H_ (r t) 3 0%ui(r,t)
2 | ) | 9
3 9%u(r,t) 3 9%ui(r,t)
—A+p)l2 ourt) I 't 7
T Z 2 oxanax, M Z 2, ax axz (0, (78)

wherefi(r,t) are the components of the body forogyr,t) are components of the displacement field for the continuum,
and
2 AA1+ 45 +3A3+ 24+ 325

12 2 A3+ 2A4+ A5
2= 2(A + 1) '

|3 == 2“

(77)

3
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As a result, continuum equationgg) have two Lame constants and three additional paraméters 13. Note that
equations16) for Mindlin gradient elasticity model can be obtain&ilhy using the expressions of the kinetic density

1 1 .
T=§pﬁtuidUi+§P|fui,jui7j, (78)
the density of the deformation energy in the form
1
U= SA&ig; + Keij&j +ALéii€jj k+ A2 8ki€jji + Aabiki€ik,j +AaEikiiki + AsEikiéij k. (79)

whereA andu are the usual Lame constants and the varigs= 1, ...,5) are 5 additional constitutive coefficiengsis
the mass densityy is the displacement;; is the strain, andj = (1/2)(u; j + uj,i).

If the lattice equationsl@) would be written only through even lattice fractional-er@perator§D;" [ﬂ then the

correspondent continuum equations contain the continuaatiénal derivativeé*]])ér ‘}’ , of orders 1 and 3 that are

non-local operators. In this case, we cannot get the usuadiMimodel with derivatives of integer orders. Therefave,
suggest the equations of lattice model that contain two o petice fractional derivativeD; ‘j’ , in the suggested form

(19). Itis obvious that we would like to have such a fractionalglization of partial differential equations that yiéhe
original equations in the limit case, when the orders ofticaxal derivatives become equal to initial integer valugss

desirable correspondence and the property of the contiritagtional derivative§D§ [ﬂ to be the local operators of
integer ordersr only if we useRDg [ﬂ for the odd values ofr, and if we usé&D} {ﬂ for the even values af, allow

us to consider equations in the ford®j with the fractional-order lattice operatcﬁ@f {ﬂ as basic equations of lattices
with long-range interactions.

7 Conclusions

Elasticity of weak nonlocal continuum is discussed in thépgr. Three-dimensional lattice models with long-range
interactions are suggested for fractional gradient elifigtiThese lattice models give new microstructural basisnified
description of gradient nonlocal continuum models. Thegested type of long-range interactions can be considered fo
integer and non-integer (fractional) orders of non-ldgalt allows us to get lattice models for the local and noaloc
elasticity theories of continuum mechanics.

For clarity, we select the main differences between thisspapd the numerical approach for fractional differential
equations with the Riesz derivative3g[39], the finite difference method<1,41], the tool of the discrete fractional
calculus g2)-[48].

1) The discrete models, which are proposed in this papem@mestructural models of physical lattices. These models
and the corresponding equations are not discretizatioomatiruous models and the fractional differential equatioh
nonlocal continuum.

2) The suggested lattice models correspond to the contimuadels exactly. They are not asymptotically equivalent,
i.e. they are not an approximation. Equations of lattice ei@@xactly correspond to fractional differential equasio
without any approximation. (For details about exact andrgsptic connections of lattice and continuum models see
[32).

3) The numerical methods for fractional partial differahtquations with Riesz space fractional derivatives, Wwhic
are considered in3B,39], replace the Riesz fractional derivatives by the finitde#nces with power-law weights (the
finite-difference approximation). The same type of reptaeets is used in the finite difference method§,41], The
discrete fractional calculus, which are used4a]{[46], are also based on the finite differences with power-langivesi
(the finite fractional differences). Our approach is basediecial type of infinite fractional differences that déser
long-range interactions in physical lattices.

In general, the finite differences correspond to models withrest-neighbor and next-nearest-neighbor interaction
[27,28]. In this paper, we suggest physical lattice models witlgloange interactions of power-law type. The long-range
type of interactions and the corresponding discretizatiare very important in fractional nonlocal models. Nonloca
continuum theory%0,51] is based on the assumption that the forces between pardicdea long-range type, thus reflecting
the long-range character of interatomic and intermoledigieces. We assume that fractional finite differences canno
completely reflect all characteristic properties of thefi@al-order derivatives.
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It is well-known that the fractional derivative of non-igker order can be represented in the form of an infinite series
of derivatives of integer orders (for example, see Lemma &b[6]). The cutting of this series can be considered only as
an approximation. Similarly, the long-range lattice iaigions and the infinite fractional differences can be regmé&d
only as a infinite sum of special finite differences with povav weights.

Derivatives and integrals of non-integer orders descrirgatality of power-law type at macroscopic scale. The long
range interactions, which represented by infinite diffee=n describe nonlocality at micro and nanoscales. Therdfte
suggested lattice models with long-range interactionsencorrectly describe the continuum media with nonlocality o
power-law type.

For discrete maps with power-law memory, which are equitale the fractional differential equations with the
periodic sequence of delta-function-type pulses (kick®44,55], the situation is somewhat different. Equations of
these maps contain special finite differences with powsrdeeights. At the same time the derivation of these maps
from fractional differential equations of kicked motiorssnot used approximations. This fact allows us to study the
time-fractional dynamics by computer simulations withapproximations. The special situation is related to thé fac
that the fractional differential equations contain thertgrof periodic delta-function-type kicks. The fractionalrial
differential equations of nonlocal continuum do not comti@rms with delta-functions. Therefore, the discretifla)
models, which are connected with these equations withooitoxpmations, should contain the infinite differences (for
example, the Grinvald-Letnikov typ24,32,49]) and the long-range lattice interactions.

There is an interesting question about a connection betthedmite fractional differences and the Grinvald-Letivik
fractional differences, which are infinite differencesdahe corresponding derivatives. It should be noted thétéat
models with long-range interactions, which are based octitraal-order differences of Grinwald-Letnikov typeyvha
been suggested i24,49). These differences, which is represented by infinite se@low us to describe long-range
interactions in chains and lattice3d. In paper B8], an equivalence between the discrete maps with power-lamony
and the Grunvald-Letnikov fractional difference equasitias been proved. In the continuous limit, this conned¢iads
to the equivalence of some fractional differential equagiand the \olterra integral equations of the second kind.

We can mention some possible extensions of the proposéklatbdels to formulate generalizations of fractional
nonlocal elasticity theories. We suppose that the lattiaetional derivatives32,33] can be used for nonlocal elasticity
theory to generalize for different types of Bravais lasiceich as monoclinic, triclinic, hexagonal and rhomboHedra
We suppose that the lattice fractional calculB8g B3] can be used to get lattice models for dislocations in theligra
elasticity continuum and in the fractional generalizattbnonlocal dislocations. The suggested lattice apprdaatiased
on the three-dimensional lattice with long-range intdoang can play an important role in the description of nonlloca
materials and continu®{,51,52] at micro and nano scales since the long-range intermaeatkractions are prevalent
in determining the elastic properties at these scales.
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