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Abstract: A relationship between discrete and continuous fractional-order nonlocal elasticity theory is discussed. As a discrete system
we consider three-dimensional lattice with long-range interactions that are described by fractional-order lattice operators. We prove that
the continuous limit of suggested three-dimensional lattice equations gives continuum differential equations with the Riesz derivatives
of non-integer orders. The proposed lattice models give a new microstructural basis for elasticity of materials with power-law type of
non-locality. Moreover these lattice models allow us to have a unified microscopic description for fractional and usual(non-fractional)
gradient elasticity continuum.
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1 Introduction

Deformations of elastic materials can be described by lattice approach [1,2], and continuum approach [3,4]. Continuum
approach can be considered as a continuous limit of lattice approach, where the length-scales of continuum element are
much larger than the distances between the lattice particles. Continuum models of elastic materials with microstructure
have been suggested by Mindlin in [5]. In the Mindlin’s models, two scale-types of physical quantities are used to
characterize elastic materials at the micro and macro scales. The quantities of microstructured materials are considered
for both of these scales. The Mindlin’s continuum models of the materials with microstructures differ by equations that
describe connections of the microscopic quantities with macroscopic quantities. The main Midlin’s continuum models of
gradient elasticity [5] are the first-gradient and the second-gradient models. Thefirst Midlin’s model is characterized by
assumption that the microscopic deformation gradient is the first gradient of the macroscopic strain. The second Midlin’s
model is characterized by assumption that the microscopic deformation gradient is defined as the second gradient of the
macroscopic displacement. Despite these difference thesetwo gradient models have the same displacements equations
[5].

In strict sense, the models of gradient elasticity cannot beconsidered as real nonlocal models. It is caused by the fact
that the equations of these models include a finite number of integer-order derivatives of with respect to coordinates. To
describe weak nonlocality we should use infinite series withinteger-order derivatives. It is difficult to solve this problem
for general infinite series of integer-order derivatives. We suggest solution of this problem for power-law type of weak
nonlocality by using derivatives of non-integer orders. This possibility is based on the fact that the derivatives of non-
integer orders are actually equivalent to infinite number ofderivatives of integer orders (see Lemma 15.3 in [6]).

Derivatives and integrals of non-integer orders [6,7,8] have a long history [9,10,11] and a wide application in physics
and mechanics [12,13,14,15,16]. The derivatives of non-integer orders allow us to formulate generalization of models
of elastic continuum with weak nonlocality of power-law type. First time the derivatives fractional order with respectto
space coordinates were used in the elasticity theory by Gubenko [17,18] in 1957. Recently the derivatives of non-integer
orders have been used to describe continua with power-law type of non-locality (for example, see [19,20,21] and [22,23]).
Fractional generalizations of integral non-local models of elasticity are considered in [34,35,36,24,37]. In these models
the integration of non-integer orders is used to describe a strong nonlocality of continuum. In our consideration we will
focus on continuum models with weak nonlocality and corresponding lattice models.
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Differential equations with fractional derivatives are powerful tools to describe continua with nonlocal propertiesof
power-law type. In papers [30,29,32,33] we have shown that the differential equations with fractional derivatives can be
obtained from models of physical lattices with long-range interactions. The one-dimensional lattice models for fractional
gradient elasticity and the corresponding continuum equations have been suggested in [22,23,24]. All suggested lattice
models of fractional gradient elasticity are one-dimensional models only. In this paper, we use the lattice fractional
calculus suggested in [32,33] to propose three-dimensional models of lattices with long-range interactions and continua
with power-law nonlocality. We propose three-dimensionallattice models for fractional gradient elasticity of the Riesz
type and the corresponding models of fractional nonlocal continuum. To give these three-dimensional generalizations,
we use a lattice fractional calculus based on the fractional-order derivatives of Riesz type. In this paper, we apply this
new mathematical tool to describe physical lattices with long-range interactions and corresponding fractional elasticity
equations for nonlocal continuum with power-law nonlocality. A new relationship between discrete and continuous
fractional-order nonlocal dynamical systems is discussed. We consider a lattice model with long-range interactions for
the Mindlin continuum model of first gradient elasticity forisotropic materials and its generalizations for fractional order
nonlocalities.

2 Lattice with Long-Range Interactions

For simplification we consider unbounded three-dimensional lattices. For unbounded lattices we can use three
non-coplanar vectorsa1, a2, a3, that are the shortest vectors by which a lattice can be displaced and be brought back into
itself. Sites of this lattice can be characterized by the number vectorn = (n1,n2,n3), wheren j ( j = 1,2,3) are integer.
For simplification, we consider a lattice with mutually perpendicular primitive lattice vectorsa j , ( j = 1,2,3), i.e. a
primitive orthorhombic Bravais lattice. Let us choose directions of the Cartesian axes to coincide with the vectorsa j .
Thena j = a j ej , wherea j = |a j |> 0 andej are the basis vectors of the Cartesian coordinate system, and the vectorn can
be represented asn = n1e1+n2e2+n3e3.

Let us consider a coordinate origin at one of the lattice sites. The positions of site withn = (n1,n2,n3) are described
by the vectorr(n) = n1a1+n2a2+n3a3. We assume that the equilibrium positions of particles coincide with the lattice
sitesr(n). If particles are displaced relative to their equilibrium positions then the coordinates of the lattice particles
differ form coordinatesr(n) of lattice sites. For this case, we describe the coordinatesof n-particle by the vector field
u(n, t) = ∑3

j=1u j(n, t)ej that is the displacement of this particle. Hereu j(n, t) = u j(n1,n2,n3, t) are components of the
displacement vector for lattice particle that is defined by the vectorn = (n1,n2,n3).

To describe long-range interactions in the lattices, we will define fractional-order lattice operators. Let us give a
definition [32,33] of lattice partial derivative of arbitrary positive real orderα j in the directionej = a j/|a j | in the lattice.

Definition. Lattice fractional partial derivatives are the operatorsD+
L

[

α j
j

]

andD−
L

[

α j
j

]

such that

D
+
L

[

α j

j

]

u(m) =

(

D
+
L

[

α j

j

]

u

)

(n) =
1

a
α j
j

+∞

∑
mj=−∞

K+
α j
(n j −mj)u(m), ( j = 1,2,3), (1)

D
−
L

[

α j

j

]

u(m) =

(

D
−
L

[

α j

j

]

u

)

(n) =
1

a
α j
j

+∞

∑
mj=−∞

K−
α j
(n j −mj)u(m), ( j = 1,2,3), (2)

where ni = mi for i 6= j (i.e. n = m+(n j −mj)ej ), m ∈ Z
3, α j ∈R, α j > 0, and the interaction kernels K±α j

(n j −mj) are
defined by the equations

K+
α j
(n j −mj) =

πα j

α j +1 1F2

(

α j +1
2

;
1
2
,

α j +3
2

;−
π2(n j −mj)

2

4

)

, α j > 0, (3)

K−
α j
(n−m) =−

πα j+1 (n−m)

α j +2 1F2

(

α j +2
2

;
3
2
,

α j +4
2

;−
π2(n−m)2

4

)

, α j > 0, (4)

where 1F2 is the Gauss hypergeometric function [25]. The parametersα j > 0 will be called the orders of the lattice
derivatives.

Let us explain the reasons for definition the interaction kernelsK±
α (n−m) in the forms (3), (4), and describe some

properties of these kernels.
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The kernelsK±
α j
(n j) are real-valued functions of integer variablen j ∈ Z. The kernelK+

α j
(n j) is even function and

K−
α j
(n j) is odd function, i.e.,K+

α j
(−n j) = +K+

α j
(n j), andK−

α j
(−n j) =−K−

α j
(n j) hold for alln j ∈ Z and j = 1,2,3.

The Fourier series transformŝK+
α j
(k j) of the kernelsK+

α j
(n j) in the form

K̂+
α j
(k j) =

+∞

∑
n j=−∞

e−ik j n j K+
α j
(n j) = 2

∞

∑
n j=1

K+
α j
(n j)cos(k jn j)+K+

α j
(0) (5)

satisfy the condition
K̂+

α j
(k j) = |k j |

α j , (α j > 0). (6)

The Fourier series transformŝK−
α j
(k j) of the kernelsK−

α j
(n j) in the form

K̂−
α j
(k j) =

+∞

∑
n j=−∞

e−ik j n j K−
α j
(n j) =−2i

∞

∑
n j=1

K−
α j
(n j) sin(k jn j) (7)

satisfy the condition
K̂−

α j
(k j) = i sgn(k j) |k j |

α j , (α j > 0). (8)

Note that we use the minus sign in the exponents of (5) and (7) instead of plus in order to have the plus sign for plane
waves and for the Fourier series.

The form (3) of the interaction termK+
α j
(n j −mj) is completely determined by the requirement (6) If we use an inverse

relation to (5) with K̂+
α j
(k j) = |k j |

α j that has the form

K+
α j
(n j) =

1
π

∫ π

0
k

α j
j cos(n j k j)dk, (α j ∈R, α j > 0), (9)

then we get equation (3) for the interaction kernelK+
α j
(n j −mj). The form (4) of the interaction termK−

α j
(n j −mj) is

completely determined by (6) If we use an inverse relation to (7) with K̂−
α j
(k j) = i sgn(k j ) |k j |

α j that has the form

K−
α j
(n j) =−

1
π

∫ π

0
k

α j
j sin(n j k j)dkj (α j ∈ R+, α j > 0), (10)

then we get equation (4) for the interaction kernelK−
α j
(n j −mj). Note thatK−

α j
(0) = 0.

The interactions with (3) and (4) for integer and non-integer ordersα j can be interpreted as a long-range interactions
of n-particle with all other particles.

Let us give the exact forms of the kernelsK̂±
α (k) for integer positiveα ∈ N. Equations (3) and (4) for the caseα ∈ N

can be simplified by using Equation 2.5.3.5 of [26]. For integer valuesα = 1,2,3,4, we get the kernelsK+
α (n) with n 6= 0

in the form

K+
1 (n) =−

1− (−1)n

π n2 , K+
2 (n) =

2(−1)n

n2 , (11)

K+
3 (n) =

3π (−1)n

n2 +
6(1− (−1)n)

π n4 , K+
4 (n) =

4π2(−1)n

n2 −
24(−1)n

n4 , (12)

wheren 6= 0, n∈ Z, andK+
m(0) = πm/(m+1) for all m∈ N. Forα = 1,2,3,4, the kernelsK−

α (n) with n 6= 0 are

K−
1 (n) =

(−1)n

n
, K−

2 (n) =
(−1)n π

n
+

2(1− (−1)n)

π n3 , (13)

K−
3 (n) =

(−1)n π2

n
−

6(−1)n

n3 , K−
4 (n) =

(−1)nπ3

n
−

12(−1)nπ
n3 −

24(1− (−1)n)

π n5 , (14)

wheren 6= 0, n∈ Z, andK−
m(0) = 0 for all m∈ N. Note that(1− (−1)n) = 2 for oddn, and(1− (−1)n) = 0 for evenn.

These kernels can allow us to consider lattice models for usual (non-fractional) gradient elasticity [27,28].
In the definition of lattice fractional derivatives (1) and (2) the value j ∈ {1,2,3} characterizes the componentn j

of the lattice vectorn with respect to which this derivative is taken. It is similarto the variablex j in the usual partial
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derivatives for the spaceR3. The lattice operatorsD±
L

[

α j
j

]

are analogous to the partial derivatives of orderα with respect

to coordinatesx j for a continuum model.

To describe isotropic physical lattices we should use the lattice operatorsRD±
L

[

α j
j

]

andR
BD

±
L

[

α j
j

]

with ordersα j = α
for all j = 1,2,3.

For simplification, we use the combination of the repeated fractional-order lattice operators

R
D
±,±
L

[

αi β j

i j

]

=R
D
±
L

[αi

i

]

R
D
±
L

[

β j

j

]

, (15)

wherei, j take values from the set{1;2;3}. The action of the operator (15) on the lattice fieldsuk(m, t) is

R
D
±,±
L

[

αi β j

i j

]

uk(m, t) =
+∞

∑
mi=−∞

+∞

∑
mj=−∞

K±
αi
(ni −mi)K±

β j
(n j −mj)uk(m, t), (16)

where i, j,k ∈ {1,2,3}. Analogously, we can define the repeated fractional-order lattice operatorsRD±,±,±
L

[

αi β j γl
i j l

]

,

R
D
±,±,∓
L

[

αi β j γl
i j l

]

, and other.

3 Three-Dimensional Lattice Models for Fractional Gradient Elasticity

The gradient terms are used to take into account so-called weak nonlocality. In order to describe a weak nonlocality of
power-law type, we should use terms with the fractional gradients and fractional Laplace operators. The one-dimensional
lattice models for fractional elasticity and the correspondent continuum equations have been suggested in [22,23,24].
To generalize the one-dimensional lattice models of fractional elasticity for three-dimensional lattices we can apply the
fractional-order lattice operators of the Riesz type. For simplification we will consider a primitive orthorhombic Bravais
lattice with long-range interactions, whereai = ai ei , andei is the basis of the Cartesian coordinate system.

For microstructural models of the three-dimensional fractional gradient elasticity of anisotropic continua, we use the
lattice equations

M
d2ui(n, t)

dt2
=

3

∑
j ,l=1

AL
i jkl

R
D
−,−
L

[

11
j l

]

uk(m, t)+

+
3

∑
j ,m,l=1

BL
i jkl

R
D
−,+,−
L

[

1α 1
jml

]

uk(m, t)+Fi(n, t), (17)

whereuk(m, t) = uk(m1,m2,m3, t) is the displacement for the lattice, andAL
i jkl andBL

i jkl are the lattice coupling constants.

We assume that the fourth-order tensorsAL
i jkl andBL

i jkl have the same type of symmetry as the fourth-order elastic stiffness
tensorCi jkl :

AL
i jkl = AL

jikl = AL
i jlk = AL

kli j , BL
i jkl = BL

jikl = BL
i jlk = BL

kli j . (18)

For primitive orthorhombic Bravais lattice, we have nine coupling constantsAL
i jkl and nine gradient coupling constants

BL
i jkl .

To describe anisotropic long-range interaction in lattices, we should use the lattice operatorsR
D
±
L

[

α j
j

]

andR
BD

±
L

[

α j
j

]

with unequal ordersα j at least for onej = 1,2,3.
In the Mindlin continuum models of elastic materials with microstructure [5], two different types of quantities are

used for the micro and macro scales. These models of gradientelasticity differ in the assumed relation between the
microscopic deformation and the macroscopic displacement. At the same time, despite the theoretical differences
between these models, the equations for displacements of these models are identical [5]. In order to derive a fractional
generalization of the Mindlin gradient models [5], and a corresponding there-dimensional lattice model, weassume that
lattice is characterized by the mutually perpendicular vectorsa1 = a2 = a3 with equal lengtha1 = a2 = a3 = a. As lattice
equations for the Mindlin gradient elasticity we can consider the equation

M
d2ui(n, t)

dt2
= AL

0(α)
3

∑
j=1

R
D
+
L

[

2α
j

]

üi(m, t)−AL
1(α)

R

∑
j : j 6=i

D
−,−
L

[

α α
j i

]

ui(m, t)−
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−AL
2(α)R

D
+
L

[

2α
i

]

ui(m, t)−AL
3(α)

3

∑
j 6=i

R
D
+
L

[

2α
j

]

ui(m, t)−

−BL
1(α)

3

∑
j : j 6=i

(

R
D
−,−
L

[

3α α
j i

]

u j(m, t)+ R
D
−,−
L

[

α 3α
j i

]

)

u j(m, t)−

−BL
2(α)

3

∑
j : j 6=i

R
D
+,+
L

[

2α 2α
j i

]

ui(m, t)−BL
3(α)R

D
+
L

[

4α
i

]

ui(m, t)−

−BL
4(α)

3

∑
k, j

k6= j ;k6=i; j 6=i

R
D
−,−,+
L

[

α α 2α
j i k

]

u j(m, t)−BL
5(α)

3

∑
k, j
k6= j

R
D
+,+
L

[

2α 2α
j k

]

ui(m, t)−

−BL
6(α)

3

∑
j=1

R
D
+
L

[

4α
j

]

ui(m, t)+Fi(n, t), (19)

whereAL
0(α), AL

1(α), AL
2(α), AL

3(α), andBL
1(α), ...,BL

6(α) are corresponding coupling constants of the lattice long-range
interactions.

In the lattice model (19) all lattice operators have fractional orders. For wide class of nonlocal elastic material the
short-range and long-range particle interactions are present at the same time. This means that the lattice equations should
include the lattice operators of integer and non-integer orders. For this class of materials, we can use the lattice equation
in the form

M üi(n, t) = AL
0

3

∑
j=1

R
D
+
L

[

2
j

]

üi(m, t)+

+AL
1

3

∑
j=1

R
D
−,−
L

[

11
j i

]

u j(m, t)+AL
2

3

∑
j=1

R
D
+
L

[

2
j

]

ui(m, t)−

+BL
1

3

∑
j ,m,i

R
D
−,+,−
L

[

1α 1
jmi

]

u j(m, t)+BL
2

3

∑
j ,m,i

R
D
−,+,−
L

[

1α 1
jm j

]

ui(m, t)+Fi(n, t), (20)

where the displacement for the lattice isui(m, t) = ui(m1,m2,m3, t), andAL
0, AL

1, AL
2, BL

1, BL
2 are the coupling constants of

the lattice long-range interactions.
These three-dimensional lattice models in the continuum limit give fractional generalization of the Mindlin model of

the first gradient elasticity and allow us to have a microstructural basis for continua with weak nonlocality.

4 Continuum Fractional Derivatives of the Riesz Type

Let us give definitions of continuum derivatives of non-integer orders that allow us to describe materials with nonlocality
of power-law type.

The continuum derivative of non-integer orderα is defined [6,7] by the equation

D
+
C

[α
i

]

u(r) =
1

d1(m,α)

∫

R1

1
|zi |α+1 (∆

m
zi

u)(r)dzi , (0< α < m), (21)

where(∆m
zi

u)(r) is a finite difference of ordermof a functionu(r) with the vector stepzi = zi ei ∈R
3 for the pointr ∈R

3.
The centered difference

(∆m
zi

u)(zi) =
m

∑
n=0

(−1)n m!
n! (m−n)!

u(r − (m/2−n)zi ei). (22)

The constantd1(m,α) is defined by

d1(m,α) =
π3/2Am(α)

2αΓ (1+α/2)Γ ((1+α)/2)sin(πα/2)
,
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where

Am(α) = 2
[m/2]

∑
j=0

(−1) j−1 m!
j!(m− j)!

(m/2− j)α

for the centered difference (22). The constantsd1(m,α) is different from zero for allα > 0 in the case of an evenm and
centered difference(∆m

i u) (see Theorem 26.1 in [6]). Note that the integral (21) does not depend on the choice ofm> α.
Therefore, we can always choose an even numberm so that it is greater than parameterα, and we can use the centered
difference (22) for all positive real values ofα.

The continuum fractional derivativesD+
C

[α
i

]

u(r) can be considered as the Riesz derivative of the functionu(r) with
respect to one componentxi ∈ R

1 of the vectorr ∈ R
3, i.e. the operatorD+

C

[α
i

]

is a partial fractional derivative of Riesz
type. An important property of the Riesz fractional derivatives is the Fourier transformF of this operators in the form

F

(

D
+
C

[α
i

]

u(r)
)

(k) = |ki |
α(Fu)(k). (23)

The property (23) is valid for functionsu(r) from the spaceC∞(R1) of infinitely differentiable functions onR1 with
compact support. It also holds for the Lizorkin space (see Section 8.1 in [6]).

Using(−i)2m = (−1)m, the Riesz fractional derivatives for evenα = 2m, wherem∈ N, are connected with the usual
partial derivatives of integer orders 2mby the relation

D
+
C

[

2m
i

]

u(r) = (−1)m ∂ 2mu(r)
∂x2m

i

. (24)

The fractional derivativesD+
C

[

2m
i

]

for even ordersα are local operators. Note that the Riesz derivativeD
+
C

[

1
i

]

cannot be

considered as a derivative of first order with respect toxi , i.e.,D+
C

[

1
i

]

u(r) 6= ∂u(r)/∂xi . All Riesz derivatives for odd

ordersα = 2m+1, wherem∈ N, are non-local operators that cannot be considered as usualderivatives∂ 2m+1/∂x2m+1.
We can define a continuum fractional integralI

+
C

[α
i

]

of the Riesz type as the Riesz potential of orderα with respect
to xi by the equation

I
+
C

[α
i

]

u(r) =
∫

R1
Rα(xi − zi)u(r +(zi − xi)ei)dzi , (α > 0), (25)

whereei is the basis of the Cartesian coordinate system, the function Rα(r) is the Riesz kernel. that is defined by

Rα(r) =







γ−1
3 (α)|r |α−n α 6= 3+2n, n∈ N,

−γ−1
3 (α)|r |α−3 ln |r | α = 3+2n, n∈ N.

(26)

The constantγ3(α) has the form

γ3(α) =







2απ3/2Γ (α/2)/Γ ((3−α)/2) α 6= 3+2n,

(−1)(3−α)/22α−1π3/2 Γ (α/2) Γ (1+[α −3]/2) α = 3+2n,
(27)

wheren∈ N andα ∈ R+. An important property of this Riesz fractional integration is the Fourier transformF of this
operators in the form

F

(

I
+
C

[α
i

]

u(r)
)

(k) = |ki |
−α(Fu)(k). (28)

Note the distinction between the continuum fractional integralI+C
[α

i

]

and the Riesz potential consists in the use of|ki |
−α

instead of|k|−α . The continuum integralI+C
[α

i

]

is an integration ofu(r) with respect to one variablexi instead of all
variablesx1, x2, x3 in the Riesz potential.

If u(r) as a function ofxi belongs to the Lizorkin space, then we have [6] the semi-group property

I
+
C

[α
i

]

I
+
C

[

β
i

]

u(r) = I
+
C

[

α +β
i

]

u(r), (29)

whereα > 0 andβ > 0, and the continuum fractional derivativeD+
C

[α
i

]

yields an operator inverse to the continuum
fractional integrationI+C

[α
i

]

as

D
+
C

[α
i

]

I
+
C

[α
i

]

u(r) = u(r), (α > 0). (30)
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Note that the property (30) is also valid for the continuum fractional integration in the frame ofLp-spacesLp(R
1) for

16 p< 1/α (see Theorem 26.3 in [6]).

The continuum fractional derivativeD+
C

[

α
j

]

with α = 1 cannot be considered as usual derivative of first order with

respect tox j . Therefore we will define new continuum fractional derivativeD−
C

[

α
j

]

of the Riesz type by the equation

D
−
C

[

α
j

]

=



































∂
∂x j

D
+
C

[

α −1
j

]

α > 1

∂
∂x j

α = 1

∂
∂x j

I
+
C

[

1−α
j

]

0< α < 1.

(31)

For 0<α < 1 the operatorD−
C

[α
i

]

is analogous to the conjugate Riesz derivative [31]. Therefore, the operatorD−
C

[α
i

]

for all positive valuesα also can be called the conjugate derivative of the Riesz type.
The Fourier integral transformF of the fractional derivative (31) is given by

F

(

D
−
C

[

α
j

]

u(r)
)

(k) = ik j |k j |
α−1(Fu)(k) = i sgn(k j) |k j |

α(Fu)(k). (32)

For the odd integer values ofα, equations (24) and (31) give the relation

D
−
C

[

2m+1
i

]

u(r) = (−1) j ∂ 2m+1u(r)

∂x2m+1
i

, (m∈ N). (33)

Equation (33) means that the fractional derivativesD−
C

[α
i

]

of the odd ordersα are local operators represented by the
usual derivatives of integer orders.

Note that the continuum derivativeD−
C

[

2
j

]

cannot be considered as a local derivative of second order with respect to

x j . The derivativesD−
C

[

α
j

]

for even ordersα = 2m, wherem∈ N, are non-local operators that cannot be considered as

usual derivatives∂ 2m/∂x2m.
Using equations (24) and (33), we can state that the partial derivatives of integer orders are obtained from the fractional

derivatives of the Riesz typeD±
C

[

α
j

]

for odd valuesα = 2m+1> 0 byD−
C

[

α
j

]

, and for even valuesα = 2m> 0, where

m∈ N, by D
+
C

[

α
j

]

only. The continuum derivatives of the Riesz typeD
−
C

[

2m
j

]

andD+
C

[

2m+1
j

]

are nonlocal differential

operators of integer orders.

5 From Lattice Models to Continuum Models

Using the methods suggested in [30,29], we can define the operation that transforms a lattice fieldu(n) into a fieldu(r)
of continuum, For this transformations, we will consider the lattice scalar fieldu(n) as Fourier series coefficients of some
functionû(k) for k j ∈ [−k j0/2,k j0/2], wherej = 1,2,3. As a next step we use the continuous limitk0 →∞ to obtainũ(k).
Finally we apply the inverse Fourier integral transformation to obtain the continuum scalar fieldu(r). Let us describe these
steps with details:

Step 1:The discrete Fourier series transformu(n)→ F∆{u(n)}= û(k) of the lattice scalar fieldu(n) is defined by

û(k) = F∆{u(n)}=
+∞

∑
n1,n2,n3=−∞

u(n) e−i(k,r(n)), (34)

wherer(n) = ∑3
j=1n j a j , anda j = 2π/k j0 is distance between lattice particle in the directiona j .

Step 2:The passage to the limit ˆu(k)→ Lim{û(k)}= ũ(k), where we usea j → 0 (ork j0 → ∞), allows us to derive the
functionũ(k) from û(k). By definitionũ(k) is the Fourier integral transform of the continuum fieldu(r), and the function
û(k) is the Fourier series transform of the lattice fieldu(n), where

u(n) =
(2π)3

k10k20k30
u(r(n)),
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andr(n) = ∑3
j=1n ja j = ∑3

j=12πn j/k j0 → r .

Step 3:The inverse Fourier integral transform ˜u(k)→ F−1{ũ(k)}= u(r) is defined by

u(r) =
1

(2π)3

∫∫∫ +∞

−∞
dk1dh2dk3 ei ∑3

j=1 kj xj ũ(k) = F
−1{ũ(k)}. (35)

The combinationF−1 ◦ Lim ◦ F∆ of the operationsF−1, Lim, and F∆ define the lattice-continuum transform
operation

TL→C = F
−1 ◦Lim ◦ F∆ (36)

that maps lattice models into the continuum models [29,30].
The lattice-continuum transform operationTL→C as the combination of three operationsF−1 ◦ Limit ◦ F∆ can be

applied not only for lattice fields but also for lattice operators. The operationTL→C allows us to map of lattice derivatives
D
±
L

[α
i

]

into continuum derivativesD±
C

[α
i

]

.
The functionsK̂±

α (ki), are defined by the discrete Fourier series transformF∆ of the kernels of lattice operators, and
the functionsK̃±

α (ki) are defined by the Fourier integral transformsF of the correspondent continuum derivatives. The
equation that defineŝK±

α (ki) has the form

F∆

(

D
±
L

[α
i

]

u(m)
)

=
1

aα
i

K̂±
α (ki ai) û(k), (37)

whereû(k) = F∆{u(m)}, andF∆ is an operator notation for the discrete Fourier series transform. The equation that
definesK̃±

α (ki) is

F

(

D
±
C

[α
i

]

u(r)
)

= K̃±
α (ki) ũ(k), (38)

whereũ(k) = F{u(r)}, andF∆ is an operator notation for the Fourier transform. In general, the order of the partial
derivativeD±

C

[α
i

]

is defined by the order of lattice operatorD
±
L

[α
i

]

. This order can be integer and non-integer positive
real number.

We can formulate and prove statement about relation betweenthe lattice and continuum fractional derivatives of
non-integer orders.

Proposition The lattice-continuum transform operationTL→C maps the lattice fractional derivatives

D
±
L

[

α
j

]

u(m) =
1

aα
i

+∞

∑
mj=−∞

K±
α (n j −mj)u(m), (39)

where K±α (n j −mj) are defined by (3),(4), into the continuum fractional derivatives of orderα with respect to coordinate
xi by

TL→C

(

D
±
L

[

α
j

]

u(m)

)

= D
±
C

[

α
j

]

u(r), (40)

where u(r) = F−1 ◦ Lim ◦F∆ (u(m)).

Proof. The multiplication equation (39) by exp(−ik j n j a j), and the sum overn j from−∞ to+∞ give

+∞

∑
n j=−∞

e−ik j n j a j D
±
L

[

α
j

]

u(m) =
1
a j

+∞

∑
n j=−∞

+∞

∑
mj=−∞

e−ik j n j a j K±
α (n j −mj)u(m). (41)

Using (34), the right-hand side of (41) gives

+∞

∑
n j=−∞

+∞

∑
mj=−∞

e−ik j n j a j K±
α (n j −mj)u(m) =

=
+∞

∑
n j=−∞

e−ik j n j a j K±
α (n j −mj)

+∞

∑
mj=−∞

u(m) =
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=
+∞

∑
n′j=−∞

e−ik j n′j a j K±
α (n′j)

+∞

∑
mj=−∞

u(m)e−ik j mj a j = K̂±
α (k j a j) û(k), (42)

wheren′j = n j −mj .
As a result, equation (41) has the form

F∆

(

D
±
L

[

α
j

]

u(m)
)

=
1

aα
j

K̂±
α (k j a j) û(k), (43)

whereF∆ is an operator notation for the Fourier series transform.
Then we use

K̂+
α (a j k j) = |a j k j |

α , (44)

K̂−
α (a j k j) = i sgn(k j) |a j k j |

α , (45)

and, the limita j → 0 gives

K̃+
α (k j) = lim

a j→0

1
aα

j
K̂+

α (k j a j) = |k j |
α , (46)

K̃−
α (k j) = lim

a j→0

1
aα

j
K̂−

α (k j a j) = ik j |k j |
α−1. (47)

As a result, equation (43) in the limit a j → 0 gives

Lim ◦F∆

(

D
±
L

[

α
j

]

u(m)
)

= K̃±
α (k j) ũ(k), (48)

where
K̃+

α (k j) = |k j |
α , K̃−

α (k j) = ik j |k j |
α−1, ũ(k) = Lim û(k).

The inverse Fourier transform of (48) is

F
−1 ◦ Lim ◦F∆

(

D
+
L

[

α
j

]

u(m)
)

= D
+
C

[

α
j

]

u(r), (α > 0), (49)

F
−1 ◦ Lim ◦F∆

(

D
−
L

[

α
j

]

u(m)
)

=
∂

∂x j

(

D
+
C

[

α −1
j

]

u(r)
)

, (α > 1), (50)

F
−1◦ Lim ◦F∆

(

D
−
L

[

α
j

]

u(m)
)

=
∂

∂x j
I
+
C

[

1−α
j

]

u(r), (0< α < 1). (51)

Here the fractional derivative and fractional integral are

D
+
C

[

α
j

]

u(r) = F
−1{|k j |

α ũ(k)}, I
+
C

[

α
j

]

u(r) = F
−1{|k j |

−α ũ(k)}, (52)

where we use the connection between the continuum derivative (and the continuum integral) of the Riesz type of the order
α and the corresponding Fourier integral transforms.

As a result, we prove that lattice fractional derivatives are transformed (40) into continuum fractional derivatives of
the Riesz type.

This ends the proof.

Using the Proposition (40), and the independence ofni andn j for i 6= j, it is easy to prove that the continuum limits
for the lattice mixed partial derivatives (15) and (16) have the form

TL→C

(

D
±,±
L

[

α1 α2

i j

]

u(m)

)

= D
±
C

[α1

i

]

D
±
C

[

α2

j

]

u(r), (i 6= j), (53)

TL→C

(

D
±,∓
L

[

α1 α2

i j

]

u(m)

)

= D
±
C

[α1

i

]

D
∓
C

[

α2

j

]

u(r), (i 6= j). (54)

We have similar relations for other mixed lattice fractional derivatives.
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6 Three-Dimensional Continuum Models of Fractional Gradient Elasticity

The proved Proposition allows us to get continuum models from the suggested lattice models by using the
lattice-continuum transform operation (36).

In the continuum limit (a j → 0), the lattice equations (17) give the continuum equations for the fractional gradient
elasticity in the form

ρ
∂ 2ui(r , t)

∂ t2 =
3

∑
j ,l=1

AC
i jkl

R
D
+
C

[

11
j l

]

uk(r , t)+
3

∑
j ,m,l=1

BC
i jkl

R
D
−,+,−
C

[

1α 1
jml

]

uk(r , t)+ fi(r , t), (55)

whereui(r , t) are the components of the displacement vector field for continuum, andAC
i jkl andBC

i jkl are the coupling
constants for the non-local continuum. We note that the continuum operators, which are used in equation (55), can be
represented by

R
D
+
C

[

11
j l

]

=
∂ 2

∂x j∂xl
, (56)

R
D
−,+,−
C

[

1α 1
jml

]

= R
D
−
C

[

1
j

]

R
D
+
C

[α
m

]

R
D
−
C

[

1
l

]

=
∂

∂x j

R
D
+
C

[α
m

] ∂
∂xl

. (57)

The coupling constants of continuum are defined by the lattice coupling constantsAL
i jkl andBL

i jkl by the relations

AC
i jkl =

al a j ρ
M

AL
i jkl , BC

i jkl =
al a j

(

∑3
m=1a2α

m

)

ρ
M

BL
i jkl . (58)

In the casea1 = a2 = a3 = a, we get the fourth-order elastic stiffness tensorCi jkl in the form

Ci jkl = AC
i jkl =

a2 ρ
M

AL
i jkl . (59)

If BL
i jkl = gBAL

i jkl , then the scale parameterl2s is l2s = 3a2α gB, and we haveBC
i jkl = l2α Ci jkl . For isotropic materials,Ci jkl

are expressed in terms of the Lame constantsλ andµ by

Ci jkl = λ δi j δkl + µ (δik δ jl + δil δ jk). (60)

Note thatxk, ak, l2α are dimensionless values.
If α = 2, then equation (55) gives the well-known continuum equation of gradient elasticity

ρ üi(r , t) =
3

∑
j ,k,l=1

Ci jkl
∂ 2uk(r , t)
∂x j ∂xl

± l2α
3

∑
j ,k,l ,m=1

Ci jkl
∂ 4uk(r , t)

∂x j ∂x2
m∂xl

+ fi(r , t). (61)

Let us give the stress-strain constitutive relation for fractional gradient elasticity (55). Equation (55) can be represented
in the form

ρ üi(r , t) =
3

∑
j=1

∂σi j (r , t)
∂x j

+ fi(r , t), (62)

whereσi j (r , t) is the stress tensor that is connected with the strain tensorεkl(r , t) by the constitutive relation

σi j (r , t) =
3

∑
k,l=1

AC
i jkl εkl(r , t)+

3

∑
k,l ,m=1

BC
i jkl

R
D
+
C

[α
m

]

εkl(r , t). (63)

whereεkl(r , t) = 1/2(∂uk(r , t)/∂xl + ∂ul(r , t)/∂xk). If we use (59) and assume thatBC
i jkl = ± l2α AC

i jkl , then relation (63)
can be rewritten as

σi j (r , t) =
3

∑
k,l=1

Ci jkl

(

1± l2α
R∆ α ,+

C

)

εkl , (64)
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whereR∆ α ,+
C is the fractional Laplacian of the Riesz type of the form

R∆ α ,+
C =

3

∑
m=1

R
D
+
C

[α
m

]

. (65)

Equation (64) gives the constitutive relation for fractional gradient elasticity. Forα = 2, relation (64) has the form

σi j (r , t) =
3

∑
k,l=1

Ci jkl

(

1∓ l22 ∆
)

εkl(r , t). (66)

This is the well-known stress-strain constitutive relation for gradient elasticity. If we consider the case with
ux(r , t) = u(x, t), fx(r , t) = f (x, t), where the other components,uy, uz, fy, fz, are equal to zero, then we get the
one-dimensional fractional elasticity models suggested in [22,23]. The lattice models (20) and (17) are
three-dimensional generalizations of the one-dimensional lattice models proposed in [22,23]. In addition, the equation
(17) of lattice with long-range interactions allows us to derive the stress-strain constitutive relations for fractional
nonlocal elasticity by using usual law (62).

The continuum limit for lattice equations (20) gives the continuum equations of the fractional gradient elasticity in the
form

ρ üi(r , t)−AC
0

3

∑
j=1

∂ 2üi(r , t)
∂x2

j

= AC
1

3

∑
j=1

∂ 2u j(r , t)
∂x j∂xi

+AC
2

3

∑
j=1

∂ 2ui(r , t)
∂x2

j

+

+BC
1

3

∑
j ,m=1

∂
∂x j

R
D
+
C

[α
m

] ∂u j(r , t)
∂xi

+BC
2

3

∑
j ,m=1

∂
∂x j

R
D
+
C

[α
m

] ∂ui(r , t)
∂x j

+ fi(r , t), (67)

where the constants for continuum are defined by

AC
i =

a2 ρ
M

AL
i (i = 0,1,2), BC

j =
a2+α ρ

M
BL

j ( j = 1,2). (68)

The Lame constantsλ andµ are defined by the lattice coupling constants

µ =
a2 ρ
M

AL
2, λ =

a2 ρ
M

(AL
1 −AL

2). (69)

The three additional parametersl1, l2(α), l3(α) of the Mindlin model are

l21 =
AL

0a2

M
, l22(α) =

aα |BL
1|

|AL
1|

, l23(α) =
aα |BL

2|

|AL
2|

. (70)

Note thatxk, a, l21, l22(α), l23(α) are dimensionless values. Equations (67) can be considered as the fractional Mindlin
equations.

The three-dimensional lattice model (19) in the continuum limit gives the fractional generalization of Mindlin model
of the first gradient elasticity, if the Lame constantsλ andµ are defined by the lattice coupling constants

µα
ρ

=
a2α AL

3(α)

M
,

λα
ρ

=
a2α

M

(

AL
1(α)−AL

3(α)
)

, (71)

and the three additional parametersl1, l2, l3 of the Mindlin model are

l21(α) =
a2α AL

0(α)

M
, l22(α) =

a2α BL
1(α)

AL
1(α)

, l23(α) =
BL

5(α)

AL
3(α)

, (72)

where the coupling constants are not independent

AL
2(α) = AL

1(α)+AL
3(α), BL

1(α) = BL
2(α) = BL

3(α) = BL
4(α), BL

5(α) = BL
6(α). (73)

In the continuum limit (a → 0), we obtain the equations for fractional non-local continuum model that is a
generalization of the Mindlin first gradient elasticity. These equations have the form

ρ
∂ 2ui

∂ t2 = ρ l21(α)
3

∑
j=1

R
D
+
C

[

2α
j

]

üi(r , t)+
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+(λα + µα)

(

3

∑
j : j 6=i

R
D
−,−
C

[

α α
j i

]

u j(r , t)+ R
D
+
C

[

2α
i

]

ui(r , t)

)

+ µα
3

∑
j=1

R
D
+
C

[

2α
i

]

ui(r , t)−

−(λα + µα) l22(α)
3

∑
j : j 6=i

(

R
D
−,−
C

[

3α α
j i

]

u j(r , t)+ R
D
−,−
C

[

α 3α
j i

]

u j(r , t)
)

−

−(λα + µα) l22(α)
3

∑
j : j 6=i

R
D
+,+
C

[

2α 2α
j i

]

ui(r , t)−

−(λα + µα) l22(α)







3

∑
k, j :

j 6=i; j 6=k;k6=i

R
D
+,−,−
C

[

2α α α
k j i

]

ui(r , t)+ R
D
+
C

[

4α
i

]

ui(r , t)






−

−µα l23(α)







3

∑
k,l
k6=l

R
D
+,+
C

[

2α 2α
k j

]

ui(r , t)+
3

∑
j=1

R
D
+
C

[

4α
i

]

ui(r , t)






+ fi(r , t), (74)

whereui(r , t) are components of the displacement field for the continuum, and fi(r , t) are the components of the body
force.

For α = 1, equations (74) give the differential equations for gradient elasticity

ρ
∂ 2ui(r , t)

∂ t2 = ρ l21
3

∑
j=1

∂ 2üi(r , t)
∂x2

j

+

+(λ + µ)

(

3

∑
j : j 6=i

∂ 2u j(r , t)
∂x j ∂xi

+
∂ 2ui(r , t)

∂x2
i

)

+ µ
3

∑
j=1

∂ 2ui(r , t)
∂x2

j

−

−(λ + µ) l22
3

∑
j : j 6=i

(

∂ 4u j(r , t)
∂x j ∂x3

i

+
∂ 4u j(r , t)
∂x3

j ∂xi
+

∂ 4ui(r , t)
∂x2

j ∂x2
i

)

−

−(λ + µ) l22







3

∑
k, j :

j 6=i; j 6=k;k6=i

∂ 4ui(r , t)
∂x2

k ∂x j ∂xi
+

∂ 4ui(r , t)
∂x4

i






−

−µ l23







3

∑
k,l
k6=l

∂ 4ui(r , t)
∂x2

k ∂x2
j

+
3

∑
j=1

∂ 4ui(r , t)
∂x4

j






+ fi(r , t), (75)

whereλ = λ1, µ = µ1, andl j = l j(1), wherej = 1,2,3. In equations (75) the derivatives of integer orders with respect to
the same spatial coordinates are clearly marked. Equations(75) can be written as the Mindlin equations for displacements
components in the form

ρ üi(r , t)−ρ l21
3

∑
j=1

∂ 2üi(r , t)
∂x2

j

= (λ + µ)
3

∑
j=1

∂ 2u j(r , t)
∂xi∂x j

+ µ
3

∑
j=1

∂ 2ui(r , t)
∂x2

j

−

−(λ + µ) l22
3

∑
k=1

3

∑
j=1

∂ 4u j(r , t)
∂x2

k∂xi∂x j
− µ l23

3

∑
k=1

3

∑
j=1

∂ 4ui(r , t)
∂x2

k ∂x2
j

+ fi(r , t), (76)

where fi(r , t) are the components of the body force,ui(r , t) are components of the displacement field for the continuum,
and

l22 =
4λ1+4λ2+3λ3+2λ4+3λ5

2(λ + µ)
, l23 =

λ3+2λ4+λ5

2µ
. (77)
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As a result, continuum equations (76) have two Lame constants and three additional parametersl1, l2, l3. Note that
equations (76) for Mindlin gradient elasticity model can be obtained [5] by using the expressions of the kinetic density

T =
1
2

ρ ∂tui ∂tui +
1
2

ρ l21 u̇i, j u̇i, j , (78)

the density of the deformation energy in the form

U =
1
2

λ εii ε j j + µ εi j εi j +λ1εik,iε j j ,k+λ2εkk,iε j j ,i +λ3εik,iε jk, j +λ4ε jk,iε jk,i +λ5ε jk,iεi j ,k, (79)

whereλ andµ are the usual Lame constants and the variousλi (i = 1, ...,5) are 5 additional constitutive coefficients,ρ is
the mass density,uk is the displacement,εi j is the strain, andεi j = (1/2)(ui, j +u j ,i).

If the lattice equations (19) would be written only through even lattice fractional-order operatorsRD+
L

[

α
j

]

, then the

correspondent continuum equations contain the continuum fractional derivativesRD+
C

[

α
j

]

, of orders 1 and 3 that are

non-local operators. In this case, we cannot get the usual Mindlin model with derivatives of integer orders. Therefore,we

suggest the equations of lattice model that contain two typeof lattice fractional derivativesRD±
L

[

α
j

]

, in the suggested form

(19). It is obvious that we would like to have such a fractional generalization of partial differential equations that yieldthe
original equations in the limit case, when the orders of fractional derivatives become equal to initial integer values.This

desirable correspondence and the property of the continuumfractional derivativesRD±
C

[

α
j

]

to be the local operators of

integer ordersα only if we useR
D
−
C

[

α
j

]

for the odd values ofα, and if we useRD+
C

[

α
j

]

for the even values ofα, allow

us to consider equations in the form (19) with the fractional-order lattice operatorsR
D
±
L

[

α
j

]

as basic equations of lattices

with long-range interactions.

7 Conclusions

Elasticity of weak nonlocal continuum is discussed in this paper. Three-dimensional lattice models with long-range
interactions are suggested for fractional gradient elasticity. These lattice models give new microstructural basis of unified
description of gradient nonlocal continuum models. The suggested type of long-range interactions can be considered for
integer and non-integer (fractional) orders of non-locality. It allows us to get lattice models for the local and nonlocal
elasticity theories of continuum mechanics.

For clarity, we select the main differences between this paper and the numerical approach for fractional differential
equations with the Riesz derivatives [38,39], the finite difference methods [40,41], the tool of the discrete fractional
calculus [42]-[48].

1) The discrete models, which are proposed in this paper, aremicrostructural models of physical lattices. These models
and the corresponding equations are not discretization of continuous models and the fractional differential equations of
nonlocal continuum.

2) The suggested lattice models correspond to the continuummodels exactly. They are not asymptotically equivalent,
i.e. they are not an approximation. Equations of lattice models exactly correspond to fractional differential equations
without any approximation. (For details about exact and asymptotic connections of lattice and continuum models see
[32]).

3) The numerical methods for fractional partial differential equations with Riesz space fractional derivatives, which
are considered in [38,39], replace the Riesz fractional derivatives by the finite differences with power-law weights (the
finite-difference approximation). The same type of replacements is used in the finite difference methods [40,41], The
discrete fractional calculus, which are used in [42]-[46], are also based on the finite differences with power-law weights
(the finite fractional differences). Our approach is based on special type of infinite fractional differences that describe
long-range interactions in physical lattices.

In general, the finite differences correspond to models withnearest-neighbor and next-nearest-neighbor interactions
[27,28]. In this paper, we suggest physical lattice models with long-range interactions of power-law type. The long-range
type of interactions and the corresponding discretizations are very important in fractional nonlocal models. Nonlocal
continuum theory [50,51] is based on the assumption that the forces between particles are a long-range type, thus reflecting
the long-range character of interatomic and intermolecular forces. We assume that fractional finite differences cannot
completely reflect all characteristic properties of the fractional-order derivatives.
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It is well-known that the fractional derivative of non-integer order can be represented in the form of an infinite series
of derivatives of integer orders (for example, see Lemma 15.3 in [6]). The cutting of this series can be considered only as
an approximation. Similarly, the long-range lattice interactions and the infinite fractional differences can be represented
only as a infinite sum of special finite differences with power-law weights.

Derivatives and integrals of non-integer orders describe nonlocality of power-law type at macroscopic scale. The long-
range interactions, which represented by infinite differences, describe nonlocality at micro and nanoscales. Therefore, the
suggested lattice models with long-range interactions more correctly describe the continuum media with nonlocality of
power-law type.

For discrete maps with power-law memory, which are equivalent to the fractional differential equations with the
periodic sequence of delta-function-type pulses (kicks) [53,54,55], the situation is somewhat different. Equations of
these maps contain special finite differences with power-law weights. At the same time the derivation of these maps
from fractional differential equations of kicked motions is not used approximations. This fact allows us to study the
time-fractional dynamics by computer simulations withoutapproximations. The special situation is related to the fact
that the fractional differential equations contain the terms of periodic delta-function-type kicks. The fractional partial
differential equations of nonlocal continuum do not contain terms with delta-functions. Therefore, the discrete (lattice)
models, which are connected with these equations without approximations, should contain the infinite differences (for
example, the Grünvald-Letnikov type [24,32,49]) and the long-range lattice interactions.

There is an interesting question about a connection betweenthe finite fractional differences and the Grünvald-Letnikov
fractional differences, which are infinite differences, and the corresponding derivatives. It should be noted that lattice
models with long-range interactions, which are based on fractional-order differences of Grünwald-Letnikov type, have
been suggested in [24,49]. These differences, which is represented by infinite series, allow us to describe long-range
interactions in chains and lattices [32]. In paper [48], an equivalence between the discrete maps with power-law memory
and the Grünvald-Letnikov fractional difference equations has been proved. In the continuous limit, this connectionleads
to the equivalence of some fractional differential equations and the Volterra integral equations of the second kind.

We can mention some possible extensions of the proposed lattice models to formulate generalizations of fractional
nonlocal elasticity theories. We suppose that the lattice fractional derivatives [32,33] can be used for nonlocal elasticity
theory to generalize for different types of Bravais lattices such as monoclinic, triclinic, hexagonal and rhombohedral.
We suppose that the lattice fractional calculus [32,33] can be used to get lattice models for dislocations in the gradient
elasticity continuum and in the fractional generalizationof nonlocal dislocations. The suggested lattice approach that based
on the three-dimensional lattice with long-range interactions can play an important role in the description of nonlocal
materials and continua [50,51,52] at micro and nano scales since the long-range intermolecular interactions are prevalent
in determining the elastic properties at these scales.
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